
Slides for

Design Methods for Reactive Systems:

Yourdon, Statemate and the UML

Roel Wieringa

Department of Computer Science

University of Twente,

the Netherlands

roelw@cs.utwente.nl

www.cs.utwente.nl/∼roelw

1

List of Slides

3 Chapter 1. Reactive Systems

11 Chapter 2. The Environment

28 Chapter 3. Stimulus-Response Behavior

43 Chapter 4. Software Specifications

55 Chapters 5–7. Mission Statement, Function Refinement

Tree, Service Description

77 Chapter 8. Entity-Relationship Diagrams

99 Chapter 9. ERD Modeling Guidelines

125 Chapter 10. The Dictionary

139 Part IV. Behavior Notations

154 Chapter 11. State Transition Lists and Tables

166 Chapter 12. State Transition Diagrams

2

188 Chapter 13. Behavioral Semantics

210 Chapter 14. Behavior Modeling and Design Guidelines

238 Part V. Communication Notations

246 Chapter 15. Data Flow Diagrams

265 Chapter 16. Communication Diagrams

276 Chapter 17. Communication Semantics

287 Chapter 18. Context Modeling Guidelines

300 Chapter 19. Requirements-Level Decomposition Guidelines

323 Chapter 20. Postmodern Structured Analysis (PSA)

332 Chapter 21. Statemate

351 Chapter 22. The Unified Modeling Language (UML)

381 Chapter 23. Not Yet Another Method

3

Chapter 1. Reactive Systems

• Partitioning of systems into information systems, control

systems and telecommunication systems is becoming obsolete.

• More informative partitioning: Transformational versus

reactive systems.

• Reactive systems respond to stimuli in order to bring about

desirable effects in their environment.

• Reactive systems may do one or or of these things:

– Manipulate complex data,

– engage in complex behavior,

– communicate with many other systems.

4

Example 1

A training information system supports coordination of monthly

introductory training courses for new employees of large company.

• Nonterminating: When switched on, it should respond to

events such as queries, updates, arrival of downloads.

• Interactive: When switched on, it can engage in dialogs with its

users and with other software (personnel information system).

• State-dependent response: Its response depends upon the data

stored in it.

• Environment-oriented response: Responses defined in terms of

courses, participants, teachers etc.

• Parallel processing: May interact with several users and

programs simultaneously.

5

Example 2

An electronic ticket system supports buying and using rail tickets

by means of a smart card in combination with a PDA.

• Nonterminating: When switched on, it should respond to

events such as buy, show, use.

• Interactive: When switched on, it can engage in dialogs with

its users and with other software.

• State-dependent response: Its response depends upon the

tickets and the data about railroads stored in it.

• Environment-oriented response: Responses defined in terms of

railroad routes and segments.

• Parallel processing: It may consist of several pieces of software

running concurrently on smart card and PDA.

6

Example 3

A heating controller of heating tank in juice plant.

• Nonterminating: When switched on, it should respond to

events such as start heating, too hot, too cold.

• Interactive: When switched on, it can engage in dialogs with

its users and with devices.

• Interrupt-driven: It responds to time-outs and signals from

operator and devices as and when they occur.

• State-dependent response: Its response depends upon the data

that it stores, which is about the heating tank and its devices.

• Environment-oriented response: Responses are about heating

tank and its devices.

• Parallel processing: Monitoring temperature, monitoring

pressure, listening to commands from operator.

• Real time: Responses would be incorrect if too late.

7

Definition of reactive system

A reactive system is a system that, when switched on, is

able to create desired effects in its environment by enabling,

enforcing or preventing events in the environment.

Has most of the following characteristics:

• nonterminating

• interactive

• interrupt-driven

• state-dependent

• environment-oriented

• parallel

• real-time

8

Examples of reactive systems

• Information systems

• Workflow systems

• Groupware

• EDI systems

• Web market places

• Production control software

• Embedded software

9

Transformational systems

Contrast reactive systems with transformational systems, that

compute output from an input and then terminate.

• terminating

• sometimes interactive

• not interrupt-driven

• output not state-dependent

• output defined in terms of input

• sequential

• usually not real-time

Compiler, assembler, loader, expert system, optimization

algorithm, search algorithm, linear programming algorithm, etc.

10

Design approach to reactive systems

To design reactive systems, environment models are important:

• Possible entities and behavior in environment (chapter 2).

• Communication of system with environment (chapter 3)

11

Chapter 2. The Environment

Example 1

Joiner
(new employee)

Training
Information

System

Registration
desk

‘‘XYZ wants to
participate’’

‘‘I want to
participate’’

‘‘XYZ allocated to group 3’’

Group 3

12

Joiner
(new employee)

Training
Information

System

subject
of both messages

connection

Informative
function

of TIS

Message about joiner

Registration
desk

‘‘XYZ wants to
participate’’

‘‘I want to
participate’’

‘‘XYZ allocated to group 3’’

Group 3

message about
joiner and group

subject

13

Example 2

Heating
controller

Heating
tank

Heater
‘‘switch on’’

Operator

‘‘start
heating

the tank’’

heat

subject
of message 2

subject
of message 1

directive function
of controller

command about
heating tank

 2

 1

Console

14

Example 3

Conductor Conductor’s PDA

Traveller’s
smart card

‘‘Stamp ticket
for usage’’

enter traveller’s
smart card,

push usage button

Ticket

Subject
of message

Manipulative function
of Electronic Ticket System

15

Symbolic interactions

Reactive software systems communicate with their environ-

ment by means of linguistic messages.

• Not in object-oriented sense.

• Post-it notes exchanged with environment.

• Flow of symbols is more important than of flow of energy or

matter.

• Physical connection is what makes symbol flow possible.

• Effect not determined by physical causality but by symbol flow.

• We abstract from the physical realization of these messages.

16

Summary of examples

Messages entering and leaving a reactive software system are

characterized by three aspects:

• A subject

– What is the message about?

About people, devices, conceptual entities, lexical entities.

• A function

– What is the purpose of the message?

To inform or direct the environment, to manipulate lexical items

in the system.

• A connection

– Through which path does the message travel from sender to

receiver?

Messages can get delayed, distorted or lost along the way.

17

Definitions

• Subject domain of a reactive system: Set of all subjects of all

its input and output messages.

• Functions of a reactive system: All services provided by these

message exchanges.

• Connection domain of a reactive system: Channels through

which messages flow to and from the system.

18

Subject domain

The part of the world talked about by the messages that cross

the system interface.

To find it, ask what the messages entering and leaving the system

are about.

• Physical entities. Have a weight and a size. Make noise,

generate heat.

– People

– Devices

• Conceptual entities. Invisible and weightless. E.g. bank

accounts, obligations, permissions.

• Lexical items. Physical entities with a meaning. E.g. Tickets,

contracts, receipts.

19

Example of a physical subject domain

Heating controller

Heater

Heating tank

Thermometer Subject domain

A physical subject domain always exists outside the software

system.

20

Example of conceptual, lexical, physical subject
domain entities

Personnel
information

system
Employee

Employment contract

Rights and obligationsEmployee
department
personnel

Subject domain

Conceptual entities always exist outside the software system. They

exist because people agree to treat them as existing.

21

Lexical entities can be copied

Employee

 Employment contract
copy 2

Rights and
obligations

 Employment contract
copy 1

Personnel
information

system

Employee
department
personnel

Subject
domain

Software system lexical entities

Lexical subject domain entities may exist in the software or in the

environment of the software. They may be copies of each other.

22

Physical and conceptual entities in a subject
domain

Button

Elevator cage

Allocation record Allocation
Elevator
controller

Subject dmain

23

Functions of reactive systems

• Registration. System registers events in environment.

– TIS registers participation in course.

– Heating controller registers temperature.

• Direction. System influences events in environment.

– Controller switches heater on.

– Compact dynamic bus station controller: Tells driver at

which platform to park.

• Manipulation. System manipulates virtual entities; this has a

meaning in the social environment.

– ETS stamps ticket.

– TIS allocates joiner to group.

24

Connection domain

• Events of interest usually do not occur exactly at the interface

of the system.

• Actions caused by the system usually do not occur exactly at

the interface of the system.

Communication channel needed. If represented explicitly it is

called a connection domain. Is possible source of

• delay,

• loss, and

• distortion

of messages to/from the system.

25

Subject domain and connection domain

Library
member

Library
desk

Document

Acquisition
department

Publisher

Circulation
department

acquisition info

reminder

remind request

reserve, borrow,
return

Library
desk

notification

availability

Document
Circulation

System

Connection
domain

Subject
domain

SuD Librarian

query
answer

26

System directly connected to subject domain

Elevator controller

Request
button

Motor Doors

SuD

Subject
domain

Passenger

Arrival
sensor

Direction
indicator

27

Main Points

Let SuD be a Software System under Design.

• Message that cross the interface of the SuD are about the

subject domain.

• Subject domain entities exist outside the SuD; except lexical

items, that may also exist inside the SuD.

• Messages that cross the interface have three kinds of functions:

Informative, Manipulative, Directive.

• Messages travel to and from the SuD through a connection

domain.

28

Chapter 3. Stimulus-Response Behavior

• A reactive system receives messages from sources in its

environment and it sends messages to destinations in its

environment.

• At the sources, events occur.

• At the destinations, actions occur.

• We now look at the chain of cause and effect from event to

system stimulus, and from system response to action.

• We will see that to interpret stimuli and to motivate responses,

we need to make assumptions about the environment.

29

Example 1

Joiner
(new employee)

Training
Information

System

Registration
desk

‘‘XYZ wants to
participate’’

‘‘I want to
participate’’

‘‘XYZ allocated to group 3’’

Group 3

event stimulus

responseaction

allocation
created

Assumptions:

• Registration desk transmits message faithfully.

• The employee is indeed a joiner.

30

Example 2

Heating

controller

Heating

tank
Heater

‘‘switch

on’’

Operator
‘‘start

heating

the tank’’

heat

Console
Time to

start heating

Heating started

action

response

stimulustemporal

event

Assumptions:

• The message is transmitted faithfully by the console.

• The translates “switch on” into heat production.

• The heater is connected to the heating tank.

31

Example 3

Conductor Conductor’s PDA

 Traveller’s smart card‘‘Stamp ticket

for usage’’

enter card

in PDA

Ticket

response and action

stimulus

stamp the ticket

event

Assumptions:

• The PDA is indeed the conductor’s PDA.

• The conductor requests to stamp the ticket while the ticket

owner is traveling on a segment for which the ticket is valid.

32

Example 4

Goods on shelves in the supermarket

Point-of-
sale-

terminal

Stock
information

system

Customer

buy

‘‘stock too low’’Supplier’s
information

system

‘‘order 30
widgets’’

Response Stimulus

A shelf becomes
empty

Condition
change
event

SuD

Receive 30 widgets

Action

SuD discovers the change event by testing the condition stock < 4.

Assumptions:

• Data in SIS accurately represent state of the shelves.

33

Summary of stimulus-response behavior

• Some named external event, condition change event or temporal

event occurs in the environment.

• Through some some communication channel, this causes an

SuD stimulus.

– May be modeled explicitly as connection domain.

• The SuD responds.

• Through some communication channel, this causes an action in

the environment.

– For virtual entities, response and action coincide.

34

Structure of stimulus-response behavior

event or condition

Reactive system

action

action 1

action 2

effect 1

effect 2

desired effect

effect 3

stimulus response

Connection domain

35

The role of assumptions

These are statements about the environment ...

• that must be true for the (stimulus, response) pair to be

desirable;

• but the SuD cannot guarantee them to be true.

• If assumption is false, (stimulus, response) pair may still be

desirable, or indifferent, or even undesirable!

Typical assumptions concern laws of nature and properties of

devices (e.g. observers and actors) and people (e.g. users and

operators).

36

Observers and actors are in the connection
domain

Observer

Reactive system

ActorConnection domain

event action

stimulus response

37

Assumptions about observers

Plate cutting controller

Metal plate

Photoelectric cell Cutter

on, off

close, open cut

move

• Events of interest: begin of plate arrives, end of plate arrives

• Available stimuli: on, off.

We need the following assumptions:

• The photo-electric cell is functioning properly.

• The cell is stimulated only by the arrival of the begin or end of a

metal plate.

38

Event recognition

System must respond to the event

• a point arrives where the sheet must be cut.

The system must infer the occurrence of this event. Event

recognition:

• Record the point in time at which plate arrives.

• Wait for time at which desired point is under the cutter.

Additional assumption needed:

• Speed of the plate is n meters / second.

39

Observability of events

Elevator controllerButton
closepush

decide to take the elevator,
decide to take the stairs

What is the subject domain of the elevator controller?

40

Observing temporal events

Timer

Reactive system

Actor

action

Connection domain

stimulus response

time to perform action

41

Realizability of actions

Controller

Solenoid

Coolant Valve
Spring

Tube

42

Main points

• Reactive software system is connected to interesting events and

actions by a communication channel.

• Stimulus is event observation.

• Response is assumed to cause desired action.

• If assumptions about environment are true, (stimulus,

response) pairs are desirable; otherwise, they may be

undesirable or indifferent.

• Assumptions cannot be guaranteed by the system.

43

Chapter 4. Software Specifications

• We call any creative decision about a system a design decision.

• To design a system is to make a plan how it will be built.

• A specification is a description of design decisions.

• A reactive system specification must describe

– the place of the SuD in the system hierarchy,

– it must describe functions, behavior and communication of

the SuD, and

– it must describe its composition.

• The specification must be used to motivate the design in a

systems engineering argument.

44

Systems engineering argument example 1

Training department

Training
Information

System

Course
coordinator

Secretary Staff

Upload/
download
module

PrintingAllocation Registration

• If TIS allows registration of unexpected participants

• and the department keeps extra staff,

• then department is able to handle newcomers efficiently.

45

Systems engineering argument example 2

Juice pasteurization
unit

Heating
controller

Operator Heater Thermometer

Recipe
data

Batch
control

Device
data

Tank
control

Heating tank

• If controller controls heater according to batch recipe

• and thermometer is functioning,

• then pasteurization unit heats batch according to recipe.

46

Systems engineering argument example 3

Railway
company

Rail
network

Conductor
Conductor’s

PDA

Rail network
database

Tickets and
stamps

Bank
database

Central
ticket selling

computer

Traveler

Traveler’s
PDA

Traveler’s
smart
card

Clearing
house

Bank

ETS

• If ETS allows travelers to buy tickets through their PDA

• and traveler’s PDA interfaces with ETS,

• then railway company reduces operating costs.

47

System engineering argument

SuD External entityExternal entity

Composite system

Subsystem 1 Subsystem n

• If SuD satisfies specification S

• and environment satisfies assumptions A

• then composite system has emergent properties E.

Emergent properties arise by interaction of component systems.

They should satisfy goals of composite system.

48

The role of assumptions

• If assumptions are not satisfied by environment, the composite

system goal may not be reached.

• System cannot guarantee the assumptions.

Examples:

• Heat will rise when “switch on” sent to heater.

Assume laws of thermodynamics and assume that devices work.

• Ticket is stamped for segment of the current route.

Assume that the conductor, traveler and smart card are physically located

in the segment for which ticket is stamped.

49

Kinds of assumptions

• laws of nature

• specifications of devices

• rules for people (laws, procedures)

• definitions of conceptual structures (e.g. meaning of stamps

and tickets)

Only laws of nature are infallible ... we assume. Many assumptions

are about the subject domain and about the connection domain.

50

Kinds of properties

Functional properties

Services Behavior Communication
etc.

Composite
system

Software
system

Software
subsystem

Software
component

Decomposition

External
properties

Quality
attributes

Software
object

51

Properties occur at every level

SuD

Subsystem 1 Subsystem n

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

......

Composite
system

External
entity

External
entity

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

Functional properties appear at every level.

• Service = Interaction that delivers desired effect.

• Behavior = Ordering of interactions over time.

• Communication = Symbol flow between different entities.

52

Terminology

With respect to the SuD, we talk about:

• Requirement = desired property.

• Constraint = imposed property.

• Aspect = group of properties.

53

Operational specification

Specification of set of reproducible operations to find out whether a

property is present.

Important class of operational specs has the form

• If stimulus s occurs

• and system is in state C

• then produce response r.

Also called Event-Condition-Action (ECA) rule. Appears in state

transition table (see chapter 12).

54

Main points

• Systems have functional properties and quality properties.

• Functional properties are services, behavior, communication.

• These reappear at every level in aggregation hierarchy.

• (There are really three aggregation hierarchies.)

• SuD needs external entities to jointly produce desired emergent

properties of composite system. System engineering argument.

55

Chapters 5–7. Mission Statement, Function

Refinement Tree, Service Description

• We describe the utility of the system for its environment by

describing its functions for the environment.

• But a function is not a component; it is not a program; it is

not a part of a program. It is the added value, or utility, of the

SuD for its environment.

– “The function of this coffee machine is to brew coffee.”

– “The added value of this coffee machine is to brew coffee.”

– “The utility of this coffee machine is to brew coffee.”

In this course, these three sentences mean the same thing.

56

Example 1: Goal tree of the training department

More efficient and effective management of introductory courses

Better information
to speakers

Faster handling of
unexpected participants

Less unexpected
participants

Faster handling of
expected participants

Prepare
material

Print badges

Allocate
participants

Other activities

Download
latest information
from personnel

information system

On−line
registration

Ad−hoc
badge

 printing

Ad−hoc
list printing

Better information
to personnel department

Upload
participation data

Self−
registration

TIS should contribute to goals in italics.

57

Example 1: Mission of TIS

• Name: Training Information System

• Acronym: TIS

• Purpose: To support the management of monthly introduc-

tory training courses.

• Responsibilities:

– To support course preparation, including allocation of par-

ticipants to groups and printing badges

– To support course handling (unexpected, absentees)

– To support course wrap-up

• Exclusions:

– Data of unexpected participants is not checked.

– No support for allocation of speakers to groups.

– No support for allocation of groups to rooms.

58

Example 1: Function refinement tree of TIS

Support the coordination of introductory training courses

Download list
of joiners

Print list of
group members

Allocate joiners
to groups

Register
absentee

Register
unexpected
participant

Upload
participation
record

Print
badges

Course preparation support Registration
support

Course wrap−up
support

59

Example 1: Description of a TIS service

Download joiners

– Triggering event: Coordinator requests to download list

of joiners from the personnel information system.

– Delivered service: Download the list of people from the

Personnel Information System who have joined the com-

pany since the previous training.

– Assumptions: The data in the Personnel Information

System reflects the situation accurately with a time lag

of not more than one working day.

60

Example 1: Description of another TIS service

Upload participant record

– Triggering event: Coordinator requests to upload list of

joiners to personnel information system.

– Delivered service: Upload the list of people who partici-

pated in the training to the Personnel Information System.

– Assumptions: The Personnel Information Systems is

able to deal with data about unexpected participants, in-

cluding any remaining errors in that data.

61

Example 2: Goal tree of juice pasteurization plant

Juice pasteurization

Short set-up timeFast change
of recipes

Improved
traceability

Pasteurization

Maintain recipe
database

Initialization of controller
by software

Heating a batch
according to recipe Maintain log

Efficiency Effectiveness

62

Example 2: Mission of heating controller

• Name: Juice heating controller.

• Purpose: To control the heating process of fruit juices

in a heating tank.

• Responsibilities:

– To initialize itself with batch data and heat the batch

according to recipe.

– To report on the heating process.

– To maintain safe conditions in a tank.

• Exclusions:

– Filling the storage tanks with juice.

– Transferring pasteurized juice to the canning line.

63

Example 2: Function refinement of heating
controller

Control the heating process of fruit juice in a heating tank

Provide a report

Log temperature

Stop heating

Raise alarm

Shut down

Heating function

Start heating

Switch on heater

Finish heating

Switch off heater

Reporting function Safety function

Create batch data

64

Example 2: A service description

• Name: P1. Heat batch according to recipe.

• Triggering event: Operator command “start heating batch b

according to recipe”.

• Delivered service: Upon reception of this command, the

controller ensures that a heating process takes place in the

heating tanks in which b is stored, according to the recipe of b.

• Assumptions: There is a batch in the heating tank.

65

Example 2: Another service description

• Name: Log temperature.

• Triggering event: When an execution of P1 starts, and then

every 10 seconds during this execution of P1.

• Delivered service: The controller records the measured

temperature in each tank in which b is stored.

66

Example 3: Mission statement of ETS

• Name of the system: Electronic Ticket System (ETS).

• Purpose: Provide capability to buy and use tickets of a rail-

way company using a PDA and a smart card.

• Composition: Software distributed over smart cart, PDA’s,

central computer.

• Responsibilities of the system:

– To support ticket buying

– To support ticket usage

– To support ticket refunding

• Exclusions:

– The system does not perform travel planning

– Only tickets for one person and one trip (single or return).

67

Example 3: Function refinement of ETS

Provide capability to buy and use tickets

Traveler functions Conductor functions

Sell a ticket Show a ticket Stamp a ticket for use Refund a ticket

68

Two service descriptions of ETS

• Name: Sell a ticket.

• Triggering event: Traveler requests to buy a ticket.

• Delivered service: Allow a traveler to buy a ticket at

any time and place chosen by the traveler.

• Name: Show a ticket.

• Triggering event: Traveler requests to view a ticket.

• Delivered service: Display ticket attributes to the user.

69

Levels of design

Business
problem
analysis

Business
design
process

Software
problem
analysis

Software
design
process

Business
problem

Business
problem

description

Business
solution

specification

Software
problem

description

Software
requirements
specification

Software
problem

Software
decomposition

problem
analysis

Software
decomposition

design
process

Software
decompo-

sition
problem

Software
decompo-

sition
problem

description

Software
decompo-

sition
specification

Decompo-
sition

Refine-
ment

Decompo-
sition

• A business solutution specification describe a decomposition of

the business that solves a business problem.

• A software specification refines the software part of a business

solution.

70

Goal analysis

• First separate the design levels as on previous slides.

• Next identify business goals.

– In a goal tree, achievement of children goals is sufficient to

achieve parent goal.

– Leaves of a business goal tree usually are desirable business

activities.

• From the goals of the business solution, derive from the

software goals.

• This gives us statement of purpose and major responsibilities

of the software.

71

Mission statement

Highest level software specification. Talks about software solutions

instead of business solutions.

√
To find software mission, analyze business goals.

√
To find mission, find desired emergent properties E of

composite system.

√
Justify mission and responsibilities by system engineering

argument: Mission statement + environment assumptions

entail business goals.

Mission statement is updated as our understanding improves

during the project.

72

Function refinement tree.

Makes responsibilities more specific.

• Not a system structure: Just an indented shopping list.

• Organization of tree is subjective: Determined by discussion

with customer.

• The tree bounds functionality of the system.

• It is the most implementation-independent description of the

system.

• It justifies the presence of services.

• It prevents the presence of unnecessary services.

73

Terminology

Responsibilities

Mission

Services

Functions

Transactions

Function = ability to create desired effect in the environment.

• Responsibility = Contribution to environment goal.

• Service = Useful interaction triggered by event.

• Transaction = Atomic interaction.

74

Service descriptions

• Each service is identified by a

(1) triggering event and a

(2) delivered value (benefit).

• Each service may make assumptions about the environment.

• Do not give details about system behavior nor about

communication channels with the system.

• Just describe the valuable effect that the system should have

on the environment.

• A service may have a simple or a complex behavior; describe

this later, using techniques from chapters 11 and 12.

75

Service descriptions are not system components

• For programmers, it is hard to see a piece of text not as a

software component.

• A service description is not a software component;

• it is a description of something useful done by the software.

76

Main points

• Mission relates system functions to business goals.

• Function refinement tree relates services to mission.

• Services have a discrete beginning and deliver a value.

• Services may be non-atomic, consisting of many transactions.

77

Chapter 8. Entity-Relationship Diagrams

The subject domain of a software system is the part of

the world talked about by the messages that cross the system

interface.

To find the subject domain of a system

• Look at the messages received and sent by the system, and

• Ask what these messages are about.

Document the meaning of these messages in a dictionary,

supplemented by an ERD of the subject domain.

78

Example 1: Subject domain of TIS

Branch
1

Participation

absent : Bool
time
day : {1, 2}

Group

number

Employee

name

Coordi-
nator

name
identifier

Course
offering

starting date 11
Joiner

Unexpected
participant

These entities are the topic of interactions with TIS.

79

Example 2: Subject domain of heating controller

Recipe

name
desired temperature
duration

Batch

batchID
amount

1*1..2 0..1

Allocation

1

1

1

1

Heating
tank

Thermometer

Heater

These entities are the topic of interactions with the controller.

80

Example 3: Subject domain of ETS

See next slide.

• These entities are the topic of interactions with the ETS.

• Some of them are lexical entities to be stored in ETS.

81

Railway station

Rail segment

Route

Refund

1to 1from

1..*

Ticket

date of validity
class
price
train type
return or single

0..1

1

1

from

1

Account

number
balance

Bank

name
identifier
address

Account
holder

name
address

Ticket refund stamp

time
date

0..1

1

Ticket usage stamp

time
date
trip number

1

where
used

Payment

date
amount

11

1

where
aborted

1

1

82

Syntax and semantics of ERDs

Bank Railway station Ticket

Entity type.

• Represented by a rectangle.

• Extension = All possible instances of entity type.

• Extent = All existing instances of entity type.

• Intension = All properties shared by all possible instances.

• Defining intension = Properties used to define the entity

type. This is an abstraction (simplification) of the full,

informal meaning.

83

Attributes

Bank

name

identifier

address

Railway station

name

Ticket

date of validity

class

price

train type

• Properties of entities.

• Can be listed in a compartment directly below the type name

compartment.

Question: Which properties of a railway station did we describe in

this diagram?

84

Relationships

• A set of tuples of entities.

• Arity is the number of related entities. Binary, ternary, etc.

• Everything in the world is related to everything else!

• We only describe a relationship if we want to express relative

cardinality properties: How many entities of one type can exist

for each entity of another type.

85

Binary relationships

E1 E2
c1 c2

role1 role2R

• Binary relationship represented by a line.

• Relationship name can have a read direction.

• Role names indicate the role an entity plays in a relationship.

• Relationship name and role names can all be omitted if this

does not lead to ambiguity.

86

Relationships of higher arity

E1

E2 E3R
c2

role2

c1role1

c3

role3

• Relationships with arity ≥ 3 represented by a diamond.

• Name must be independent from direction of reading.

87

Cardinality properties: Elevator example

1111

doors cage

2 1

10

1cage

1 1

doors

1
1

 20
Destination

button

0..2
1 current floor

 10
Floor

 2
Entry

 sensor

 2
Eleva-

tor
door

 2
Motor

 2
Location indicator

 2
Elevator

cage

88

The meaning of cardinality properties

• A snapshot of the subject domain is the state of the subject

domain at one point in time.

• Cardinaility properties are snapshot properties.

• An absolute cardinality property says how many instances of

an entity can exist in a snapshot.

• A relative cardinality property says how many entities can

exist relative to some existing entity.

To find a cardinality property, imagine looking at an arbitrary state

of the domain and ask how many instances of some entity type can

exist in that state.

89

First example of inconsistent cardinality
properties

1 1

doors 3
Entry sensor

 2
Elevator door

90

Second example of inconsistent cardinality
properties

2Account

1

0..1

Refund

Payment

1

from

For p: Payment,
p. from = p . refund. account

91

Ternary relationships

Teacher

Course

Room
Course
offering0..1 1..*

Cardinality properties of relationships with arity /geq3 are hard to

understand.

Questions

1. Can a course have more than one teacher?

2. Can a teacher give several courses?

92

Association entities

Juice specification

name
percentage of solids

Recipe

name
desired temperature
duration

Mixture

percentage of juice

1..*

• An association entity is a relationship with attributes.

• Each instance is really a relationship. It is identified by a tuple

of component identifiers.

93

Generalization

Heating tank Storage tank

Tank

tank ID
volume

Heater

Thermometer

Characteristic of specialization:

• Instance of a subtype is instance of a supertype.

94

Dynamic versus static specialization

Tank

Heating
tank

Storage
tank

dc

Tank

Heating
tank

Storage
tank

dc

Static specialization:

Subtype extensions are

disjoint and cover

supertype extension.

Dynamic

specialization: Subtype

extents are disjoint and

cover supertype extent.

NB. If any heating tank can become a storage tank and vice versa,

then all three extensions are equal! Why?

95

Main points

• We make an ERD of the subject domain, not of databases.

Even virtual entities are interesting only because they are part of

the subject domain.

• ERD represents identification and classification of entities; and

cardinality properties.

Counting and classification are closely related. Class (= type)

provides identification criterion.

• Classification can be static or dynamic.

96

Questions

Recipe

name
desired temperature
duration

Batch

batchID
amount

1*1..2 0..1

Allocation

1

1

1

1

Heating
tank

Thermometer

Heater

• Suppose we interpret cardinalities historically: “the number of

instances related to in a lifetime”. Change the cardinalities to

historical ones.

97

Gadgets

Warehouse CustomerDelivery

storage

If w: Warehouse and g: Gadgets
are related by Delivery,
then w = g.Storage

Gadgets

Warehouse Customer

storage

Delivery

Order

• Are these diagrams equivalent? Beware of the connection trap.

98

Gadgets

Warehouse CustomerDelivery

storage

If w: Warehouse and g: Gadgets
are related by Delivery,
then w = g.Storage

Gadgets

Warehouse Customer

storage

Delivery1

1

1

If d: Delivery, then
d . gadgets . storage = d. warehouse

• Are these diagrams equivalent?

99

Chapter 9. ERD Modeling Guidelines

• ERDs can be used to declare any set of entity types and their

cardinality properties.

• In this course we use ERDs only to represent the structure of

the subject domain.

• Guidelines to determine the boundary of the subject domain

are relevant for this kind of use of ERDs only.

• All the other guidelines are relevant for all possible uses of

ERDs.

100

Subject domain boundary

The subject domain consists of entities and events. To find the

boundary:
√

Roughly: What entities and events do the service descriptions

refer to?
√

More precisely: What are the messages entering and leaving

the system about?
√

Look for

— Physical bodies

— Devices

— (Parts of) organizations

— Conceptual entities

— Lexical items

and events in their life.
√

Entities and events should be identifiable by the SuD.

101

Unobservable events

Elevator
controller

Button
closepush

decide to take the elevator,
decide to take the stairs

Connection between events of interest (decisions by passenger) and

stimuli of controller are too weak to include passenger in subject

domain.

102

Including unobservable entities in a diagram of
external communications

Elevator controller

Request
button

Motor Doors

SuD

Subject
domain

Passenger

Arrival
sensor

Direction
indicator

• The subject domain contains devices with whom and about

whom the elevator controller exchanges messages.

• However, we can include unobservable entities in a diagram

that shows external communication channels (the context

diagram).

103

Questions

• Which entities are in the subject domain of a railway travel

planner?

– Passenger, Station, Railway track, Trip segment, Route.

• Is a Passenger part of the subject domain of the Electronic

Ticket System? Why (not)?

The answers are determined by

(1) desired functionality of system and

(2) choices in connection technology.

104

Entities versus attributes
√

Entities are the things that the system talks about.

√
Attributes are the things said about entities.

• So if you want to store information about it, it is an entity.

√
If information about it can change, it is an entity.

105

Example

Person

name
passport number

Person

name

Passport

date issued
number1 0..1

• Counting persons is not the same as counting passports.

• Persons are not created at the same time as passports.

So they are different entities. But which ERD is “correct”? That

depends:

• If the SuD must be able to talk about persons without

passports, or

• about persons with multiple passports (change cardinality

property for that),

• then we must include a separate passport entity type.

106

Entities versus relationships
√

Relationships are identified by their components.

So they are counted differently from the way entities are

counted.

Document Member0..1

Loan

date Document

Member
Loan

date

0..1

1

1

Several loans may co-exist!

Not what we intend

107

Taxonomic structures
√

Use a specialization attribute.

Vehicle

medium: {ground, air, water}

dc

Boat

{medium = water}

Aircraft

{medium = air}

Car

{medium = ground}

Any subtypes missing?

Do we need these subtypes?

108

Static versus dynamic specialization

Vehicle

Car Airplane

dc

Tank

Heating tank Storage tank

dc

According to this ERD, if you are born as a car, you are always a

car. But heating tanks can become storage tanks and vice versa.

√
Creating a static subtype instance is creating a supertype

instance.

√
Creating a dynamic subtype instance may not involve creating

a supertype instance.

109

Classification and identification
√

A type definition should provide a recognition criterion and an

identification criterion.

– The recognition criterion for Car gives us the answer to this

question “Is this a car?”

– The identification criterion gives us the answer to the

question “How many cars do we have here?”

To find the identification criterion of type C, it is often useful

to look at the creation event of an instance of C.

110

Questions

Give recognition and identification criteria for the following

concepts:

• Person

• Company

• Passenger

• Elevator button

• Your PC

• The chair you are sitting on.

If an instance of C is in the subject domain, then the SuD is able to

talk about a C, and so the SuD should be able to recognize and

identify C’s!

111

Subtypes versus roles

If an entity can play several roles of the same type, we can turn the

role into an entity type.

Company employee
Person

name

Company
1

Person

name

Employee

employee nr 1

role player

112

What is the difference between these two models?

PersonEmployeeCompany
1

Company
1

Person

name

Employee

employee nr 1

role player

113

Validation of an ERD (1)
√

Check consistency of cardinality properties.

Elevator
cage

Destination
button

Floor

1

10

2
1

2

1

current
floor

2

If a diagram is not consistent, it cannot represent any subject

domain.

114

Validation of an ERD (2)

Railway station

Rail segment

Route

1to 1from

1..*

Ticket

date of validity
class
price

Ticket refund stamp

time
date

0..1

1

Ticket usage stamp

time
date
trip number

1

where
used

1

where
aborted

1

1

Are all loops commutative (any starting / destination node)?

115

Validation of an ERD (3)

√
Describe by elementary sentences and show to domain

specialist.

At each moment:

– A batch of juice has exactly one recipe.

– A recipe may be applicable to any number of batches.

– At any point in time, a heating tank has at most one batch

allocated to it.

– At any point in time, a batch is allocated to either 1 or 2 heating

tanks.

– Each heating tank has exactly one heater.

– etcetera.

116

Validation of an ERD (4)
√

Describe snapshot and show to domain specialist.

Ticket Route Segment
Usage

stamp

Refund

stamp

(t1, April 2)

Return

Enschede-

Apeldoorn

Enschede-

Apeldoorn
March 31 None

(t1, April 2)

Return

Enschede-

Apeldoorn

Apeldoorn-

Enschede
April 1 April 1

Flaws in the model:

– Ticket cannot be used before bought!

– No usage and refund for the same segment!

– Return must be on the same day!

These are subject domain properties.

117

Validation of an ERD (5)
√

Check against messages entering and leaving the system.

Or against service descriptions:

• Name: Sell a ticket.

• Triggering event: Traveler requests to buy a ticket.

• Delivered service: Allow a traveler to buy a ticket at any

time and place chosen by the traveler.

• Name: Show a ticket.

• Triggering event: Traveler requests to view a ticket.

• Delivered service: Display ticket attributes to the user.

Why is “Traveler” not an entity in the subject domain?

118

Main points

• Subject domain bounded by the topic of the conversation with

SuD.

• Entities have contingent properties, attributes do not.

• Relationships are identified by their components.

• Use specialization attribute.

• Static and dynamic specializations are distinguished by what

happens at creation time.

• Classification and identification closely connected.

• Roles can be reified to entity types.

• Validate your ERD: consistency, elementary sentences,

snapshots, check against interface of SuD.

119

Chapter appendix (slides only): describing
histories and events in an ERD

120

Histories

Person

blood type
Date

Person snapshot

name
weight

• Fixed attributes in the Person type box.

• Date-dependent attributes in an associative entity which

represents the person at a certain date.

121

Events

Document
Borrow

Person

• Borrow is an event.

• An instance of Borrow exists for one moment only.

122

DocumentPerson Borrow

Date

• Borrow is a dated event.

• An instance of Borrow represents the fact that at a certain

date, a person borrowed a certain document.

• An instance of Borrow has identifier (p, dt, dc).

• We can include a time indication in the date too.

123

DocumentPerson

Date

Borrow

due date

• Now Borrow has an attribute.

124

DocumentPerson date

Borrow

due date

• Convention that abbreviates the diagram on the previous slide.

125

Chapter 10. The Dictionary

The dictionary documents the meaning of important terms:

• Words used in service descriptions

• Words used in messages that cross the external SuD interface

• Domain-specific jargon

• etc.

The subject domain ERD is a visual supplement to the dictionary,

that adds some precision to terms that refer to subject domain

entities.

In our dictionary, we use only a few syntactic categories of terms,

that are motivated by our domain ontology.

126

Domain ontology

• Domain is part of the world treated as a whole.

• Ontology is a metaclassification.

Individual Property

Entity Event occurrence Entity type Relationship Attribute

State

dc d

127

Individuals are entities and event occurrences

Entity type

Entity

Event

Event occurrence

Timed event occurrence

instance occurrence in the life of entities

occurrence at a particular time

1 1

1

Dated entity

1

• No reincarnation of entities.

• Event occurrence can occur at many times.

sell(coffee, 0.2 l) is an occurrence of event sell and it can occur

at times 9:00, 9:02, etc.

128

Syntactic categories

• Identifier. Unique proper name.

• Predicate name.

– Entity type name.

– Relationship name.

– State predicate name. Boolean property.

• Attribute name.

• Event name.

129

Definitions from the ETS specification

• Railway station. Entity type. Entity used to bound rail segments. May

consist of platforms where passengers can enter or leave a train. Can

also be a mathematical point used to bound a segment. Examples: The

point where the line of rail passes the Dutch-German border; one can

buy a ticket to that point. Can also be a collection of physical stations.

Example, a ticket to “Berlin U-Bahn” is a ticket to any subway station

in Berlin.

• Rail segment. Entity type. A shortest path between two Railway

stations. Segments are directed and are identified by the two stations

they connect. So all shortest paths through the rail network from A to

B are considered the same segment, called AB; and all shortest paths

from B to A are the same segment, called BA; and AB and BA are two

different segments.

• Route. Entity type. A path through the rail network that consists of a

connected series of rail segments, where each segment occurs at most

once in the route.

130

Definitions from an elevator control specification

• planned direction(c: Elevator cage). Attribute. The preferred

direction in which c will depart after closing its doors. If there are

requests to be served higher and lower than the current floor of the

elevator cage, then it will depart in the planned direction.

• Round trip time. The time in seconds for a single car trip around a

building from the time the cage doors open at the main terminal until

the doors reopen when the cage has returned to the main terminal floor

after its trip [Barney & dos Santos 1977].

• Atfloor(b: Request button, c: Elevator cage). Predicate. c

.current floor = b.floor.

• continue(c: Elevator cage). Action. Term is applicable only if c

.planned direction 6= none.

– If c.planned direction = up then start up(c.motor).

– If c.planned direction = down then start down(c.motor).

The motor of c is started in the planned direction of c.

131

Path expressions

Definitions may use path expressions, that refer to paths through

the ERD.

See section 10.3 for syntax of path expressions.

132

Extensional and intensional definitions

• Extensional definitions list a few instances of the concept.

Easy to give. But do not define an intension.

• Intensional definition lists the defining properties shared by

all instance of the concept.

Difficult to find.

Open-textured terms have no intensional definition.

√
Define these by giving a few examples, a sketch of the intent,

and indicating the procedure —if any— that determines

whether an instances falls under the concept.

Examples: Boat, title, document, vehicle, house, elevator, ...

133

When to define a term
√

To clarify a term.

√
To indicate that the term is open-textured.

√
To indicate that we attach little meaning to it.

√
The term is absolutely obvious to all stakeholders —but they

attach different meanings to it.

When not to define a term

√
To raise a cloud of obscurity. (Bad idea, but frequent practice.)

√
Definitions can also be found in technical documentation of

devices. Don’t repeat these.

√
The term is absolutely obvious to all stakeholders —and they

understand the same by it.

134

Definition by genus and difference

Without genus With genus

A compiler translates source code

into object code.

A compiler is a program that trans-

lates source code into object code.

A catamaran has two hulls.
A catamaran is a boat with two

hulls.

A heating tank heats juice.

A heating tank is a tank with a

heater and thermometer in which

juice can be heated.

Joiners recently joined the com-

pany.

A joiner is an employee that re-

cently has joined the company.

A ticket represents the passenger’s

right to make a trip by train.

A ticket is a lexical item that repre-

sents the passenger’s right to make

a trip by train.

135

√
The genus provides the identification criterion of the entity

type.

√
The difference provides the recognition criterion of the entity

type.

136

Operational definitions

An operational definition of a term gives a procedure, that can be

followed by anyone, to determine whether or not the term is

correctly applied to a given case.

• Heating tank. Entity type. A tank with a heater and thermometer

attached. The heater can be recognized by red, blue and black wires

leading up to it, and the thermometer by its rectangular shape.

This is a operational definition by genus and difference.

• Round trip time. The time in seconds for a single car trip around a

building from the time the cage doors open at the main terminal until

the doors reopen when the cage has returned to the main terminal floor

after its trip.

Operational, but not as definition by genus and difference.

137

Abbreviations versus correspondence rules

• Abbreviation reduces the meaning of a word to the meaning

of other words defined in the same dictionary.

To determine whether an individual is an instance of the

defined concept, you do not need new observations but simply

look up words in the dictionary.

• Correspondence rules relate a word to reality. The words in

the definition are not defined in the same dictionary.

To determine whether an individual is an instance of the

defined concept, you must make observations.

Which definitions in the examples given are abbreviations, and

which are correspondence rules?

138

Main points

• The dictionary contains definitions of jargon, subject domain

terms, and other important tersm needed to understand the

design specification.

• We can structure definitions as a taxonomic hierarchy:

definition by genus and difference.

• Try to give operational definitions.

• Distinguish abbreviations (no new phenomenon described)

from correspondence rules (link words to reality).

139

Part IV. Behavior Notations

SuD

Subsystem 1 Subsystem n

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

......

Composite
system

External
entity

External
entity

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

140

Road map of ways to find behavior descriptions of
the SuD

Activities to be supported by SuD

Business goal

Goal
tree

Event-action list
(scenario)

Event-action list
(transactional)

Stimulus-response list
(scenario)

Stimulus-response list
(transactional)

System purpose

System services

Solution goals

Function
refinement

tree

141

Example 1: Training Information System

We take the route through service descriptions to desired

environment behavior.

Download Joiners service description

• Triggering event: Coordinator requests to download list of

joiners from the personnel information system.

• Delivered service: Download the list of people from the

Personnel Information System who have joined the company

since the previous training.

• Assumptions: The data in the Personnel Information Sys-

tem reflects the situation accurately with a time lag of not

more than one working day.

• Declarative service description! Not a scenario.

142

Example 1: Desired event-action pairs

Now we give behavioral details.

Environment event Desired action

E1 Time to download list of

joiners

Personnel Information System

knows that list of joiners is

requested.

E2 Personnel Information System

sends list of joiners.

Coordinator knows that list has

been downloaded.

E3 System has been waiting for

list of joiners too long.

Coordinator knows that list has

not been downloaded.

• The SuD is not mentioned here.

• We describe desired behavior in the itshape environment.

143

Example 1: Required stimulus-response behavior

Stimulus
Current system

state
Response

Next system

state

Receive event

“download list

of joiners” from

coordinator.

System

contains no list

of joiners.

send event

“send me a list

of joiners” to

personnel

information

system.

System is

waiting for list

of joiners.

Receive list of

joiners.

System is

waiting for list

of joiners.

Confirm to

coordinator.

System

contains list of

joiners.

A timer times

out.

System is

waiting for list

of joiners.

Inform

coordinator of

problem.

System

contains no list

of joiners.

144

Example 1: Which steps did we take?

• From desired system services we derived desired transactional

event-action pairs in environment.

– The service descriptions describe what is valuable to the

environment.

– The event-action pairs operationalize this as desired

behavior in environment.

• From event-action pairs we derive stimulus-response pairs at

the interface of the system.

– To make the SR pairs transactional, a system state is

introduced, which represents part of the environment state.

Compare our road map.

145

Example 2: Heating controller: Behavior to be
enforced.

We start from a model of desired environment behavior.

Event Desired action

Operator

gives com-

mand to start

heating batch

b.

A heating process for the heating tanks of b is

started. If at the start of the process, tempera-

ture in a tank is too low, the heater of that tank

is switched on. When during the process, a tank

becomes 5 degrees Celsius warmer than the de-

sired temperature, its heater must be switched off.

When it becomes 5 degrees Celsius colder than the

desired temperature, its heater must be switched

on. When the heating process has lasted for the

duration of the recipe, heating must stop and the

operator must be notified of this fact.

146

Example 2: Same behavior in atomic transitions

Event
Subject domain

state
Desired action

E1 Operator gives com-

mand to start heating

batch b

Heaters of tanks of b that

are below recipe temper-

ature, are switched on.

E2 Temperature in tank

t rises 5 degrees above

recipe temperature

The juice in t is

being heated.

The heater of t is

switched off.

E3 Temperature in tank

t falls 5 degrees below

recipe temperature

The juice in

t is not being

heated.

The heater of t is

switched on.

E4 The heating duration

has passed, counted since

the start of heating of b.

b is being

heated.

• Heaters of b that are

on, are switched off.

• Operator is informed.

147

Example 2: Same behavior described by two
diagrams

Not
pasteurized(b)

Pasteurizing(b)

start heating(b) /
start tanks(b)

after(b. duration) /
stop tanks(b),
 inform operator

b: Batch

Pasteurized(b)

Not heating(t)

Heating(t)

too cold(t) /
switch on(t . heater)

too hot(t) /
switch off(t. heater)

stop(t)

stop(t) /
switch off(t . heater)

t: Heating tank

148

Example 2: Definitions

• start tanks(b: Batch). For each tank t of b, signal “start(t)”.

• stop tanks(b: Batch). For each tank t of b, signal “stop(t)”.

These supplement the diagram.

149

Example 2: Stimulus-response behavior that
enforces environment behavior

Stimulus
Current controller

state
Desired response

Next

state

S1 Operator gives

command to start

heating batch b

Not heating t and

not heating b.

Switch on heaters of

tanks with low tem-

perature.

Heating

t and b.

S2 Every 60 seconds.

Heating t and mea-

sured temp > desired

temp + 5

Controller switches

off the heater of t.

Heating

t.

Heating t and mea-

sured temp < desired

temp − 5

Controller switches

on heater of t.

Heating

t.

S4 Recipe time since

the start of heating

of b has passed.

Heating b.

• Switch off heaters

of b that are on.

• Inform operator.

Not

heating

b.

150

Example 2: Questions

The behavior brought about by the SR pairs is not exactly the

same as the behavior that is desired.

• What are the differences?

• Why are these acceptable?

151

Example 2: Which steps did we take?

(Compare our roadmap)

• Desired environment behavior was modeled by means of

non-atomic event-action pair.

• This was decomposed into atomic event-action pairs.

• From this we derived desired system behavior as a set of

atomic stimulus-response pairs, that would approximately

bring about desired environment behavior.

152

Part IV: Main points

• Behavior occurs in the environment and at all levels in the

system.

• Find required system behavior by

– Analyzing required system services or

– modeling desired environment behavior.

• Behavior can be described in tabular format or by diagrams.

153

Structure of part IV

• State transition lists and tables

• State transition diagrams

• Execution semantics

• Modeling and design guidelines

154

Chapter 11. State Transition Lists and Tables

• Range from informal to formal

• Can be used at system level down to component or software

object level.

• Different kinds of lists and tables:

– Event list

– Stimulus-response list

– State transition table

– Decision table

At system level, the lists are usually informal. At software object

level, they are usually formal.

155

The use of behavior descriptions

Behavior descriptions can be used to represent

• Assumed environment behavior

• Desired environment behavior

• Required system behavior

• Required component behavior

You cannot tell how a behavior description is used by reading it.

Each behavior description must be supplemented by an indi-

cation of its intended use.

156

Event lists

List of event descriptions and, for each event, a description of its

effect.

Example: description of assumed device behavior.

• light on(b). If b is not already in state On(b), then it enters

state On(b). Otherwise, nothing changes.

• light off(b). If b is not already in state Off(b), then it enters

state Off(b). Otherwise, nothing changes.

157

Example event list: desired subject domain
behavior

Event Desired action

Operator

gives com-

mand to start

heating batch

b.

A heating process for the heating tanks of b is

started. If at the start of the process, tempera-

ture in a tank is too low, the heater of that tank

is switched on. When during the process, a tank

becomes 5 degrees Celsius warmer than the de-

sired temperature, its heater must be switched off.

When it becomes 5 degrees Celsius colder than the

desired temperature, its heater must be switched

on. When the heating process has lasted for the

duration of the recipe, heating must stop and the

operator must be notified of this fact.

158

Example state transition table: Desired subject
domain behavior

Event
Subject domain

state
Desired action

E1 Operator gives com-

mand to start heating

batch b

Heaters of tanks of b that

are below recipe temper-

ature, are switched on.

E2 Temperature in tank

t rises 5 degrees above

recipe temperature

The juice in t is

being heated.

The heater of t is

switched off.

E3 Temperature in tank

t falls 5 degrees below

recipe temperature

The juice in t is

being heated.

The heater of t is

switched on.

E4 The heating duration

has passed, counted since

the start of heating of b.

b is being

heated.

• Heaters of b that are

on, are switched off.

• Operator is informed.

159

Effect descriptions

• Transactional. Description of one state transition.

– Intermediate states abstracted away (i.e., atomic).

– Passage of time abstracted away (instantaneous).

• Scenario.

– Description of several state transitions, with intermediate

states (i.e. not atomic).

– Progress of time.

To transform a scenario description into a transactional list, we

need to introduce states.

160

State transition tables (STTs)

List of transactional entries of the form (event, current state,

actions, next state).

Variables are local to one entry. Bound in the left-hand side.

Stimulus
Current con-

troller state

Controller re-

sponse

Next con-

troller state

pass doors(c) Opened(c) Opened(c)

Closing(c) open doors(c) Opened(c)

10 seconds af-

ter the most re-

cent execution

of c .state :=

Opened

Opened(c) close doors(c) Closing(c)

161

Adding an initial state and initialization action

Initially close doors(c) Closing(c)

Stimulus
Current con-

troller state

Controller re-

sponse

Next controller

state

pass doors(c) Opened(c) Opened(c)

Closing(c) open doors(c) Opened(c)

10 seconds af-

ter the most re-

cent execution

of c .state :=

Opened

Opened(c) close doors(c) Closing(c)

162

Transformation table: no state change

Event Current state Action

arrive(b, c)
Destination request(b, c)

and Atfloor(b, c)

• stop motor(b, c)

• open doors(c)

• light off(b)

Forward request(b, c)

and Atfloor(b, c)

• stop motor(b, c)

• open doors(c)

• light off(b)

• show direction(c)

Outermost reverse

request(b, c) and At-

floor(b, c)

• stop motor(b, c)

• open doors(c)

• light off(b)

• reverse and show di-

rection(c)

163

Transformation table = Decision table
bd, bf, br: Request button

c: Elevator cage

Destination request(bd, c) and Atfloor(bd,

c)
T F T F T

Forward request(bf, c) and Atfloor(bf, c) F T T F F

Outermost reverse request(br, c) and At-

floor(br, c)
F - - T T

stop motor(c) X X X X X

open doors(c) X X X X X

show direction(c) X X X

reverse and show direction(c) X X

light off(bd) X X X

light off(bf) X X

light off(br) X X

164

An STT with next states but without actions

Current button

state
Event Next button state

On(b) light off(b) Off(b)

light on(b) On(b)

Off(b) light on(b) On(b)

light off(b) Off(b)

165

Main points

• Tabular behavior descriptions range from informal (event list)

to formal (state transition table).

• Can be used for assumed or desired behavior of environment or

system.

• List entry can describe a transition or a scenario.

• Variables can be declared for a table; binding is local to one

entry.

• Stateless “transition” is really decision rule.

166

Chapter 12. State Transition Diagrams

• Good at showing the structure of behavior.

• Not good at showing unstructured behavior.

• Can only show a limite amount of information because

restricted to one sheet of paper.

• Tables and lists on the other hand can show unlimited amounts

of information, because they can continue on any number of

sheets.

167

Mealy diagram constructs

S1
/ a Initialization actions a, initial

state S1.

S2 S3
e [g] /a Trigger e, guard g, actions a.

S4 S5
[g] / a

Take transition when g be-

comes true, or immediately.

S6 S7
/ a Take transition immediately.

S8
e [g] /a Transition to final state.

168

Example

Not
Heating

Heating

check temp [Too low] /
switch on

check temp [Too high] /
switch off

when(4 p.m.) /
finished

when(4 p.m.) /
switch off, finished

/ switch on

169

Events

An event is a discrete change in the condition of the world.

• Named events. We gave a name to it.

• Condition change event. A Boolean condition g becomes

true.

• Temporal event. Significant moment in time. Relative

temporal event: after(t), absolute temporal event: when(t).

170

Decision states

S0
e / a

S1

S2

S3

[g] / b

[not g] / c

If g is not affected by a, this can be replaced by:

S0

S2

S3

e [g] / a; b

e [not g] / a; c

171

Variables

Not
Heating

Heating

receive temp(t) [t < d - 5] /
switch on

receive temp(t) [t > d + 5] /
switch off

d, t: Rational
e: Time

when(e) / finishedwhen(e) /
switch off, finished

/ switch on

Interface of this machine:

Heating
control

receive temp(t)

 t

 d

switch on

switch off

finished

e

172

Locality

Variables are local to a transition, except the identifier variable of a

diagram.

Not
Heating(h)

Heating(h)

receive temp(t) [t < d - 5] /
switch on(h)

receive temp(t) [t > d + 5] /
switch off(h)

d, t: Rational
e: Time
h: Heater

when(e) /
finished(h)

when(e) /
switch off(h),

finished(h)

/ switch on(h)

173

Statecharts

Mealy diagrams plus

• State reactions

• State hierarchy

• Parallelism

174

State reactions

Ready to sell

Acquiring route and ticket information

Ticket sale offered

traveller requests to buy ticket /
ask for information

traveller selects route / set route
traveller selects ticket type / set ticket type

[route and ticket type set] /
offer to sell ticket

Saves space in diagram.

175

Example state reactions

S1

S2entry / a
e / b
exit / c

f /
g / d

What happens when g occurs?

176

Conflict between state reaction and transition

S1
S2

e / a

e [g] / b

What happens when e occurs and g is true?

• Depends upon the semantics given to the notation by the

analyst.

• All readers and authors of the diagram should use the same

semantics!

177

Hierarchy

Not
Heating

Heating

receive temp(t) [t < d - 5] /
switch on

receive temp(t)
[t > d + 5] /

d, t: Rational
e: Time

when(e) /
finished

exit /
switch off

Monitoring

/ switch on

178

Conflicts between transitions at different levels

S1 S2
e / b S3

e / aS0

What happens when e occurs?

• UML: The lower transition is taken.

• Statemate: The higher transition is taken.

UML views lower-level behavior as specialization. Statemate sees

higher-level behavior as more important, used e.g. to describe

interrupts and error-handling.

179

Parallelism

Not
Heating

Heating

receive temp(t) [t < d - 5] /
switch on

receive temp(t)
[t > d + 5] /

 d: Rational
 e: Time

when(e) /
finishedexit /

switch off

Monitoring heat

Watch
pressure

[pressure > max] /
 alarm

Monitoring heating tank

Monitoring
pressure

/ switch on

180

Hyperedges

B11 B12

B21 B22

A C

B

B1

B2

e
f

181

Breaking orthogonality by the in(State) predicate

Hi

Lo

p p

B1 B6
push(1) [in(Hi)] / select 7
push(1) [in(Lo)] / select 1

push(6) [in(Hi)] / select 12
push(6) [in(Lo)] / select 6

...

Channel selection

Range
select

Button 1 selection Button 6 selection

Now the behavior in one state depends upon the state of some

parallel component.

182

Breaking orthogonality by event broadcasting

Red

Yellow

Green

Red

Yellow

Green

after(5 secs) /

after(30 secs) /

after(5 secs) /
start NS

after(30secs) /

NS EW

Preparing
for green

Preparing
for green

start
NS /

after(5 secs) /

entry /
start EW

start
EW /

after(5 secs) /

Traffic light behavior

Now the behavior of one state depends upon events generated in

some parallel component.

183

Main points

• STDs graphically represent reactive behavior, which consists of

a discrete state space and e [g] / a transitions.

• Events can be named, condition change, or temporal.

• Decision states are unstable.

• STDs can have local variables. Only the identifier variable is

global to the diagram.

• Statecharts extend Mealy diagrams with state reactions, state

hierarchy, parallelism.

• The semantics of a diagram must be defined explicitly (see

chapter 13).

184

Questions

Hi Lo

flipy [x = hot] /
flipx [x = hot] / x := cold

flipx [x = cold] / x:= hot
flipy [x = hot]

x: {hot, cold}

• Eliminate the variables as follows: Define two parallel

components, one component for each variable.

• Is the resulting behavior equivalent to this one?

185

Solution

Hi

Lo

Hot

Cold

X Y

flipy [in(Hot)] flipy [in(Hot)]flipx(in(Hi)] flipx(in(Hi)]

Two variables

The important semantic difference between this statechart and the

Mealy diagram is that the statechart can respond to a flipx and a

flipy event at the same time.

186

Question

• Encode all state information in variables. The result should be

an STD with one state only.

• Is the result equivalent to the original STD?

187

Solution

x: {hot, cold}
y: {Hi, Lo}

Ready
to

update

flipx [x=Hot and y=Hi] /
x:= cold

flipy [x=Hot and y=Hi] /
y := Lo

flipy [x=Hot and y=Lo] /
y:= Hi

flipx [x=Cold and y=Hi] /
x:= hot

This diagram does not indicate the initial value of the variables.

188

Chapter 13. Behavioral Semantics

• STTs and STDs are descriptions of behavior.

• But they can be interpreted in many ways! That is a problem:

– Designers, builders and users think they agree ...

– ... but nevertheless expect different behavior to be

implemented.

– To execute a specification, it must be unambiguous.

– To generate code, different code generation tools must use

the same semantics.

In this chapter we review the relevant semantic choices.

189

Discretization

Off On

switch on /

switch off /

STDs and STTs are abstract, and therefore necessarily incomplete,

descriptions of continuous behavior.

• Atomicity. Ignore intermediate states of each transition.

• Possibility. There are no slightly different events or states.

switch on is possible when Off etc.

• Isolation. Whatever else happens, switch on in state Off leads

to state On, etc.

• Durability. A state is stable until an event occurs that

triggers an outgoing transition.

190

Wait States and Activity States: Semantic options

An activity state has internal activity, a wait state has not.

B
e /

A1 A2
e/A

This creates the possibility for conflict: What happens when e

occurs? Options:

• Deferred response.

• Forced termination.

– Higher level has priority (Statemate).

– Lower level has priority (UML).

191

Final states: Semantic options

Activity states create ambiguity for final state node. What

happens when final state is reached?

• Global termination: bull’s eye indicates that overall process

terminates (Statemate).

• Local termination: Activity terminates; wait until e occurs

(UML).

192

Pre- and postconditions: Problems

Current state Event Action Next state

1 P(x) e(x, y) a(x, y) Q(x)

• Does P(x) become false?

• Should Q(x) be false in initial state?

• We will treat state descriptions in an STT as preconditions

and postconditions, that constrain the current and next

state. So:

– Q(x) can have any value in initial state.

– P(x) can have any value in next state.

If you don’t want this, write down truth value explicitly.

193

Pre– and postconditions: Possible solutions

Current state Event Action Next state

1 P(x) e(x, y) a(x, y) Q(x)

2 P(x) f(x, y) a(x, y), b(y) R(x)

• What happens with R(x) in transition 1? Not specified.

• If we must write down truth values explicitly, table entries

become very large.

• Derivation rules. E.g. Q(x) → R(x). Part of domain

knowledge or SuD spec.

• Frame rule. If the transition rule and derivation rules do not

imply that P changes, then it does not change.

194

Pre– and postconditions in STTs and STDs

Current state Event Action Next state

1 P(x) e(x, y) a(x, y) Q(x)

P(x) Q(x)
e(x, y) / a(x, y)

• Equivalent?

• No: STDs come with the interpretation rule that Si ↔ ¬Sj for

i 6= j.

• So P(x) ↔ ¬ Q(x) in the STD!

195

Interpretation rules for statecharts

Q(x)
e(x, y) / a(x, y)

S(x)
P1(x) P2(x)

P(x)

Use the following interpretation rules for statecharts:

• For all x, P(x) ↔ not S(x).

• For all x, Q(x) → S(x).

• For all x, P1(x) → P(x).

• For all x, P2(x) → P(x).

196

Triggering (1)

The first problem with triggering is how we interpret what the

diagram does not say.

Freezing Cool Warm Hot

start freezing

Can start freezing occur in state Hot?

• Physically impossible: Contradicts the laws of nature.

If this is what we mean, we should add this interpretation rule to

the diagram.

197

Triggering (2)

Definition:

• switch on is the event that leads the system from Off to On.

Off On

switch on /

switch off /

What does this mean? Can switch on occur in state On?

• Logically impossible: Contradicts the definition in the

dictionary. Whatever happens in state On is not the switch on

event.

• Logically possible: switch on is a certain physical event that

can occur in many states. Update the dictionary with this.

Whatever we mean, add this to the diagram.

198

Triggering (3)

What happens if switch on does occur in state On?

• Ignore: Respond as if the event did not occur.

Off On
switch on

switch off
switch off / switch on /

• Inhibit: Make the event physically impossible.

On
Off

after(10)

push
push / <inhibit>

199

Triggering (4)

• Unknown effect: The system breaks down. This is the fragile

semantics.

Off On

switch on

switch off

switch off switch on

Make clear whether you agree on the ignore, inhibit, or fragile

semantics as default interpretation for the STDs and STTs in a

specification.

200

Triggering multiple transitions: The problem

Current state Event Action Next state

1 P(x) e(x, y) a(x, y) Q(x)

4 R(y) e(y, z) b(y) R(z)

5 R(x) e(x, y) c(x)
P(x)and not

Q(x)

Suppose e(2, 4) occurs. Entries are instantiated as:

t1 P(2) e(2, 4) a(2, 4) Q(2)

t4 R(2) e(2, 4) b(4) R(4)

t5 R(2) e(2, 4) c(2)
P(2) and not

Q(2)

Suppose P(2) and R(2) are true. What happens?

201

Triggering multiple transitions: Possible solutions

• Step semantics. Execute as many transitions as possible in

one step. (Statemate and UML multi-threaded semantics)

Two possible steps:

e(2, 4) / a(2, 4)e(2, 4) / a(2, 4), c(2)

Step 1= {t1, t4}Step 2 = {t4, t5}

P(2) and R(2)

P(2) and R(2)

not P(2) and
Q(2) and R(2)

• Single-transition semantics. Choose one transition

non-deterministically. Forget about the others. (UML

single-threaded semantics)

202

Responding to multiple events: The problem and
possible solutions

Suppose e(3, 4) and f(3, 4) occur at the same time. What happens?

t1 P(3) e(3, 4) a(3, 4) Q(3)

t2 P(3) f(3, 4) a(3, 4) R(3)

• Concurrent-event semantics. Respond to all events not yet

responded to. (Statemate)

• Sequential-event semantics. Respond to events in some

sequence. (UML)

203

Multistep semantics: The problem

One transition can trigger further transitions. E.g. suppose f(3, 4)

happens in state P(3):

t2 P(3) f(3, 4) a(3, 4), b(4) R(3)

Action a(3, 4) in turn triggers an instance of entry 3:

t3 R(3) a(3, 4) b(3)
P(3) and not

R(3)

What happens?

204

Multistep semantics: Possible solutions

• Single step semantics. After each step, the behavior can

respond to external as well as internally generated events.

(Statemate option)

• Superstep semantics. The behavior first performs the

complete multistep response before it is able to respond to

external events. (Statemate option)

• Delayed step semantics. The behavior responds to internal

and external events in some later step. (UML)

205

Action semantics

How is a complex action such as a, b, c executed?

• Concurrent action semantics. The actions in a complex

action s are all executed simultaneously. (Statemate)

• Sequential action semantics. The actions are executed in

some sequence. (UML)

What if a UML action is an operation call?

P(3)

P(3) and
not R(3)

t2: f(3, 4) / a(3, 4)
R(3)

t3: a(3, 4) / b(3)
R(3)

t2: b(4)
......

206

Time

A “time point” is a time interval whose length is not significant

for the description.

Time[) [)

5:00 p.m. <= t < 5:01 p.m. 5:01 p.m. <= t < 5:02 p.m.

5:00 p.m. 5:01p.m.

Real time

Abstract time points

207

Events

Our events are abstractions: They are instantaneous.

• Clock-driven semantics (Statemate)

Time[) [)

5:00 p.m. <= t < 5:01 p.m. 5:01 p.m. <= t < 5:02 p.m.

The response starts
at the next clock tick

e occurs
at some point
in this interval

• Event-driven semantics (Statemate and UML)

Time

[) [)

5:00 p.m. <= t < 5:01 p.m. 5:01 p.m. <= t < 5:02 p.m.

e occurs here
The response starts here and is immediately finished

208

Perfect technology asssumption

No implementation restrictions. Infinite speed, unlimited memory.

• Clock-asynchronous: Respond immediately to an event

occurrence.

• Perfect technology: Response takes no time to compute.

Together this implies a superstep semantics.

This agrees well with requirements-level models.

209

Main points

• STTs and STDs are describe discrete behavior that abstracts

from continuous behavior in the real world.

• Conflict between transitions inside and out of activity states

can be resolved differently.

• Final states can be global or local.

• Ambiguity in pre– and postconditions in STTs and STDs can

be reduced by means of derivation rules and frame rules.

• The absence of event triggers can be interpreted in different

ways: impossible, ingnore, inhibit, unknown.

• Triggering multiple transitions: Steps versus single transitions.

• Derived transitions: Single steps, supersteps, delayed steps.

• Action semantics: Concurrent or sequential action execution.

• Time: Clock-driven or event-driven semantics. Perfect

technology assumption.

210

Chapter 14. Behavior Modeling and Design

Guidelines

SuD External entityExternal entity

Composite system

• Systems engineering argument: (System specification) and

(Assumptions about environment) entail (Emergent properties

of composite system).

• To find SuD specification, (1) describe desired emergent

behavior, (2) derive system specification, (3) accumulate

necessary assumptions when system behavior is not sufficient

to produce desired emergent behavior.

211

Road map

Activities to be supported by SuD

Business goal

Goal
tree

Event-action list
(scenario)

Event-action list
(transactional)

Stimulus-response list
(scenario)

Stimulus-response list
(transactional)

System purpose

System services

Solution goals

Function
refinement

tree

212

Bringing about desired emergent behavior

event or condition

Reactive system

action

action 1

action 2

effect 1

effect 2

desired effect

effect 3

stimulus response

Connection domain

• The role of a reactive system is to bring about desired effects in

the environment.

• Informative, directive, manipulative functions.

213

Example 1: Training department

Business goal tree of Training Department

More efficient and effective management of introductory courses

Better information
to speakers

Faster handling of
unexpected participants

Less unexpected
participants

Faster handling of
expected participants

Prepare
material

Print badges

Allocate
participants

Other activities

Download
latest information
from personnel

information system

On−line
registration

Ad−hoc
badge

 printing

Ad−hoc
list printing

Better information
to personnel department

Upload
participation data

Self−
registration

214

Example 1: Training department

Workflow at the registration desk

Ready to
receive badges

receive
badges /

Putting badge
 and material

on table

decide to put
badges and
material
on table /

Ready to
receive lists

receive
lists /

Ready to register
unexpected
 participants

Registering

E10: unexpected
participant arrives /
enter participation
request

Giving course
material

Wait a bit

Preparing tables Collecting lists Making
material

 available

Registration

[registration period closed]

Exit / print badge

Preparation Provisioning

Receiving
badges

Receiving
lists

215

Example 1: Training department

Desired emergent behavior

Event Desired action

E10 Unexpected

participant arrives

If there is still room, the participant

should be registered and a badge should

be printed.

Embedding the system in its environment

TIS
Registration desk

personnel
Printer

print
badge

participation request,,
confirm registration,

inform of impossibility
Employee

Unexpected
participant

arrives

216

Example 1: Training department

Desired stimulus-response behavior of system

Stimulus
Current

state
Response Next state

S10 Request to

register partici-

pant is entered.

According

to the

data of the

system,

there is still

room.

Allocate partic-

ipant, inform

to registration

desk person-

nel, and send

badge printing

command to

printer

System

contains

updated list

of partici-

pants.

According

to the data

of the sys-

tem, there

is no room.

Inform to reg-

istration desk

personnel of

impossibility.

System con-

tains same

list of par-

ticipants.

217

Example 1: Training department

Question

• Which assumptions did we make about the environment?

218

Example 2: Juice pasteurization

Business goal tree of pasteurization department

Juice pasteurization

Short set−up timeFast change
of recipes

Improved traceabilityPasteurization

Maintain recipe
database

Initialization of controller
by software

Heating a batch
according to recipe

Maintain log

Efficiency Effectiveness

219

Example 2: Juice pasteurization

Operator workflow

Batch data
created

/ create
batch
data Heating

the batch

time to
start heating /
start heating

finished /

Check
equipment

Wait for
production

start

[OK]

Premature
termination

[KO]

220

Example 2: Juice pasteurization

Embedding the controller in its context

Heating
controller

Heater

Thermometer

Heating tankOperator

221

Example 2: Juice pasteurization

Desired emergent behavior

Event Desired action

Operator gives

command to

start heating

batch b.

A heating process for the heating tanks of b is started.

If at the start of the process, temperature in a tank is

too low, the heater of that tank is switched on. When

during the process, a tank becomes 5 degrees Celsius

warmer than the desired temperature, its heater must

be switched off. When it becomes 5 degrees Celsius

colder than the desired temperature, its heater must

be switched on. When the heating process has lasted

for the duration of the recipe, heating must stop and

the operator must be notified of this fact.

222

Example 2: Juice pasteurization

Desired emergent behavior: Transactions

Event
Subject domain

state
Desired action

E1 Operator gives com-

mand to start heating

batch b

Heaters of tanks of b that

are below recipe temper-

ature, are switched on.

E2 Temperature in tank

t rises 5 degrees above

recipe temperature

The juice in t is

being heated.

The heater of t is

switched off.

E3 Temperature in tank

t falls 5 degrees below

recipe temperature

The juice in t is

being heated.

The heater of t is

switched on.

E4 The heating duration

has passed, counted since

the start of heating of b.

b is being

heated.

• Heaters of b that are

on, are switched off.

• Operator is informed.

223

Example 2: Juice pasteurization

Required controller behavior

Stimulus
Current controller

state
Desired response

Next

state

S1 Operator gives

command to start

heating batch b

Not heating t and

not heating b.

Switch on heaters of

tanks with low tem-

perature.

Heating

t and b.

S2 Every 60 seconds.

Heating t and mea-

sured temp > desired

temp + 5

Controller switches

off the heater of t.

Heating

t.

Heating t and mea-

sured temp < desired

temp − 5

Controller switches

on heater of t.

Heating

t.

S4 Recipe time since

the start of heating

of b has passed.

Heating b.

• Switch off heaters

of b that are on.

• Inform operator.

Not

heating

b.

224

Example 2: Juice pasteurization

Assumptions about environment

• The operator works according to the operator workflow.

• The operator only gives the start command when the batch is

in its heating tanks.

• The heater of a tank never breaks.

• The controller is connected to the heaters of the tanks.

• The thermometer of a tank never breaks.

• The controller is connected to the thermometers of the tanks.

225

Example 3: Electronic Ticket System

“Workflow” of a ticket

Buying ticket

Getting ticket refundUsing ticket

Keeping ticket

Conductor wants
to stamp ticket

Conductor requests refund

Viewing ticket

Traveler requests
to see ticket

226

Example 3: Electronic Ticket System

The ETS in its logical context

ETS
>

Clearing house
Railway company

computer

Traveler Conductor

Bank

Rail network

227

Example 3: Electronic Ticket System

Required ETS functions

Provide capability to buy and use tickets

Traveler functions Conductor functions

Sell a ticket Show a ticket Stamp a ticket for use Refund a ticket

228

Example 3: Electronic Ticket System

Required ETS services

• Name: Sell a ticket.

• Triggering event: Traveler requests to buy a ticket.

• Delivered service: Allow a traveler to buy a ticket.

• Name: Show a ticket.

• Triggering event: Traveler requests to view a ticket.

• Delivered service: Display ticket attributes to the user.

• Name: Stamp a ticket for use.

• Triggering event: Request to stamp an unused ticket part.

• Delivered service: Mark the requested part of the ticket as used.

• Name: Refund a ticket.

• Triggering event: Request to refund an unused ticket part.

• Delivered service: Cause a refund and make invalid.

229

Example 3: Electronic Ticket System

Other desired properties

• A traveler cannot get a ticket without paying for it.

• The price of a ticket is withdrawn from the bank account

associated with the smart card.

• A traveler who has paid for a ticket gets it.

• A refunded ticket cannot be used any more.

• A fully used ticket cannot be refunded.

• It is not possible to use a ticket twice.

230

Example 3: Electronic Ticket System

Desired emergent behavior

Event
Current domain

state
Desired action

Next domain

state

Request to buy

ticket
Any

Ticket created

and paid for

Ticket and pay-

ment exist

Request to see

tickets
Any

All tickets are dis-

played
Unchanged

Request to use

ticket for a rail

segment

Ticket exists and

is valid for that

rail segment

Create ticket

stamp for that

rail segment

Ticket exists

and ticket usage

stamp exists for

this rail segment

and ticket

Request to refund

ticket

Ticket exists and

not completely

used

Create refund

stamp

Ticket refunded

and ticket is not

longer valid

231

Example 3: Electronic Ticket System

Selling scenario

Ready to sell

Route and ticket
information requested

Ticket sale offered

Payment requested

traveler requests to buy a ticket /
ask for route and ticket information

traveler aborts /

[traveler has given all information] /
offer to sell ticket

traveler selects route /

traveler selects ticket type /

traveler accepts offer /
request payment from clearing house

payment accepted /
create ticket, show success message

payment refused or no response /
show abort message

traveler declines offer /
show abort message

232

Example 3: Electronic Ticket System

What is so special about this example?

• Some subject domain entities are virtual.

• They are implemented by the system

• So some required system behavior is desired subject domain

behavior (rather than causing it indirectly).

233

Summary of guidelines (1)

Finding states:

√
Look for states in which the behavior is waiting for something

to occur.

√
Look for modes of behavior (e.g. normal-standby-emergency

etc.)

Finding events:

√
Look for signals, condition changes, temporal events to which

the system must respond.

√
Look for desired effects of the system. What triggers the

system to produce such an effect?

234

Summary of guidelines (2)

Dealing with parallellism:

√
If you cannot show with absolute certainty that two events

occur in sequence, then assume they occur in parallel.

Introducing hierarchy:

√
Introduce hierarchy to express commonality in behavior.

√
Introduce hierarchy to introduce common response to some

event (e.g. alarm, suspend, mode change, etc.)

235

Summary of guidelines (3)

Finding system behavior:

√
Follow several paths through our road map and check whether

they lead to the same behavior specification.

√
Through desired causality to system transactions.

• Identify business solution goals.

• Identify solution activities in subject domain, user workflow.

• Identify desired event-action in the environment.

• Map to stimulus-response pairs of SuD; introduce

connection domain if necessary.

• Refine to transactions by introducing SuD states.

236

Summary of guidelines (4)
√

Through desired system services to system transactions.

• Identify business solution goals.

• Derive desired system services: triggers and added value,

assumptions.

• Include connection domain.

• Refine to stimulus-response pairs; Introduce system states

237

Behavior Modeling and Design Guidelines: Main Points

• To find required system behavior, look for desired emergent

composite system behavior.

• Reduce this to desired system behavior.

• Accumulate any assumptions about environment needed to

show that desired system behavior is sufficient to create desired

emergent behavior.

238

Part V. Communication Notations

SuD

Subsystem 1 Subsystem n

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

......

Composite
system

External
entity

External
entity

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

239

Uses of communication notations

Context modeling

• Communications in environment

• Communications between SuD and environment

Architecture design

• Decomposition of stimulus-response pairs into communication

between components

• Communications between components and external entities

240

Example: Electronic Ticket System (1)

Requirements-level architecture

Rail network database

Tickets and
stamps Traveler

ETS

Show
ticket

Use
ticket

Conductor
Refund
ticket

Bank database

Clearing house

Sell
ticket

Conductor
interface

Traveller
interface

• Independent from physical architecture

• Independent of software implementation platform

• Motivated only in terms of environment and requirements

241

Example: Electronic Ticket System (2)

Physical network architecture

ConductorTraveler

Traveler’s
PDA

Smart
card

Conductor’s
PDA

Railway
company
computer

Clearing
house

computer

ETS

242

Example: Electronic Ticket System (3)

Allocation of essential components to physical components

Traveler
interface

Clearing
house

Interface to
traveler’s

PDA

Interface
to card

Interface
to card

Interface to
conductor’s

PDA

PDA
interface

Central
information

system
interface

Central selling
dialog

Tickets
database

Conductor
interfaceRail

network
database

*

Bank
database

Traveler’s PDA

Rail
network

database

*

Rail
network

database

*

Railway company
computer

Smart card

Conductor’s
PDA

Traveler Conductor

Components introduced to deal with internal interfaces. Replicated

components indicated by asterisk.

243

Icons used

Data
transfor−
mation

ObjectVariable
(Sub)system

>
Object
class

Database

• There is a small number of icons used to represent the

communication between components in an architecture.

• Data flow diagrams (DFDs): No boxes.

• Architecture diagrams: All icons.

244

Structure of part IV

• Data flow diagrams (DFDs)

• Architecture diagrams

• Execution semantics

• Context modeling guidelines

• Architecture design guidelines

245

Main points

• Communication occurs in the environment and at all levels in

the system.

• Find essential system decomposition by

– Analyzing required external system communication and

– modeling desired environment communications.

• Communications can be described by DFDs or architecture

diagrams.

246

Chapter 15. Data Flow Diagrams

• Introduced in the 1970s to represent logical software

decomposition.

• Still widely used.

• Ontology built into the notation: Software consists of data

stores and data transformations.

(Ontology = classification of kinds of things.)

247

Fragment of architecture of Training Information
System

<<dialog object>>
Download list

of joiners

<<actor>>
Personnel
information

system

send me a list
of joiners

list of
joiners

Course coordinator

Joiners Rooms Participations

download
list of

joiners

report
Allocate
joiners

to groups

allocate
joiners

report

248

Typical information system architecture

• Collection of data stores holding info about subject domain.

• Collection of data transformations accessing the stores on

behalf of external entities.

Often more insightful to present functional DFD fragments

separately.

249

Requirements-level architecture of heating
controller

Start
heating
batch(b)

1

Operator
console

Batch data*

tank id

Tank
control(i)

>

2

Heater(i)

start heating(b) start(i)

Thermo−
meter(i)

switch on(i),
switch off(i)

temperature(i)

Monitor
end time(b)

(S)

3

duration

stop(i)

i

finished(b)

Batch data*

desired temperature(i)

Enter
batch

data(b)

4
batch data

Recipes

start(b)

250

Decomposition of Tank control(i)

Compare(i)

2.2

Batch data Thermometer(i)
temperature(i)

Heater(i)

switch on(i),
switch off(i)Heater

control(i)

2.1

too hot(i),
too cold(i),

OK(i)

T(i)

Start
heating
batch(b)

1

Monitor
end time(i)

(S)

3

start(i)

stop(i)

251

Typical control system architecture

• One or more control processes.

• Collection of interface processes connecting the control

processes to external devices.

252

Context diagram of ETS

ETS
>

Clearing house
Railway company

computer

Traveler Conductor

Bank

Rail network

253

Icons for external entities

External

entity
External entity

254

Time-behavior of flows

Time−continuous flow

Time−discrete flow

Time−continuous flow
(discrete values)

(continuous values)

Time

Value

NB. Time-discrete and time-continuous flows all carry data values.

255

Icons for flows

e

d

d

Communication channel

Time-discrete data flow

Time-continuous data flow

Event flow

Connected entities can communicate.

Sender can share info with receiver.
Data is present at discrete instants of time.

Data present during periods of time

Sender can cause receiver to do something.
Named after effect or after cause.

Bundles a collection of time-discrete flows.

Compound flow

256

Event flows

Passenger Entry sensor
enter off Elevator

controller

• In our approach, event flows can carry events with parameters.

• Not allowed in Yourdon approaches.

• In our approach, the difference between event flows and data

flows is only in the naming.

257

Communication semantics of flow lines

A flow is an instantaneous and reliable communication chan-

nel between two elements.

• Introducing delay and unreliability:

Sender Delay
Intended
receiver

Mis-
direc-
tion

Distort-
ion

• A flow is an abstraction!

• We always must choose some abstraction level.

258

Stores

Remembers data until deleted explicitly.

Data store

Write
process

d1

Read
process

d2
Process

create,
read,

update,
delete

• NB. Event flow access not allowed in Yourdon methods.

• Conceptual structure of subject domain data is represented by

subject domain ERD.

259

Processes

Data
transfor-
mation

Stateful
data process

(S)

Composite
process

>

Control
process

• Data process transforms input data into output data.

– Stateless: Data transformation. Can be triggered by a

prompt T.

– Stateful: Can be triggered by an enable/disable prompt

E/D.

• Control process transforms input events into output events.

Specified by an STT or STD.

• Composite process is specified by a lower-level DFD.

260

Specification of a data transformation

2.1: Compare(i).

• When triggered, then let d be the desired batch temperature

from the Batch data store:

– if temperature(i) < d − 5 then too cold(i),

– if temperature(i) > d + 5 then too hot(i).

• Mathematical input-output relation.

• Interface must match DFD.

261

Specification of stateful data process

3: Monitor end time.

• Local variable: end time.

This process is started by the reception of b and then is active

until a temporal event occurs.

• Initialization: When b is received, then

– Read duration of b from Batch data and set end time := now

+ duration.

• Process: When end time occurs, then

– read tank id’s of b from batch data,

– for each tank id do stop(tank id),

– send finished(b).

• Initialization is followed by state-dependent transformation

process.

• Interface must match DFD.

262

Specification of control process by Mealy diagram

Ready(i)

Not heating(i)

Heating(i)

Comparing
not heating(i)

start(i) /
T: Compare(i)

too hot(i) / switch off(i)

too cold(i) / switch on(i)
after(60 secs) / T: Compare(i)

after(60 secs) / T: Compare(i)stop(i)

stop(i) /
switch off(i)

Comparing
heating(i)

OK(i) /

OK(i)

• Interface must match DFD.

• Yourdon only allows Mealy diagrams. We allow any STT or

STD.

263

Parametrized DFDs

DFD is instance-level diagram. To simulate types of elements:

• Process names in a diagram can be parametrized by a process

identifier.

• This causes some flow names to contain process identifiers as

well.

264

Main points

• DFDs model a system as a collection of communicating data

stores and processes.

• Various kinds of processes, depending upon how they are

specified.

• DFDs can be hierarchical.

• Detailed information about flows can be expressed.

• Instance-level notation.

265

Chapter 16. Communication Diagrams

Data
transfor-
mation

ObjectVariable
(Sub)system

>
Object
class

Database

• Difference with DFD: Type-level diagram; more icons.

• Difference between variable and database is that database is

(viewed as) a set of instances.

• An object is a subsystem not decomposed by a communication

diagram.

• Object classes are not components of a system. They are types

of such components.

266

Communication diagram of heating controller
requirements-level architecture

Operator
console

Monitor
end time

Heater

Thermo−
meter

Tank
control

start heating

tank id

finished

batch id
stop

start

switch on,
switch off

temp

tank id,
duration

Heating controller

Enter
batch
data

Start
heating
batch

Batchdata

267

Instance diagram of a particular heating
controller in a particular context

Operator
console

Monitor
end time(b0)

Heater(t1)

Thermometer(t1)

Tank
control(t1)

start
heating(b0)

t1, t2

finished(b)

b0 stop(t1)

start(t1, b)

switch on(i),
switch off(i)

temp(t1)

t1, t2,
 duration

Heating controller(b0)

Tank
control(t2)

start(t2, b0)
Heater(t2)

Thermometer(t2)temp(t2)

switch on(t2),
switch off()t2)

stop(t2)

Enter
batch

data(b0)

Start
heating

batch(b0)

Batch
data(b0)

268

Components

Very overloaded term. For us: component = part of an executing

SuD that delivers service to its environment.

• Data transformation

• Data store

– Variable

– Database

• Subsystem

• Object

To deal with a time-varying collection of components, we can also

show object classes. These are not components themselves. (They

are types of components.)

269

Communication channels

Same as in DFDs.

• Event channel. Named after cause or effect.

• Data channel. Time-discrete or time-continuous.

There are two kinds of addressing.

• Channel addressing. Item is sent to channel. Used in DFDs.

• Destination addressing. Item is sent to individual

destinations. Used in the UML.

270

(De)composition

Represented by

• containment of nodes

• or simply specifying the component elsewhere.

C1 C2
e S

x

y

• C1 and C2 can both be triggered by an occurrence of event e.

• C1 and C2 can both read the value of x.

• C1 and C2 can both write a value to y.

271

Closely coupled components

C1 C2 C3
x y

• C1, C2 and C3 have same interface.

• Events generated in one component are sensed by the other

closely coupled components. (Event broadcasting)

• The state of any closely coupled component is readable to any

other closely coupled component. This permits the use of

in(State).

272

Elevator controller composition fragment

Arrive
stimulus

rec

arrive(b, c)

Entry
stimulus

rec

Elevator control

Door
stimulus

rec

Door
action
comp

Motor
action
comp

start motor(b, c),
continue(c),
reverse(c)

pass
doors(c)

doors
closed(c)

open doors(c),
close doors(c)

Door

control

Allocation
and button

control

Direction
indicator
control

Movement
control

Arrows show possible interfaces of all four closely coupled

components.

273

Allocation of services to components

Functions

Compo-

nents

Create

batch data

Start

heating

Switch on

heater

Switch off

heater

Finish

heating

Enter

batch data
X

Batch

data
X X

Start

heating
X

Tank

control
X X

Monitor

end time
X

274

Flowdown

Functions

Compo-

nents

Create

batch data

Start

heating

Switch on

heater

Switch off

heater

Finish

heating

Enter

batch data

Accept

and store

data.

Batch

data
Store data

Provide

data

Start

heating

Start

heating

Tank

control

Switch on

when too

cold

Switch off

when too

hot

Monitor

end time

Stop when

time is up.

275

Main points

• Communication diagrams generalize DFDs.

• They allow us to represent objects and their classes in the

diagram, and to represent close coupling.

• Instance-level diagram represents snapshot of the system.

• Decomposition can be represented by containment of nodes.

• We must allocate and flow down system services to component

services.

276

Chapter 17. Communication Semantics

e

SuD

What is the response to e?

• Depends upon the behavioral semantics of the components.

• We assume the semantics of component specifications is fixed,

and concentrate on the remaining choices.

277

Input buffers: problem and possible solutions

Most combinations of semantic choices require a component to deal

with a backlog of events that occurred but have not yet been

responded to. Suppose components have input buffers.

• Size of buffer?

• Structure of buffer? (Set, bag, queue)

• Removal policy. (Even for queues, i.e. deferred events.)

Statemate: set of unlimited size.

UML: Queue (more or less) of unlimited size.

278

Component input and output: problem and
possible solutions

Computations during a step may need more input, or may produce

output.

• Eager read/lazy write: All input values are read eagerly, at

the start of the step, and all output (actions and data) is

written lazily, at the end of the step. Statemate.

• Lazy read/eager write: Input is read lazily, when needed,

and output is written eagerly, immediately when available.

UML.

279

Semantics of communication channels

• There is no delay between sending and receiving,

• A message always arrives at its destination(s),

• It arrives at no other destinations and

• A message is never distorted.

We can always introduce these things explicitly:

Sender Delay Intended receiver

Misdirection

Distortion

280

Addressing mechanisms

• Channel addressing. “Deliver this communication to all

components at the other side of this channel.” DFDs and

Statemate. Good for broadcast, bad for point-to-point

communication; good for encapsulation.

• Destination addressing. “Deliver this message to this

component.” Good for point-to-point, bad for encapsulation.

UML.

281

Channel capacity: semantic options

• Zero channel capacity: Message immediately arrives at

receiver. If the receiver has no input buffer, a channel

represents a synchronous communication in which the

sender cannot put an item in a channel if the receiver does not

take it out at the same time.

• n-item channel capacity: A channel can contain n items at

the same time. When a sender wants to write something to a

channel that is full:

– Overwrite semantics. (Statemate and UML)

– Refusal semantics.

282

Blocking: semantic options

What happens when for some reason, a sender attempts a

communication through a channel, but this communication is not

possible?

• No blocking: Discard immediately.

• Finite blocking: Wait a finite time, then discard. else.

• Infinite blocking: Wait.

Statemate and UML: Not applicable, because they use overwrite

semantics.

283

Temporal semantics of network behavior

The SuD is a network of communication components.

Options for temporal semantics:

• Global time is indicated by global clock, immediately accessible

to all components.

• Local clocks may differ.

284

Step semantics of network behavior

• Network step semantics. The SuD is ready to respond

when any of its components is ready.

• Network multistep semantics. The SuD is ready to

respond when all its components are ready.

Propagation strategy:

• Breadth-first: Execute a triggered component after all

components triggered earlier, are executed.

• Depth-first: Execute a triggered component immediately.

285

The Environment

• A communication diagram is not intended to specify

environment behavior. But it does make some assumptions

about environment behavior.

– Environment is able to absorb response at all times.

– The environment can produce stimuli at all times.

• The environment is continuous, the system is discrete.

– Arrival order of stimuli over different channels may be

unknown by the SuD.

– Stimuli arriving over same channel may be lost.

– Time-continuous input is sampled.

286

Main points

• Components may have input buffers; may have size restrictions

and access policies.

• Communication channels are reliable and instantaneous.

• Addressing may be by channel or by destination.

• Channel capacity may be restricted.

• Communications have a blocking semantics.

• Time may be global or local.

• Steps may propagate through the network breadth-first or

depth-first.

• We assume that the environment is always able to absorb

responses.

287

Chapter 18. Context Modeling Guidelines

SuD

Subsystem 1 Subsystem n

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

......

Composite
system

External
entity

External
entity

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

• To prepare for making design decisions, you first collect

information about things given to you.

• This is modeling, not design.

• Consider system as black box.

288

Where is the system boundary?
√

Use function refinement tree. This is a fully

implementation-independent description of system boundary.

√
Use list of stimuli and responses. This is a behavior description

of the system boundary.

289

Tradeoff between environment and SuD

• System engineering argument: A and S entail E.

• Responsibility for emergent properties is distributed over

environment (A) and system (S).

Intelligent
door

Sensor Actuator

Elevator
controller

Dumb
door

Sensor Actuator

Rest of the
elevator controller

Door
control

Elevator controller

290

Context diagram

Represents communication among the relevant entities in the

environment and the SuD.

√
External entities are

— Physical entities (people, devices, natural objects),

— Conceptual entities (organizations, obligations, rights),

— Lexical entities (software, contracts, specifications).

A context diagram must give overview; it should link clearly to the

purpose of the system.

291

Teaching information system

TIS
>

Printer

Personnel
information

system

Joiners
Registration

desk employee

Secretary

Course
coordinator

Room

Not much detail needed here.

292

Heating controller

Heating
control
system

>

operator
commands

operator
data

commands data

heat

temperature heater commands

heat

Thermometer

Operator
console

Heater

Operator

Heating tank

More detail needed here.

293

Choose an abstraction level
√

Communication channels represent a level of abstraction.

Heating
control
system

>

Wire Heater

There is always a remaining level of abstraction.

294

Context boundary
√

Include entities needed to achieve goals of composite system.

√
Include entities in which SuD causes desired effect.

√
Include entities about which SuD needs information to perform

its work.

√
Ignore entities where effect is not felt / not relevant.

√
Ignore entities whose behavior is irrelevant for the task of the

SuD.

The context diagram shows which external entities are, together

with the SuD, involved in achieving the desired emergent properties

of the composite system.

295

Structuring the context

Three kinds of functionality:

• Information provision. To answer questions, produce reports,

or otherwise provide information about the subject domain.

• Direction. To control, guide, or otherwise direct its subject

domain.

• Manipulation. To create, change, display, or otherwise

manipulate lexical items in the subject domain.

296

Typical structure in the context of an
information-provision system

Information
provision
function

>

User
Subject
domain

Con-
nec-
tion

domain

event

stimulus

response

query

answer,
report

297

Typical structure in the context of a directive
system

Directive
function

>

Ope-
rator

Subject
domain

commands Con-
nection
domain

eventstimulus

response action

298

Typical structure in the context of a manipulative
system

User

command

feedback
Lexical
subject
domain

Manipulative
function

>

299

Main points

• Context is modeled, not designed.

• System boundary is determined by desired system services.

• Trade-off between functionality in the system and functionality

in the environment.

• Context ends where relevant effects or relevant information

ends.

• Context models have typical structures that depend upon

typical system functionality.

300

Chapter 19. Requirements-Level Decomposition

Guidelines

This is design, not modeling.

SuD

Subsystem 1 Subsystem n

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

......

Composite
system

External
entity

External
entity

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

301

Architecture and architectural style

Architecture = a structure of elements and their proper-

ties, and the interactions between these elements that realize

system-level properties.

• A system can have many architectures: e.g. requirements-level,

implementation-level, execution-level, code-level.

• Elements in an architecture must have synergy. They must

jointly produce emergent properties.

• An architectural style is a set of constraints on an

architecture.

302

Basic style choice: Decomposition versus layering

C1 C2 C1’ C2’

S2S1

C1 C2

S1 S2Higher layer

Lower layer

• C1, C2 deliver services to

S1.

• C1’, C2’ deliver services to

S2.

• S1 encapsulates C1, C2.

• S2 encapsulates C1’, C2’.

• C1, C2 deliver services to

S1 and S2.

• C1, C2 are not encapsu-

lated by S1 or S2.

• Layering and decomposition can be mixed at various levels.

• Layering can be strict or loose.

303

Examples of layered contexts

Physical layer

Data link layer

Network layer

Transport layer

Session layer

Presentation layer

Application layer

(a)

Physical layer

Operating system layer

Middleware layer

Application layer

Presentation layer

Network layer

(b)

Database layer

Application layer

User interface layer

Business process layer

(c)

304

Layered context diagram

SuD

User

Implementation platform

Operator Peer system

User

305

Structuring guidelines
√

Choose a context structure that reflects the problem structure.

√
Choose an SuD architecture that localizes changes.

• Keep related data together

• Keep related functions together

306

Architectural styles (1)

Data flow style:

• Pure data flow style: data flows through a network of

transformations (that have no persistent memory).

• Many variants: E.g. batch, pipe-and-filter.

Not applicable to reactive systems, because these need a

(persistent) model of their environment.

307

Architectural styles (2)

Von Neumann style:

Data store

• This is the classical information system architecture style:

Databases and application programs.

• Variant: Blackboard style: Intelligence in the data store(s).

These can announce that they have been updated.

308

Architectural styles (3)

Object-oriented style.

• All components are objects.

• Usually with destination addressing.

• Variant: publish-subscribe style: kind of dynamically

configurable channel addressing.

309

Requirements-Level Architecture Design
Approach

• Requirements-level decomposition: Defined only in terms

of requirements and environment models.

• Also called “conceptual architecture” or “logical architecture”

or “essential system model”.

• Requirements-level decomposition assumes “perfect

technology” because it ignores technology. It is a restatement

of the requirements in terms of a decomposition.

• Implementation decomposition: Mapping of

requirements-level decomposition to some implementation

platform.

310

Sources of design decisions

Desired SuD functions
Desired SuD communication
Desired SuD behavior

Environment goals
External communications
User behavior
Subject domain entities
Subject domain behavior

Component functions
Component communications
Component behavior

Functional requirements Use environment model

Requirements-level
 architecture

311

Classification of design decisions

Design decisions for the requirements-level architecture are made in

terms of

• Functions

• External communication

– Events

– Devices

– Users

• External behavior

• Subject domain structure

312

Design guidelines
√

Using functional decomposition, each system function is

allocated to a different component.

√
Using subject-oriented decomposition, each group of

subject domain entities corresponds to a system component.

313

ETS example (1): Pure functional architecture
—object-oriented style

Traveler

ETS

Conductor

Clearing house

Use ticket

Refund ticket Sell ticket

Show ticket

• All data encapsulated with functions!

• Inefficient.

• Does not adequately represent problem structure.

314

ETS example (2): Pure subject-oriented
architecture —object-oriented style

Traveler

ETS

Conductor
Clearing house

Ticket and stamps

Bank surrogate

Rail network surrogate

• All functions encapsulated in data!

• Inefficient.

• Does not adequately represent problem structure.

315

ETS example (3): Mixed architecture —Von
Neumann style

Rail network database

Tickets and
stamps

Traveler

ETS

Show
ticket

Use
ticket

Conductor Refund
ticket

Bank database

Clearing
house

Sell
ticket

Conductor
interface

Traveler
interface

Criteria used:

• Functional decomposition

• Subject-oriented decomposition

316

• User-oriented decomposition

317

Communication-oriented decomposition
√

Using event-oriented decomposition, each event is handled

by a different component.

√
Using device-oriented decomposition, each device is

handled by a different component.

√
Using user-oriented decomposition, communications with

one kind of user are handled by one component.

Stimulus
recognition

Event
recognition

Action
computation

Response
computation

Actor Actor

Environment data

SuD

318

Behavior-oriented decomposition
√

In behavior-oriented decomposition, monitoring assumed

behavior in the environment, or enforcing desired behavior in

the environment, is allocated to one component.

319

Heating controller example (1): Mixing functional
and subject-oriented decomposition

Operator
console

Monitor
end time

Heater

Thermo−
meter

Tank
control

start heating

tank id

finished

batch id
stop

start

switch on,
switch off

temp

tank id,
duration

Heating controller

Enter
batch
data

Start
heating
batch

Batchdata

Guidelines used:

• Functional

• Subject-oriented

Different aspects of batch behavior are left scattered around.

320

Heating controller example (2): Including
behavior-oriented decomposition

Heater

Thermometer

Operator
console

start heating

start stop

switch on

switch off

currtemp

Heating controller

duration,
desired temperature

b finished

Recipe data

Heater data

Thermometer data

Batch control

Tank control

batch dataCreate
batch
control

create

Guidelines used:

• Functional

• Subject-oriented

• Behavior-oriented

321

Evaluation criteria
√

Check that all data used is created, that all data created is

deleted.

√
Execute the model.

√
Produce a correctness argument that C1 and ... and Cn entail

S.

√
Check that quality attributes (efficiency, safety, reliability, etc.)

are realized.

√
Build a throw-away prototype and experiment with it.

322

Main points

• Distinguish requirements-level decomposition from

implementation decomposition.

• Basic architectural choice is between layering and

encapsulation.

• Other major architectural styles: Data flow, Von Neumann,

Object-oriented.

• Requirements-level decomposition guidelines:

– Functional,

– Subject-oriented,

– Communication-oriented: events, devices, users

– Behavior-oriented

These correspond to major system aspects & subject domain.

323

Chapter 20. Postmodern Structured Analysis

(PSA)

History of structured analysis;

• Introduced in the 1970s as requirements specification method.

• Abstracts structured programming to requirements level.

• Idea (1): SuD structure should match problem structure rather

than structure of implementation platform.

• Idea (2): The SuD should be modular.

Yourdon-style structured analysis claims that modularity is achieved

by functional decomposition. But:

– Functional decomposition is not modular if there are many

interfaces between the functions.

– Chapter 19 (Requirements-Level Architecture Guidelines) lists

many other decomposition guidelines.

324

Postmodern structured analysis (PSA)

Differs from classical structured analysis:

• ERD used for subject domain only.

• Extended context diagram.

• Event flows may contain data.

• STDs can be statecharts.

• STDs may have local variables.

325

N
o
ta

ti
o
n
s

u
se

d
in

P
S
A

.

D
e
si

g
n

le
v
e
l

N
o
ta

ti
o
n

E
n
v
ir

o
n
m

e
n
t

•
C

o
n
te

x
t

d
ia

g
ra

m

•
E

R
D

o
f
su

b
je

c
t

d
o
m

a
in

•
E

v
e
n
t-

a
c
ti

o
n

li
st

s
o
f

d
e
si

re
d

su
b
je

c
t

d
o
m

a
in

b
e
h
a
v
io

r

•
E

v
e
n
t-

a
c
ti

o
n

li
st

s
o
f
a
ss

u
m

e
d

su
b
je

c
t

d
o
m

a
in

b
e
h
a
v
io

r

R
e
q
u
ir

e
m

e
n
ts

•
M

is
si

o
n

st
a
te

m
e
n
t

•
F
u
n
c
ti

o
n

re
fi
n
e
m

e
n
t

tr
e
e

•
S
e
rv

ic
e

d
e
sc

ri
p
ti

o
n
s

•
S
ti

m
u
lu

s-
re

sp
o
n
se

li
st

o
f
d
e
si

re
d

sy
s-

te
m

b
e
h
a
v
io

r

S
u
D

d
e
-

c
o
m

p
o
si

-

ti
o
n

•
D

F
D

S
u
D

d
e
c
o
m

p
o
si

ti
o
n

•
S
T

T
s

o
r

S
T

D
s

o
f
c
o
n
tr

o
l
p
ro

c
e
ss

e
s

•
D

ic
ti

o
n
a
ry

326

Coherence rules

• Environment models.

– Context diagram shows relevant communication paths

between SuD and subject domain.

– Event-action pairs refer to subject domain entities involved.

• Requirement specifications.

– Mission statement = root of function refinement tree.

– Service descriptions = leaves of FRT.

– Each function is triggered by stimulus in SR list.

– Each stimulus-response pair is part of a function.

• Decomposition specifications.

– Each control process is specified by a behavior description.

– Each behavior description describes a process in the DFD.

327

Relation between an STD and the control process
that it specifies

e(x) [g(y)] / z:= 1; a

(d)

e(x)

g

y z

a

(e)

328

Coherence across models

• Environment and requirements.

– Event stimulus and response action ...

– and each of these is a path in the context diagram.

• Requirements and decomposition.

– For each SR pair, there is a path through the DFD.

• Decomposition and environment.

– Context diagram is abstraction from DFD.

• Dictionary.

– The dictionary defines at least the relevant subject domain

terms for entities and events.

329

Flyweight to heavyweight
The weight of professional boxers is classified according to the

following scheme:

flyweight ≤ 112 pounds

bantamweight ≤ 118 pounds

featherweight ≤ 126 pounds

lightweight ≤ 135 pounds

welterweight ≤ 147 pounds

middleweight ≤ 160 pounds

heavyweight > 160 pounds

We can learn two things from this classification:

1. Lightweight is not the lightest weight.

2. Heavyweights can be as heavy as they want.

330

Flyweight to heavyweight use of notations in PSA

Flyweight Featherweight Middleweight Heavyweight

Context diagr Context diagr Context diagr Context diagr

ERD ERD ERD

EA list

Mission stmt Mission stmt Mission stmt Mission stmt

Function reft Function reft Function reft

Service descs Service descs Service descs

SR list

DFD DFD

Behavior descs

Dictionary Dictionary Dictionary

331

Main points

• PSA is an extension of Yourdon structured analysis that uses

all notations of this book except communication diagrams.

• PSA can be used with any desired level of weightiness.

• PSA can be used with any of the decomposition guidelines of

chapter 19.

332

Chapter 21. Statemate

• Developed in the 1980s based on the idea of higraph:

Hierarchical hypergraphs.

– Hyperedges.

– Nodes can contain nodes, as in Venn diagrams.

• Activity charts are hierarchical DFDs.

• Control activities are specified by statecharts.

• There is a precisely defined execution semantics for activity

charts and statecharts.

• Module charts represent computational resources (not treated

here).

Statemate can be used in combination with other PSA notations.

333

Activity chart

Statemate analogon of DFDs.

Operator
console

Enter
batch data

Batch data

Heater(i)

Thermometer(i)

switch on(i),
switch off(i)

batch data

currtemp(i)

Heating control

Tank
control

Recipes

duration, dtemp(i)
start

finished

334

Statechart for the control activity

Ready(1)

Not heating
tank(1)

Heating
tank(1)

dtemp, currtemp: Rational
i: tank

Not heating batch

start
tm!(en(heating batch), duration) /
finished

Ready(2)

Not heating
tank(2)

Heating
tank(2)

Tank control 1 Tank control 2

Heating batch

335

Substatecharts

Ready(i)

Not heating tank(i)

Heating tank(i)

stop(i) /

stop(i) /

 dtemp. currtemp: Rational
 i: tank

start(t, dtemp)
[currtemp >= dtemp-5] /

start(t, dtemp)
[currtemp < dtemp-5] /

after(60 secs)
[currtemp >= dtemp+5] /

after(60 secs)
[currtemp < dtemp-5] /

enter / switch on(i)
exit / switch off(i)

336

Temporal events

Timeout:

• For each event e and natural number n, timeout(e, n),

abbreviated to tm!(e, n), occurs n time units after the most

recent occurrence of the event e.

An after(n) event that leaves state S can be defined as tm!(en(S), n).

• When a statechart enters a state S, Statemate generates the

event en(s).

• When it exits S, it generates the event ex(S).

Scheduled action:

• For each action a and natural number n, the action schedule(a,

n), abbreviated sc!(a, n), schedules the action a to occur

exactly n time units later.

when(n) / a can now be expressed as sc!(a, n).

337

Activity states

Not hanging(A)

Hanging(A)

sd!(A) / sd(A) rs!(A) / rs(A)

Not active(A)

sp!(A) / sp(A)

st!(A) / st(A)

Active(A)

338

Changing activity status

Actions that will cause a change in state of an activity:

sp!(A) stop(A)

st!(A) start(A)

sd!(A) suspend(A)

rs!(A) resume(A)

Events generated when an activity changes state:

sp(A) stopped(A)

st(A) started(A)

sd(A) suspended(A)

rs(A) resumed(A)

339

Interface between control activity and sibling
activities

A
Control
activity

st!(A), sp!(A), sd!(A), rs!(A)

st(A), sp(A), sd(A), rs(A)

This interface is always present, but it is not shown in an activity

chart.

340

Hierarchy in statecharts and in activity charts (1)

S11 S12 S2e1/ e2/S1

Moving the activity to another statechart leads to an equivalent

model (having the same step semantics):

topSC innerSC

A

B

S2
e2 /S1

enter / start(B)
exit / stop(B)

S11 S12
e1 /

341

Hierarchy in statecharts and in activity charts (2)

This can be done too if there is an outward transition:

S11 S12 S2e1 / e2 /S1

e4 /

can be replaced by the equivalent model (same step semantics):

SC1 SC2

A

B
X

342

Hierarchy in statecharts and in activity charts (3)

When there is an inward transition this does not work:

S11 S12 S2e1 / e2 /S1

e4 /

is not equivalent to this model (different step and superstep

semantics):

topSC innerSC

A

Be1

S2

e2 /S1

enter / start(B)
exit / stop(B)

e4 / e1
S11 S12

e1 /

343

Parallelism statecharts and in activity charts (1)

S21

S22

S31

S32

S41

S42

S11

S12

a/b b/cb/d c/e

S1 S2 S3 S4

344

Parallelism statecharts and in activity charts (2)

SC2 SC3 SC4SC1

b b c

A

A2 A3 A4A1

S11

S12

b/d

S21

S22

a/b

S31

S32

b/c

S41

S42

c/e

345

Execution semantics (1): Choices made

• Channel capacity. Flows have capacity one.

• Time-continuous flows. All flows are time-continuous. They

behave as data stores.

• Input buffer. Each activity has an input buffer, which is a set.

• Priority. If a state transition conflicts with a state reaction,

then the transition has priority. If two transitions are in

conflict, then the highest-level one has priority.

• Step semantics. In a step, the system responds to all events

that occurred since the start of the previous step.

• Perfect technology. Steps do not take time.

• Breadth-first. Activities are executed breadth-first.

346

Execution semantics (2): Execution state

• The status of the system, which consists of the following items:

– The current configuration of the statecharts;

– The values of all variables;

– The truth-values of all conditions;

– The activation state of each activity;

– A list of internal events generated during the previous step;

– A list of outstanding timeout events;

– A list of outstanding scheduled actions.

• The time currently indicated by the system clock;

• A list of external events that have occurred since the beginning

of the previous step.

347

Execution semantics (3): Execution step
Time is T during the step.

1. Construct the set E of events to be responded to. First, set E := 0.

(a) Collect all external events generated by the environment since

the previous step and add them to E.

(b) Collect all events generated in the previous step and add them to

E.

(c) Collect all events generated by the events in E, and add them to

E (recursively).

(d) Execute all scheduled actions whose time is due in (T, T+1].

(e) Process the list of timeout events. For each tm(e, n) in the list,

• if e ∈ E compute and record the time at which tm(e, n) is to

be generated;

• else if the time for tm(e, n) to occur falls in the interval (T,

T+1], then generate the event e and deactivate the timeout

event.

348

2. Construct from E a maximal step S to be executed. First, set

S := 0. Then:

(a) Compute the set En of enabled transitions and state reactions,

i.e. those whose triggering event occurred and whose guard is

true. Remove from En those transitions or reactions that are in

conflict with a transition of higher priority in En.

(b) Compute from En maximal nonconflicting sets S of transitions.

Add to each set the state reactions that do not conflict with it.

Each resulting set is called a step.

(c) Select a step S to be executed.

3. Execute S.

(a) Add scheduled actions in the step to the list of scheduled actions.

(b) Perform all other actions in the step.

(c) Update the information on the history of states.

(d) Update the current configuration.

349

Execution semantics (4): Superstep execution

1. Construct the set E of events to be responded to as for a step.

2. Repeat the following until E = ∅:
2.1 Construct from E a maximal system step S to be executed

as for a step. (There are no internal events at the beginning

of a superstep.)

2.2 Execute S as in the step execution semantics.

2.3 Reconstruct the set E of events to be responded to. First,

set E := ∅. Then:

(a) Collect all events generated on internal flows and add

them to E.

(b) Generate derived events from the events in E and add

these to E (recursively).

350

Main points

• Activity charts are a syntactic variant of DFDs.

• Statecharts have an execution semantics in STM.

• The presence of hierarchy and parallelism in statecharts as well

as in activity charts increases the number of specification

options for the author of a specification.

351

Chapter 22. The Unified Modeling Language

(UML)

• Attempted unification of notations for object-oriented software

design.

• Industrial standard defined by the OMG.

• Standard is still being updated.

• Different books present different versions!

• We treat only a light-weight version, expected to be consistent

with future versions.

352

The UML contains eight notations

UML notations can be used in different methods in different ways.

We will use them as follows. (Notations between brackets are not

used by us.)

• Activity diagrams. User workflow.

• (Use case diagrams. System functions and context.)

• Static structure diagrams. Decomposition into software

objects.

• Statecharts. Object life cycles.

• Sequence diagrams. Message-passing during a scenario.

• Collaboration diagrams. Message-passing during a scenario.

• (Component diagrams. Dependencies between executables.)

• (Deployment diagrams. Network of computing resources.)

353

Activity diagrams

S1 S2
event [guard] / activity

• A transition in a statechart is instantaneous.

• If we want to represent that an action takes time, turn it into a

activity state:

S1
activity
state

S2
event [guard]

• Transitions are still instantaneous.

354

Workflow

• We will use activity diagrams to represent user workflows.

• Each individual workflow handles a case.

• Each individual workflow has local variables: state of the

workflow, state of the case, list of events to be responded to.

• The variables are usually stored in a database.

• Guards are conditions on these variables.

355

Representing sequence

activity 1 activity 2

(k) When activity 1 termi-

nates, activity 2 starts.

Activity 1 Activity 2Wait
e [g]

(l) When activity 1 terminates, the work-

flow waits for e to occur when g is true,

before starting activity 2.

356

R
e
p
re

se
n
tin

g
ch

o
ice

A
ctivity

......

......

[g]

[not g]

(m
)

O
r-sp

lit.

A
ctivity1

......

A
ctivity 2

(n
)

O
r-jo

in
.

G
u
ard

s
are

tested
on

th
e

w
ork

fl
ow

variab
les.

3
5
7

R
e
p
re

se
n
tin

g
p
a
ra

lle
lism

......

......
......

t1t2

(o
)

A
n
d
-sp

lit.
t1

a
n
d

t2
are

execu
ted

sim
u
l-

ta
n
eo

u
sly.

......

......
......

t3

t4

(p
)

A
n
d
-jo

in
.
t3

a
n
d

t4
are

ex-

ecu
ted

sim
u
lta

n
eo

u
sly.

3
5
8

Workflow of the course coordinator

Download
list of joiners

Allocate rooms

List of joiners
downloaded

Rooms
allocated

Allocate joiners

Wait Wait

Print badges
Print lists

of group members

Wait

Wait Wait

Give badges
to registration desk

Give lists
to registration desk

Give lists
to speakers

decide to allocate rooms

decide to print badges decide to print lists

decide to give badges
to registration desk

decide to allocate joiners

Activities in italics to be supported by TIS.

3
5
9

Workflow at the registration desk

Ready to
receive badges

receive
badges /

decide to put
badges and
material
on table /

Ready to
receive lists

receive
lists /

Ready to register
unexpected
 participants

E10: unexpected
participant arrives /
enter participation
request

Waiting a bit

Receiving
badges

Receiving
lists

Putting badges
 and material

on table

Giving course
material

Exit / print badge

Badges received Lists received

[Lists received] [Badges received]

[registration period closed]

Registering

More examples in appendix H

(www.mkp.com/dmrs)

3
6
0

Static Structure Diagrams (SSDs)

• Also known as class diagrams.

• An object is a software entity with a fixed identity, a local

state and an interface through which it offers services to its

environment.

• An object class is an object type.

– Class intension: All properties shared by all instances.

– Extension: All possible instances.

– Extent: Set of currently existing instances.

361

Recipe

name
desired temperature
duration

1 *

1..2

0..1
Allocation

1 1

1 1

Tank control

volume
date last cleaned
destemp

<<signal receptions>>
start(desired temp)
stop

Batch
0..1 1

batchID

Tank
0..1 1

tankID

Thermometer

Heater

Heating controller

Batch control

amount

<<signal receptions>>
start heating(b: Batch)

Create batch control

1

362

Meaning of an SSD

• Which classes of objects can exist in the software system,

• and how many of them can exist.

• Attributes are local variables of the object.

• Associations are access paths!

• Services can be operations or signal receptions.

– Operation = computation performed by object.

– Signal = named data structure that can be sent as a

message to objects.

363

ERDs and SSDs

ERD SSD

entity type class

entity object

relationship association

tuple link

association entity association object

association entity type association class

cardinality property multiplicity property

The major differences are:

• ERD used to represent structure of subject domain.

• SSD used to represent structure of software objects.

• Objects offer services.

364

Subject domain of the heating controller

Recipe

name
desired temperature
duration

Batch

batchID
amount

1*1..2 0..1

Allocation

1

1

1

1

Heating
tank

Thermometer

Heater

Guidelines used to design heating controller:

• Subject-orientation

• Functional decomposition

• Device-orientation

How are these guidelines used?

365

Recipe

name
desired temperature
duration

1 *

1..2

0..1
Allocation

1 1

1 1

Tank control

volume
date last cleaned
destemp

<<signal receptions>>
start(desired temp)
stop

Batch
0..1 1

batchID

Tank
0..1 1

tankID

Thermometer

Heater

Heating controller

Batch control

amount

<<signal receptions>>
start heating(b: Batch)

Create batch control

1

366

Statecharts in the UML (1)

Tank control

Ready(i)

Not heating(i)

Heating(i)

stop(i) /

stop(i) / switch off(i)

dtemp. currtemp: Rational
i: tank

start(t, dtemp) [currtemp >= dtemp−5]

start(t, dtemp) [currtemp < dtemp−5] /
switch on(i)

after(60 secs)
[currtemp >= dtemp+5] /

switch off(i)

after(60 secs)
[currtemp < dtemp−5] /
switch on(i)

367

Statecharts in the UML (1)

Batch control

Ready(b) Heating(b)

start heating(b) /
start tanks(b)

after(b. duration) /
stop tanks(b),
send ‘‘b finished’’

b: Batch control

Finishedb)

Dictionary:

• start tanks(b: Batch).

– For all tanks t in b.heating tank, send start(t, b.recipe

.desired temperature).

• stop tanks(b: Batch).

– For all tanks t in b.heating tank, send stop(t).

368

Coherence between SSD and statecharts (1)

• Attributes, identifiers, interface data declared as local variables.

• Signals can trigger transitions.

• Actions can be operation calls or signal sending.

• Illustrate this coherence by an architecture diagram:

Heater

Thermometer

Operator
console

start heating

start stop

switch on

switch off

currtemp

Heating
controller

duration

b finished

desired
temperature

Recipe

Tank control

Batch control

Create batch control

create

batch data

369

Coherence between SSD and statecharts (2)

A
B

<<signal receptions>
s (params)

... / send s(...)
s(...) / ...

Statechart of instances of A.
Statechart of instances of B.

Transitions can be triggered by s(...).

Instances of A can send messages to instances of B because there is

an association from A to B.

370

Coherence between SSD and statecharts (3)

A B

<<operations>>
o(params) : v

... / call o(...)

Statechart of instances of A.

Operation o must be defined for instances of B.

371

How to find an SSD

Considerations:

• A communication diagram shows communication channels

among components.

• An SSD shows cardinality properties of components and access

paths between classes.

• The SSD shows the access paths needed by each object to do

its job.

• To find the access paths, we need to find out the job of each

object first.

• To find the job of each object, we draw the communication

diagram first.

372

Guidelines for finding an SSD
√

Consider one stimulus-response pair.

√
Draw a communication diagram of the stimulus-response

process.

– Use architecture guidelines to find components. See section

19.4.

√
Draw an SSD of the classes and access paths needed by each

component in the communication diagram.

– Definition of operations tell us where each object must find

its data.

– Use subject domain ERD as inspiration to find multiplicity

properties.

373

Location
indication

Entry
sensor

Motor

Elevator
doors

*

Direction
indicator

start up(m),
start down(m)

stop(m)

Arrival
sensor

arrive(a)

pass(e)

closed(d)
open(d),
close(d)

Location
indicator

arrive(a) number

Arrive
stimulus

rec

arrive(b, c)

Request
button

* push(b)

Entry
stimulus

rec

light on(b), light off(b)

Elevator control

Door
stimulus

rec

Door
action
comp

Motor
action
comp

start motor(b, c),
continue(c),
reverse(c)

pass
doors(c)

doors
closed(c)

open doors(c),
close doors(c)

Cage
surrogate

arrive(a)

direction

Movement
control

Door
control

Allocation
and button

control

Direction
indicator
control

Request
button

*

Elevator
doors

*

374

What information does a cage surrogate need? Here is its job:

c: Cage surrogate

arrive(a) / update floor(c, a), where update floor(c, a) =

c.current floor := a.floor.

Here are the access paths needed:

 10
Floor

surrogate

 20
Arrival sensor

surrogate

1

current
floor

 2
Elevator

cage

 10
Floor

 20
Arrival
sensor

 2
Cage surrogate

<<signal receptions>>
arrive(a)
<<operations>>
update floor(c, a)

1 1

11

1 1

Elevator controller

375

Here is the job of the location indicator:

Location indication:

• When arrive(a),

• do set number(a.cage.location indicator, a.cage
.current floor.number).

376

Here are the access paths through which it gets its information:

 2
Location indication

<<signal receptions>>
arrive(a)

1
1

1 1

 2
Location
indicator

number

1

current
floor 2

Cage surrogate

 10
Floor surrogate

number

Elevator controller

 20
Arrival sensor surrogate

 20
Arrival
sensor1 1

377

Sequence diagrams can be used to illustrate
scenarios

h1: Heater

op: Ope−
rator

console r: Recipe
tk1: Tank

control
b: Batch
control

th1: Ther−
mometer

start
heating

get
temperature

temperature

get
duration

duration

start

switch on

tk2: Tank
control

th2: Ther−
mometer

h2: Heater

start

get
temperature

temperature
switch on

378

Collaboration diagrams can be used to illustrate
scenarios too

h1: Heater

op: Operator
console

1: start heating

3: start

8: switch on

2: duration
r: Recipe

tk1: Tank
control

b: Batch control

th1: Thermometer
5: temperature

tk2: Tank
control

th2: Thermometer

h2: Heater

4: start

7: switch on

6: temperature

379

Possible uses of sequence and collaboration
diagrams

• As illustration: The system must be able to execute this

scenario.

• As specification: All executions of the system must contain this

scenario.

• To specify patterns: The diagram represents roles that objects

in the system play.

380

Main points

• Activity diagrams can be used to specify user workflow.

• Class diagrams represent decomposition of system into objects.

• Statecharts can be used to represent object life cycles.

• Use architecture diagrams to keep track of relationship between

SSDs and statecharts.

• Find SSD by identifying access paths needed in

stimulus-response processing.

• Illustrate executions by means of sequence or collaboration

diagrams.

381

Chapter 23. Not Yet Another Method

The weight of professional boxers is classified according to the

following scheme:

flyweight ≤ 112 pounds

bantamweight ≤ 118 pounds

featherweight ≤ 126 pounds

lightweight ≤ 135 pounds

welterweight ≤ 147 pounds

middleweight ≤ 160 pounds

heavyweight > 160 pounds

We can learn two things from this classification:

1. Lightweight is not the lightest weight.

2. Heavyweights can be as heavy as they want.

382

Keep it simple.

383

Problem-solving levels

Business
problem
analysis

Business
design
process

Software
problem
analysis

Software
design
process

Business
problem

Business
problem

description

Business
solution

specification

Software
problem

description

Software
requirements
specification

Software
problem

Software
decomposition

problem
analysis

Software
decomposition

design
process

Software
decompo-

sition
problem

Software
decompo-

sition
problem

description

Software
decompo-

sition
specification

Decompo-
sition

Refine-
ment

Decompo-
sition

384

The system hierarchy

SuD

Subsystem 1 Subsystem n

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

......

Composite
system

External
entity

External
entity

Services
Behavior
Communication

Services
Behavior
Communication

Services
Behavior
Communication

385

Software design approach

Desired SuD functions
Desired SuD communication
Desired SuD behavior

Environment goals
External communications
User behavior
Subject domain entities
Subject domain behavior

Component functions
Component communications
Component behavior

Functional requirements Use environment model

Requirements-level
 architecture

• Requirements-level decomposition.

• Independent from changes in implementation platform.

386

N
o
ta

ti
o
n
s

tr
e
a
te

d
in

th
e

b
o
o
k

F
u
n
c
-

ti
o
n
s

B
e
h
a
-

v
io

r

C
o
m

-

m
u
-

n
ic

a
-

ti
o
n

D
e
-

c
o
m

-

p
o
si

-

ti
o
n

M
is

si
o
n

st
m

n
t

X

F
u
n
c
t.

re
fi
n
m

n
t

tr
e
e

X

S
e
rv

ic
e

d
e
sc

r.
X

S
ta

te
tr

a
n
s.

li
st

X

S
ta

te
tr

a
n
s.

ta
b
le

X

S
ta

te
tr

a
n
s.

d
i-

a
g
r.

X

A
c
ti

v
it
y

d
ia

g
ra

m
X

D
a
ta

fl
o
w

d
ia

g
r.

X

A
rc

h
.

d
ia

g
ra

m
X

E
R

D
X

S
S
D

X

387

Our use of notations

Use environment of SuD

• Context diagram

• Subject domain ERD

• Activity diagram of user workflow

• STT or STD of desired subj. dom. behavior

• STT or STD of assumed subj. dom. behavior

Functional specification

of SuD

• Mission statement

• Function refinement tree

• Service descriptions

• Stimulus-response descriptions

Decomposition of SuD

• Architecture diagram

• STT or STD of component behavior

• Static structure diagram

388

Ordering of design decisions

Context
diagram

Mission
statement

Function
refinement

tree

Service
descriptions

Subject
domain ERD

Subject
domain

STDs/STTs

Stimulus−
response list

Architecture
diagram

Component
STDs/STTs

SSD

Usage environment

SuD

SuD components
Lower−level
service provision

Refinement

Workflow
activity

diagram

Dictionary

Often, in order to make a lower-level design model, the designer has

to first make a more refined higher-level description.

389

• Problem bounding. Environment modeling.

• Service description. System design.

• Defining key terms. Environment modeling.

• Identifying desired and assumed behavior. System design.

• Decomposition. System design.

390

Engineering arguments

• Engineers predict product properties from product

specification.

• Tinkerers fiddle around with the product and discover how it

behaves.

Feed forward versus feedback loop.

⇒ We use product descriptions, among others, to produce

engineering arguments. Ranges from very informal to very formal.

391

Using engineering knowledge:

• Products with this kind of decomposition usually have

properties P ;

• Since this product will have this kind of decomposition,

• It will probably have properties P .

392

Using throw-away prototyping:

• Since the prototype has properties P ,

• And the prototype is similar to the final product,

• The final product probably has properties P .

393

Using model execution:

• Since the model execution has properties P ,

• If the system implements this model exactly,

• Then the system will have properties P .

394

Using model checking:

• Since the state transition graph has properties P ,

• If the system implements this graph correctly,

• the system will have properties P .

395

Using theorem-proving:

• Since the decomposition has been proved to have properties P ,

• If the system correctly implements this decomposition,

• The system will have properties P .

396

Formality versus precision

• A description is precise if it expresses as briefly as possible

what is intended.

• It is formal if it uses a language for which formal,

meaning-preserving manipulation rules have been defined.

⇒

• Formal descriptions can be very imprecise: Statechart with

superfluous transitions and states.

• Precise descriptions can be very informal: Function

descriptions.

The attempt to be precise has priority over the attempt to be

formal.

397

C.J. Smith, Synonyms Discriminated. G. Bell and Sons, Ltd., 1926.

• Precise denotes the quality of exact limitation, as

distinguished from the vague, loose, doubtful, inaccurate; ...

The idea of precision is that of casting aside the useless and

superfluous.

• Exactness is that kind of truth which consists in conformity

to an external standard or measure, or has an internal

correspondence with external requirement ... an exact amount

is that which is required.”

• Accuracy, by contrast, refers to the attention spent upon a

thing, and the exactness which may be expected from it.

Accuracy is designed whereas exactness may be coincidental.

• Correctness, finally, applies to what is conformable to a

moral standard as well as to truth generally, as “correct

behavior”.

398

C.J. Smith, Synonyms Discriminated. G. Bell and Sons, Ltd., 1926.

“It is most desirable that men should be exact in duties and

obligations, accurate in statements and representations,

correct in conduct, and precise in the use of words.”

399

Omit needless words

W. Strunk Jr. & E.B. White, The Elements of Style. Fourth

edition. Allyn and Bacon 2000.

Rule 17

Vigorous writing is concise. A sentence should contain no

unnecessary words, a paragraph no unnecessary sentences,

for the same reason that a drawing should have no

unnecessary lines and a machine no unnecessary parts.

This requires not that the writer make all sentences short,

or avoid all detail and treat subjects only in outline, but

that every word tell.

400

