Theories in Empirical Software Engineering

Roel Wieringa

Sidekicks:
Daniel Méndez
Lutz Prechelt

Who are we?

Roel WieringaUniversity of Twente, Germany

http://wwwhome.ewi.utwente.nl/~roelw/

Lutz Prechelt

FU Berlin http://www.mi.fu-berlin.de/w/Main/LutzPrechelt

Daniel Méndez

TU München http://www4.in.tum.de/~mendezfe/

2

Who are you?

Quick round

- Who are you?
- What are your experiences in conducting empirical studies?
- What are your expectations?

What do you think?

Why do we need scientific theories in software engineering?

- 4. Methodology (the study of research methods)
 - a. Notion of conceptual framework; statements about them
 - b. Notion of generalization; statements about them

Looking at research from the sky

- Theory (statement about many research results).
 - a. Conceptual framework
 - b. Generalization

General knowledge is the gold we are after

- 2. Research questions (what, how, when where,, why) aimed at generalizable knowledge, research method, and research result
- 1. Practice domain: SW, methods, tools, processes (as is / to be)

Hard work to grow knowledge

Grass roots

- Everything on the slides in this talk, except the examples, is at level 4.
 - The examples on these slides contain explicit level indications.
- The separate example slides report about research that contains 2 and 3.
- The reported research studies some aspect of 1.

Agenda

Time	Topic
09:00 - 10:30	Opening and Introduction
10:30 - 11:00	Coffee break
11:00 – 12:30	Inferring Theories from Data
12:30 – 13:30	Lunch
13:30 – 15:00	Designing Research based on Theories
15:00 – 15:30	Coffee break
15:30 – 16:30	Hands-on Working Session and Q&A
16:30 – 17:00	Wrap up (all)

What is a Scientific Theory

Scientific theories

- A theory is a belief that there is a pattern in phenomena
- A **scientific** theory is a theory that
 - Has survived tests against experience
 - Observation, measurement
 - Possibly experiment, simulation, trials
 - Has survived criticism by critical peers
 - Anonymous peer review
 - Publication
 - Replication

Examples (level 3)

- Theory of cognitive dissonance
- Theory of electromagnetism
- The Balance theorem in social networks
- Theories X, Y, Z, and W of (project) management
- Technology Acceptance Model
- Hannay et al. A Systematic "Review of Theory Use in Software Engineering Experiments". IEEE TOSEM 33(2), February 2007
- Lim et al. "Theories Used in Information Systems Research: Identifying Theory Networks in Leading IS Journals"./ ICIC 2009, paper 91.
- Non-examples
 - Speculations based on imagination rather than fact: Conspiracy theories about who killed John Kennedy
 - Opinions that cannot be refuted: The Dutch lost the World Championship because they play like prima donnas

Design theories

A design theory is a scientific theory about an artifact in a context

- Vriezekolk: What is a theory
- Méndez: What is a theory

The Structure of Theories

The structure of scientific theories

1. Conceptual framework

- Constructs used to express beliefs about patterns in phenomena
- E.g. The concepts of beamforming, of multi-agent planning, of data location compliance. (level 3)

2. Generalizations

- stated in terms of these concepts, that express beliefs about patterns in phenomena.
- E.g. relation between angle of incidence and phase difference,
- Statement about delay reduction on airports. (level 3)
- Generalizations have a scope, a.k.a. target of generalization

The structure of **design** theories

1. Conceptual framework

2. Generalizations

- Artifact specification X Context assumptions → Effects
- Effects satisfy a requirement to some extent

Two kinds of conceptual structures

- **1. Architectural structures**: Class of systems, components with capabilities, interactions
 - E.g. entities, (de)composition, taxonomies, cardinality, events, processes, procedures, constraints, ... (level 4)
 - Useful for case-based research (observational case studies, case experiments, simulations, technical action research)
 - Typically qualitative
- 2. Statistical structures: Population, variables with probability distributions, relations among variables
 - Useful for sample-based research (surveys, statistical differencemaking experiments)
 - Typically quantitative

- Prechelt: What is a theory, the structure of theories
- Vriezekolk: The structure of theories
- Méndez: The structure of theories

The Use of Theories

Uses of a conceptual framework

- Framing a problem or artifact: choosing which concepts to use
 - Using the theory of infectuous diseases to understand a patient's symptoms
 - Using concepts of force & energy to understand behavior of a machine
 - Using concept of a coordination gatekeeper to understand a distributed SE project (all three examples at level 1)
- **Describe** a problem or **specify** an artifact: using the concepts
- Generalize about the problem or artifact
- Analyze a problem or artifact (i.e. analyze the framework)

Functions of generalizations

- Functions of generalizations
 - Explanation: explain phenomena by identifying causes, mechanisms or reasons
 - Prediction: state what will happen in the future
 - Design: use generalizations to justify a design choice

- Prechelt: the use of theories
- Vriezekolk: the use of theories
- Méndez: the use of theories

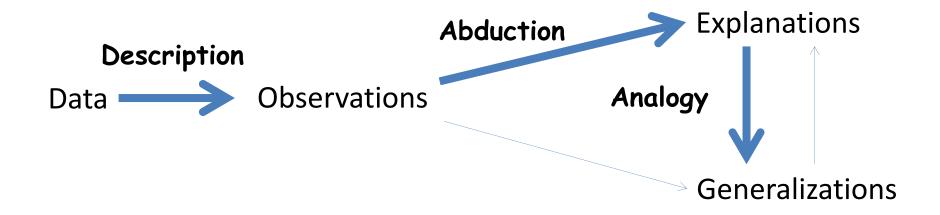
Usability of theories

When is a design theory

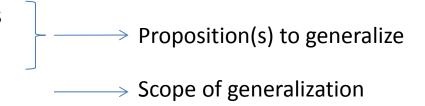
Context assumptions X Artifact design → Effects

usable by a practitioner?

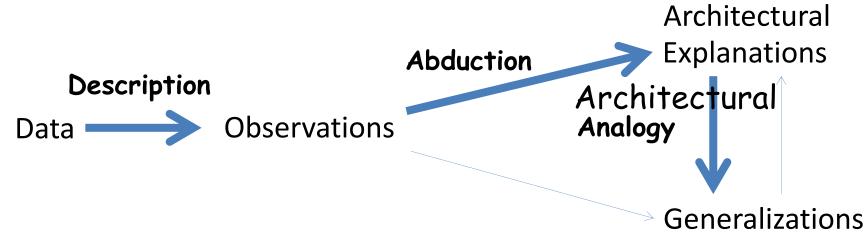
- 1. He/she is capable to **recognize** Context assumptions
- 2. and to acquire/build Artifact under constraints of practice,
- effects will indeed occur, and
- 4. He/she can **observe** this, and
- They will contribute to stakeholder goals/satisfy requirements
- Practitioner has to asses the risk that each of these fails

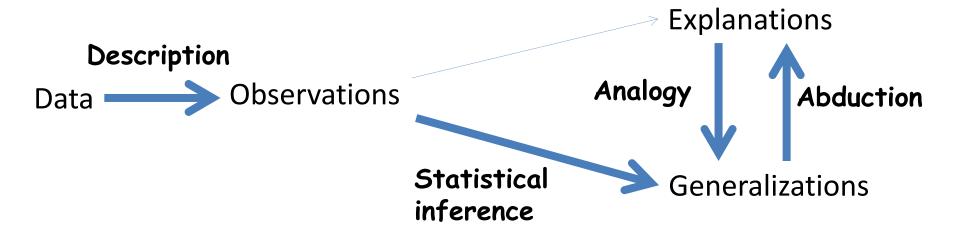

- Prechelt: the usability of theories
- Vriezekolk: the usability of theories
- Méndez: the usability of theories

Agenda

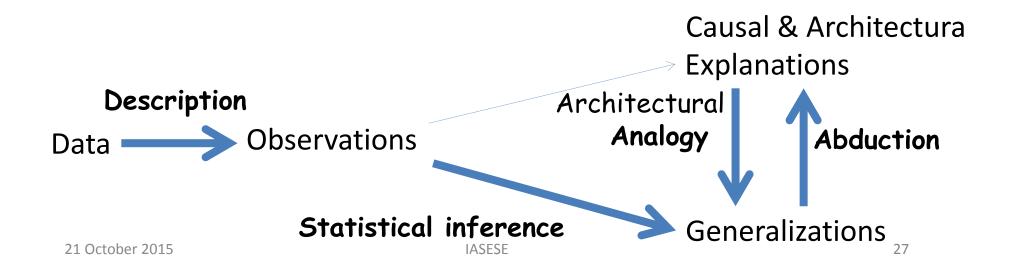

Time	Topic
09:00 - 10:30	Opening and Introduction
10:30 - 11:00	Coffee break
11:00 – 12:30	Inferring Theories from Data
12:30 – 13:30	Lunch
13:30 – 15:00	Designing Research based on Theories
15:00 – 15:30	Coffee break
15:30 – 16:30	Hands-on Working Session and Q&A
16:30 – 17:00	Wrap up (all)

Scientific Inference


Case-based inference


- Descriptive inference: Describing observations
- Abductive inference: Providing an explanation
- Analogic inference: Generalize to similar cases

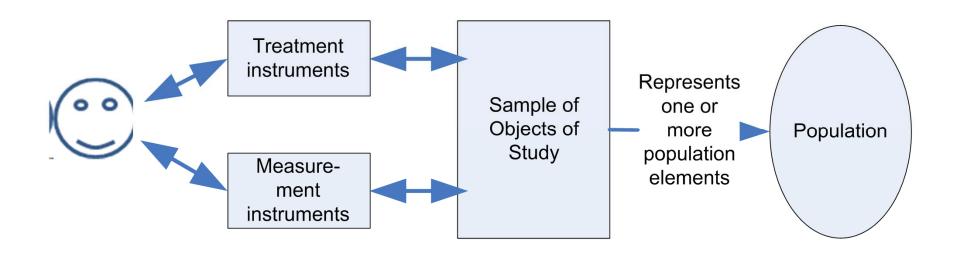
- Architectural explanation must be the basis of the analogic generalization;
- Otherwise, we engage in wishful/magical thinking
 - You have observed that some small companies did not put a customer representative on-site of an agile project;
 - you explain this as a result of tight resources (level 3);
 - you generalize by analogy that this will happen in (almost) all small companies (level 3).



Sample-based inference

- Descriptive inference: Describe sample statistics
- Statistical inference: Generalize to population parameters
- Abductive inference: Provide an explanation
- Analogic inference: Expand the scope of a theory based on similarity

- Causal explanations can be supported by sample-based designs (treatment group/control group)
- Generalization from a population, to similar populations must be based on architectural explanation
 - In an experiment with a sample of students you observe a difference between treatment group and control group;
 - By randomness you generalize to population of students
 - Your explanation: this difference is caused by the treatment (level 3);
 - In turn explained by cognitive processes of students (level 3);
 - generalized by analogy to novice software engineers (level 3).


- Vriezekolk: Inferring theories from data
- Méndez: inferring theories from data
- Prechelt: Applying/inferring theories to/from data

Agenda

Time	Topic
09:00 - 10:30	Opening and Introduction
10:30 - 11:00	Coffee break
11:00 – 12:30	Inferring Theories from Data
12:30 – 13:30	Lunch
13:30 – 15:00	Designing Research based on Theories
15:00 – 15:30	Coffee break
15:30 – 16:30	Hands-on Working Session and Q&A
16:30 – 17:00	Wrap up (all)

Research Design

The research setup

- In experiments we are interested in the effect of the treatment on the OoS
 - Requires capability to apply treatment and control
- In observational studies we are interested in the structure and dynamics of the OoS itself
 - Only weak support for causality

- Case-based designs
 - provide architectural explanations
 - generalize by architectural analogy
 - Nondeterminism across cases is not quantified
- Sample-based designs
 - Collect sample statistics
 - Infer properties of distribution over population
 - May be purely descriptive!
 - Possibly a causal explanation
 - To generalize further, need architectural explanation too
 - Nondeterminsim within the population is quantified, but not across analogous populations

Field versus lab

- If a phenomenon cannot be (re)produced in the lab, it can only be investigated in the field
- Which of the following designs can be done in a lab?

	Case-based inference	Sample-based inference
No treatment (observational study)	Observational case study	Survey
Treatment (experimental study)	Single-case mechanism experiment, Technical action research	Statistical difference- making experiment

E.g. simulation, test of individual OoS

E.g. test with client, pilot project

Treatment group / control group designs

- Vriezekolk The research setup
- Méndez: The research setup
- Prechelt: The research setup

Agenda

Time	Topic
09:00 - 10:30	Opening and Introduction
10:30 - 11:00	Coffee break
11:00 – 12:30	Inferring Theories from Data
12:30 - 13:30	Lunch
13:30 – 15:00	Designing Research based on Theories
15:00 – 15:30	Coffee break
15:30 – 16:30	Hands-on Working Session and Q&A
16:30 – 17:00	Wrap up (all)

Hands-on Working Session

Hands-on Working Session

- 1. What is your research question?
- 2. Describe a research setup to answer it
- 3. What inferences do you plan to base on this setup?

Groups of 3

- 15:30 Each person first drafts a flipchart with his/her answers for own research
- 15:45 Each group member comments on the two flipcharts of others in his/her group, in particular on:
 - Are the answers clear?
 - Are the answers defensible?
- 16:30 Each person finalizes (for now) his/her flipchart
- 16:31 Paste to the wall. See what you can learn from other designs.
- 16:45 Plenary wrap-up

Q&A

