Introduction to Design Science Methodology

Roel Wieringa

Slides based on the book *Design Science Methodology for Information Systems and Software Engineering,*Springer 2014

Design science

 Design science is the design and investigation of artifacts in context

Examples

- Design and investigation of agent-based route planning algorithms
- Design and investigation of goal-oriented enterprise architecture design method

Design science versus natural science

- Design science is solution-oriented
 - How to do agent-based route planning
 - How to design an enterprise architecture aligned to business goals
- Natural science, social science are problem-oriented
 - Observational studies of requirements engineering in agile projects
 - Observational studies of patterns of evolution of groupware systems
 - Experimental studies to understand how software engineers understand UML

- Real-world problem investigation —>
- Treatment design
- Design validation
- Treatment implementation
- Real-world implementation evaluation

- Stakeholders, goals, phenomena, evaluation, diagnosis.
- If hypothetical realworld problem: Stakeholders do know they are stakeholders ...

- Real-world problem investigation
- Treatment design
- Design validation

Treatment = interaction between artifact and context

- Treatment implementation
- Real-world implementation evaluation
- You design the artifact in order to create a treatment for the problem context
 - •Interaction between pill and patient
 - Interaction between Software and its Context
 - •Interaction between method and its context of use

- Real-world problem investigation
 Treatment design
 Design validation
 Treatment implementation
 Artifact & Context → Effects?
 Effects satisfy Criteria?
 Trade-off: Changes in artifact
 Sensitivity: Changes in context
- Real-world implementation evaluation
- Typical research methods for treatment validation:
 - Expert opinion (e.g. focus group)
 - Simulation: artifact prototype applied in simulated context
 - Field experiment: artifact prototype applied in real context to see what happens
 - Technical action research: artifact prototype applied in real context to help a client

- Real-world problem investigation
- Treatment design
- Design validation
- Treatment implementation ->
- Implementation evaluation

Since the problem is realworld, this is transfer to the real world! Possible sequel to research project, but not part of reserch project.

- Real-world problem investigation
- Treatment design
- Design validation
- Treatment implementation
- Real-world implementation evaluation =

Find out what really happened after a real-world implementation:

Phenomena: Artifact & Context → Effects?

Evaluation: Effects satisfy Criteria?

Engineering cycle

Legend:
? Knowledge questions
! Tasks

Design implementation

Choose a treatment! Transfer to practice!

Implementation evaluation = Problem investigation

- •Stakeholders? Goals?
- •Phenomena? Causes, mechanisms, reasons?
- •Effects? Contribution to Goals?

Treatment validation

- •Context & Artifact → Effects?
- •Effects satisfy Requirements?
- •Trade-offs for different artifacts?
- •Sensitivity for different Contexts?

Treatment design

- •Specify requirements!
- •Contribution to goals?
- •Available treatments?
- •Design new ones!

Design cycle

Design

cycle

Legend:
? Knowledge questions!
! Tasks

Design implementation

Choose a treatment! Transfer to practice!

Real-world implementation is not part of your research project

Treatment validation

- •Context & Artifact → Effects?
- •Effects satisfy Requirements?
- •Trade-offs for different artifacts?
- •Sensitivity for different Contexts?

Implementation evaluation = Problem investigation

- •Stakeholders? Goals?
- •Phenomena? Causes, mechanisms, reasons?
- •Effects? Contribution to Goals?

Typically in a research project you iterate over design and validation many times

Treatment design

- •Specify requirements!
- •Contribution to goals?
- •Available treatments?
- •Design new ones!

Design cycle

Legend:
? Knowledge questions!
! Tasks

Some research projects focus on this (ending with a proposed treatment)

Implementation evaluation = Problem investigation

Choose a treatment! Transfer to practice!

- •Stakeholders? Goals?
- •Phenomena? Causes, mechanisms, reasons?
- •Effects? Contribution to Goals?

Some research projects focus on this (starting with a tiny problem investigation)

Treatment validation

- •Context & Artifact → Effects?
- •Effects satisfy Requirements?
- •Trade-offs for different artifacts?
- •Sensitivity for different Contexts?

Treatment design

- •Specify requirements!
- •Contribution to goals?
- •Available treatments?
- •Design new ones!

Research problems in design science

To design an artifact to improve a problem context

Problems, Artifacts

Knowledge

To answer knowledge questions about the artifact in context

Solvé Lusing the engineering cycletem for satellite TV reception in a car."

- "Design a multi-agent aircraft taxi-route planning system for use on airports"
- "Design an assurance method for data location compliance for CSPs"

- "Solve using the empirical cycle enough?"
- "Is this agent routing algorithm deadlock-free?"
- "Is the method usable and useful for cloud service providers?

The design researcher iterates over these two activities

Validating new technology

Research methods

The empirical research cycle

- This is the rational decision cycle applied to answer knowledge questions (empirical research questions)
 - Knowledge problem investigation
 - Research design
 - Design validation
 - Research execution
 - Results evaluation

- Knowledge problem investigation →
- Research design
- Design validation
- Research execution
- Results evaluation

Theoretical framework, Research questions, Target of generalization (a.k.a. population)

- Knowledge problem investigation
- Research design
- Design validation
- Research execution
- Results evaluation

Decisions about Object of study, measurement and treatment, and inference. Possible designs:

- Survey,
- Observational case study,
- Experiment,
- Action research,
- Simulation,
- ...

- Knowledge problem investigation
- Research design
- Design validation —
- Research execution
- Results evaluation

Would this really answer our knowledge questions?
Risk assessment of doing the wrong thing to answer the

questions

- Knowledge problem investigation
- Research design
- Design validation
- Research execution —> Do the reseach as planned.
 Unexpected things may happen!
- Results evaluation

- Knowledge problem investigation
- Research design
- Design validation
- Research execution
- Results evaluation ——> How can we now answer our knowledge questions?
 Risk assessment of answering the questions incorrectly

Analysis of results

- 12. Data?
- 13. Observations?
- 14. Explanations?
- 15. Generalizations?
- 16. Answers?

New research problem

Research execution

11. What happened?

Research problem analysis

- 4. Conceptual framework?
- 5. Research questions?
- 6. Population?

Research design validation

- 7. Object of study justification?
- 8. Treatment specification justification?
- 9. Measurement specification justification? 9.
- 10. Inference justification?

Research design

- 7. Object of study?
- 8. Treatment specification?
- 9. Measurement specification?
- 10. Inference?

- Where are you?
 - Problem investigation / implementation evaluation
 - Design & validation
 - Empirical research
- What are your research goals?
 - Focus

- Wieringa, R.J. (2009) <u>Design Science as Nested Problem Solving.</u> In: Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology, Philadelphia. pp. 1-12. ACM.
- Wieringa, R.J. (2010) <u>Relevance and problem choice in design science.</u> In: Global Perspectives on Design Science Research (DESRIST). 5th International Conference, 4-5 June, 2010, St. Gallen. pp. 61-76. Lecture Notes in Computer Science 6105. Springer.
- Wieringa, R.J. and Morali, A. (2012) <u>Technical Action Research as a Validation Method in Information Systems Design Science</u>. In: Design Science Research in Information Systems. Advances in Theory and Practice 7th International Conference, DESRIST 2012, 14-15 May 2012, Las Vegas, USA. pp. 220-238. Lecture Notes in Computer Science 7286. Springer.
- Wieringa, R.J. and Condori-Fernández, N. and Daneva, M. and Mutschler, B. and Pastor, O. (2012) <u>Lessons learned from evaluating a checklist for reporting experimental and observational research.</u> In: Proceedings of the ACM-IEEE Iternational Smposium on Empirical Software Egineering and Measurement, ESEM 2012, 19-21 Sept 2012, Lund, Sweden. pp. 157-160. ACM.
- Wieringa, R.J. Design Science Methodology for Information Systems and Software Engineering. Springer, 2014.