
Slides for

Design Methods for Reactive Systems:

Yourdon, Statemate and the UML

Notes for Teachers

Roel Wieringa
Department of Computer Science

University of Twente,
the Netherlands

roelw@cs.utwente.nl
www.cs.utwente.nl/∼roelw

2-1

Organizing the course.

• The first lesson must set the expectations of
the students. I do this by means of examples:
“This is the kind of system we are dealing
with in this course; you will learn notartions
and guidelines for designing these systems”.

• Spend time on breaking through the tradi-
tional partitioning of systems into informa-
tion systems, embedded/control systems, tele-
com systems. Use examples listed in the book
to make clear that the distinctions among
these systems are getting blurred.

2-2

The role of practical work. The course would
not be effective without work assignments for the
students. This is a hard statement to swallow for
some students. But in five years of teaching this
material I have never seen someone pass a test who
did not do practical assignments first. The rea-
son is this: The solutions often look simple; the
difficulty is in finding them. Learning consists in
experiencing and surmounting this difficulty.

The role of notations is, in the end, the same
as the role of handwriting: As a child you spend
time in practicing writing. This takes a lot of time
and effort. But after you learned it, you can forget
about it: It has become part of yourself, and writ-
ing does not get in the way between you and what
you want to write down. The same for notations:
Once you master them, they will not get in the way
between the you and the design that you want to
describe.

2-3

Organizing practical work.

• I usually form groups of two students. each.

• Each group does an assignment that roughly
is the size of one of the appendices.

• Each group gets a supervisor. Each supervi-
sor gets no more than 10 groups.

• Each group sees a supervisor two times. Each
meeting lasts 30 minutes and needs about 30
minutes preparation by the supervisor.

• Before the first meeting, they hand in their
draft solution. This is discussed at the first
meeting.

• Before their second meeting, the final solu-
tion is handed in. This is discussed at the
second meeting.

• If you partition the assignment into sub-assignments,
you need more meetings.

2-4

If you have large numbers of students, and not
much supervision capacity:

• Again work with groups of two.

• Each group invents an example case and writes
a half-page description of it. The group will
act as customer with respect to this case.

• Cases are published and then groups nego-
tiate so that pairs of groups arise. In each
group pair, each group is the customer with
respect to the other group.

• Now pairs of groups start working for each
other. In addition to each group being a
customer for the other group in a pair, each
group helps the other doing the assignment,
by explaining the notations and how they
should be used. In this way, groups help each
other.

2-5

• Each group thus plays two roles: As cus-
tomer the group provides information about
the case as the need arises; as supervisor of
the other group, they help them doing their
work.

• Define deadlines by which certain deliverables
must be finished. Collect those deliverables
at those deadlines.

• When the assignment is done, groups in a
pair give each other a mark. The teacher
evaluates the deliverables plus these marks
and based on this, each group gets a mark.

2-6

Addition to any form of group work:

• To avoid free-riding, each student can write a
short self-evaluation to explain the contribu-
tion he or she made to the deliverables. Com-
paring the self-evaluations of group members
gives a lot of information.

2-7

The line of argument for these three examples is as follows.

• The reactive systems we are interested in, are software systems.
These communicate with their environment by exchanging symbols
(symbol occurrences really).

• Each symbolic exchange has the properties that any speech act
has, listed below. To be technology-independent, imagine that the
system interacts with its environment by exchanging post-it notes.
What can we say about these exchanges?

– Each note has a topic, the part of the world that it is about.
This is the subject domain of the message.

– Each note has a destination (system to external entity or ex-
ternal entity to system).

– Each note travels through a communication channel, which
we call a connection domain.

– Each note has a purpose, e.g. to inform external entities, to
direct external entities, or to manipulate lexical entities. This
is called its function.

11-1

The ETS decomposition hierarchy is a difficult one. There are really
two kinds of decomposition relations represented in example 3:

• Ownership. E.g. traveler’s PDA is owned by traveler.

• Software encapsulation. E.g. Rail network database is encapsu-
lated within the ETS (in this example).

These are decompositions in the social world and in the software world,
respectively.

There is a third kind of decomposition, which is physical decom-
position: The composite is bigger than the component, and in three-
dimensional space, the component is inside the composite. This physical
component-composite relationship is used as a metaphor to talk about
decomposition in the social and software worlds. This is so pervasive in
our language and in our perception of the social and software worlds,
that it takes some effort to realize that in the social and software worlds,
there is no physical “inside”.

For example, “inside” the traveler, we find a heart, a stomach , organs
etc. Even if in the far future the traveler’s PDA would be inside the

46-1

traveler in this way, that is irrelevant for our analysis. The relevant
relationship represented by the decomposition tree is that the traveler
is accountable for the PDA and this is a legal relationship. The traveler
is accountable for the PDA because he or she owns it. Similarly, the
railway company, which is a legal construct, is accountable for the ETS
and the rail network, the conductor, etc. This accountability follows
from the fact that these entities are owned by the company or work for
the company.

In the software world, decomposition is best viewed as encapsulation,
i.e. the component is only accessible through the interface of the com-
posite. One complicating factor is that the interface of the composite
is itself realized by some components—these provide access to the other
components. All components deliver some service to the composite. See
section 19.2 for an analysis of encapsulation.

46-2

• The term “nonfunctional property” is a misnomer and I avoid it.
For many people it means “vaguely specified property” or worse,
“property that I do not have to describe precisely”.

• All property must be operationalized, i.e. we must give descriptions
of ways in which they can be measured.

• Many operationalized specifications take the form of stimulus-response
descriptions but some, such as security specifications, are negative
(e.g. certain things should not be possible in certain circumstances)
or statistical (e.g. on the long run, most users will learn to use the
system in 1 hour).

53-1

The diagram says that

• Railway stations are discrete entities, i.e. each station has an iden-
tity different from any other station, and railway stations can be
counted.

• It says that each railway station has a name.

83-1

The diagram says

• For each course offering there is exactly 1 teacher, 1 room and 1
course. (This follows from the fact that we have a ternary relation-
ship.)

• For each existing (course, room) pair, there is at most one teacher.
In other words, in each room there is at most one teacher for this
course.

• For each existing (course, teacher) pair, there is at least one room.
in other words, if a teacher teaches a course, then there is a room,
and possibly more rooms, in which this teacher can teach the
course.

The answer to both questions is Yes.

91-1

Here is the resulting diagram:

Recipe

name
desired temperature
duration

Batch

batchID
amount

1*1..2 *

Allocation

*

*

*

*

Heating
tank

Thermometer

Heater

96-1

NB Gadgets are kinds of gadgets, not individuals.
Not equivalent.
The second diagram falls in the connection trap of replacing a ternary

relationship by three binary relationships, from which the original infor-
mation cannot be reconstructed.

The second diagram only represents that a customer ordered a gad-
get, that a gadget is stored in certain warehouses, and that a delivery
from a warehouse to a customer is made. But it cannot represent that a
gadget is delivered from a warehouse to a customer.

97-1

Not equivalent.
The second diagram gives each delivery of a gadget to a customer

from a warehouse a different identifier. The first diagram cannot distin-
guish between different deliveries of the same kind of gadget to the same
customer from the same warehouse.

98-1

• Station, Trip segment, Route.

• No, the system communicates about routes and tickets, not about
passengers. It cannot determine the identity of a passenger.

103-1

If Employee is a subtype of Person (upper diagram), a person is either
an employee or it is not. If it is a role of persons (lower diagram), then
one person can play any number of employee roles (including 0) at the
same time.

112-1

• S2 polls every 60 seconds. Switching heater on or off may be up to
60 seconds too late.

• There is a margin of -5 to +5 degrees, making delays even larger.

This is acceptable if we assume certain domain properties concerning the
rate of change of temperature in the fluid, and the effect of high or low
temperatures on the pasteurization process.

150-1

The usual connection domain assumptions:

• Keyboard and screen are functioning,

• Registration personnel is not lying, and

• makes no typing mistakes.

• A connection with personnel information system exists.

Other assumptions about external entities:

• Personnel data is reasonably up-to-date.

• Personnel information system can deal with incorrectly spelled
names.

• Registration desk personnel is working according to workflow.

• Closing time of registration does not occur while someone is regis-
tering.

217-1

Classification of design decisions

Design decisions for the requirements-level architecture are made in

terms of

• Functions

• External communication

– Events

– Devices

– Users

• External behavior

• Subject domain structure

