Scheduler-related Confidentiality for
Multi-threaded Programs

Marieke Huisman and Tri Minh Ngo

University of Twente, Netherlands
Marike.Huisman@ewi.utwente.nl
tringominh@gmail.com

Abstract. Observational determinism has been proposed in the liter-
ature as a way to ensure confidentiality for multi-threaded programs.
Intuitively, a program is observationally deterministic if the behavior of
the public variables is deterministic, i.e., independent of the private vari-
ables. Several formal definitions of observational determinism exist, but
all of them have shortcomings; for example they accept insecure programs
or they reject too many innocent programs. Besides, all the proposed def-
initions of observational determinism are not scheduler-independent: A
program that is secure under one kind of scheduler might not be secure
when executed with a different scheduler. The existing definitions do
not ensure that a program behaves securely when the scheduling policy
changes.

Therefore, this paper proposes a new formalization of scheduler-specific
observational determinism. It accepts programs that are secure when
executed under a specific scheduler. Moreover, it is less restrictive on
harmless programs under a particular scheduling policy. We discuss the
properties of our definition and argue why it better approximates the
intuitive understanding of observational determinism.

Under the worst case assumption, i.e., where an attacker can choose
the scheduler, the security specification should be scheduler-independent.
Therefore, in addition, we propose a definition of scheduler-independent
observational determinism that is robust with respect to any particular
scheduling policy. Thus scheduler-independence means that if a program
is accepted by a security specification then an attacker cannot derive any
secret information from it, regardless of which scheduler is used.

1 Introduction

The success of applications, such as e.g. Internet banking and mobile code, de-
pends for a large part on the kind of security guarantees that can be given to
clients. In particular, confidentiality is important: if users have the feeling that
their private data is not sufficiently protected, they will refuse to use these ap-
plications. Using formal means to establish confidentiality of such applications
is a way to gain the trust of users. Of course, there are many challenges related
to this. Many systems for which confidentiality is important are implemented
in a multi-threaded fashion. Thus, the outcome of such programs depends on

the scheduling policy. Moreover, because of the interactions between threads
and the exchange of intermediate results, also intermediate states can be ob-
served. Therefore, to guarantee confidentiality, one should not only consider
input-output behavior, but whole execution traces.

In the literature, different definitions of confidentiality are proposed. For
sequential programs, a classical approach is to establish a technical property
called noninterference [4]. This states that a program is considered secure when-
ever the final values of low variables are independent of the initial values of high
variables'. However, this definition of noninterference only considers the input-
output behavior of a program, and as mentioned above, this is not appropriate
for multi-threaded programs.

Instead, for multi-threaded programs, we have to put restrictions on the ex-
ecution traces, i.e., the sequences of states that occur during program execution.
Confidentiality for multi-threaded programs requires that the private data is
never revealed throughout the execution trace. Different proposals exist that
attempt to generalize noninterference to a multi-threaded setting. This paper
follows the approach advocated by Roscoe [11] that the behavior that can be
observed by an attacker should be deterministic. To capture this formally, the
notion of observational determinism has been introduced. Intuitively, observa-
tional determinism expresses that a multi-threaded program is secure when its
publicly observable traces are independent of its confidential data and indepen-
dent of the scheduling policy [18]. In the literature, several formal definitions
of observational determinism are proposed [18, 7, 15], but none of these capture
exactly this intuitive definition.

The first formal definition of observational determinism was proposed by
Zdancewic and Myers [18]. It states that a program is observationally determin-
istic iff given any two initial stores s; and s, that are indistinguishable w.r.t.
the low variables, any two low location traces are equivalent upto stuttering and
prefixing, where a low location trace is the projection of a trace onto a single
low variable location. Thus, the trace of each variable is considered separately.
They motivate this choice by arguing that the relative order of two updates
can only be observed by code that contains a data race and that data races
should be avoided anyway. However, they use a non-standard definition of a
data race, saying that there is a data race whenever two accesses to the same
variable can happen in any order. In 2006, Huisman, Worah and Sunesen [7]
showed that allowing prefixing of location traces can reveal secret information,
even for sequential programs. They strengthened the definition of observational
determinism by requiring that low location traces must be stuttering equivalent.
In 2008, Terauchi showed that even in a program without data races (even in
the sense of Zdancewic and Myers), an attacker can observe the relative order
of two updates of the low variables, and derive secret information from this [15].
Therefore, he proposes another variant of observational determinism, requiring

! For simplicity, we consider a simple two-point security lattice, where the data is di-
vided into two disjoint subsets H and L, containing the variables with high (private)
and low (public) security level, respectively.

that all low store traces should be stuttering and prefixing equivalent, thus not
considering the variables independently.

However, we believe that also Terauchi’s definition is not satisfactory. This
is for several reasons: first of all, the definition still allows an accepted program
to reveal secret information, and second, it rejects too many innocent programs
because it requires the complete low store to evolve in a deterministic way.

In addition, the fact that a program is secure under a particular sched-
uler does not imply that it is secure under another scheduler. We show that
all definitions of observational determinism proposed so far are not scheduler-
independent, i.e., they accept programs that are insecure under some specific
schedulers. Therefore, in this paper, we propose two new definitions of ob-
servational determinism that overcome these shortcomings. The definition of
scheduler-specific observational determinism accepts only secure programs and
rejects fewer secure programs under a particular scheduling policy. It essentially
combines the previous definitions: it requires that for any variable, the location
traces from initial stores s; and s, are stuttering equivalent. However, it also
requires that for any low store trace starting in s;, there ezists a stuttering
equivalent low store trace starting in so. Thus, any difference in the relative or-
der of updates is coincidental, and then no information can be deduced from it.
This existential condition strongly connects to the used scheduler .

Besides, we consider it very important that the security of a given program
should not critically depend on a particular scheduling policy; otherwise secu-
rity guarantees may be destroyed by a slight change in the scheduling policy.
Therefore, based on the definition of scheduler-specific observational determin-
ism, we derive a scheduler-independent definition as well. This definition requires
that the low store traces from initial stores s; and so are stuttering equivalent.
If a program is accepted by this security specification, it is secure under any
scheduling policy.

In addition, we also discuss properties and limitations of our formalization.
Based on the properties, we argue that our definition better approximates the in-
tuitive understanding of observational determinism, which unfortunately cannot
be formalized directly.

The rest of this paper is organized as follows. After the preliminaries in
Section 2, Section 3 formally discusses the existing definitions of observational
determinism and illustrates their shortcomings on several examples. Section 4
gives our new formal definition of scheduler-specific observational determinism,
and discusses its properties and limitations. In the next section, we propose a
definition of observational determinism which is scheduler-independent. Finally,
Section 6 draws conclusions, and discusses related and future work.

2 Preliminaries

This section presents the formal background for this paper. It describes syntax
and semantics of a simple programming language, and formally defines equiva-
lence upto stuttering and prefixing.

2.1 Programs and Traces

We present a simple while-language, extended with parallel composition |. The
program syntax is not used in the formalization of the definitions, but we need
it to formulate our examples. Programs are defined as follows, where v denotes a
variable, E a side-effect free expression involving numbers, variables and binary
operators, b a Boolean expression, and € the empty (terminated) program.

C :=sgkip | v:=F | C;C | while (b)do C |
if (b) then C else C | C|C |[{C}| €

Parallel programs communicate via shared variables in a global store. For sim-
plicity, we assume that assignments and lookups are atomic, thus data races
(where two variable accesses can occur simultaneously) cannot happen, and we
can assume an interleaving semantics (cf. [5]).

Let Conf, Com, and Store denote the sets of configurations, programs, and
stores, respectively. A configuration ¢ = (C,s) € Conf consists of a program
C € Com and a store s € Store, where C denotes the program that remains to
be executed and s denotes the current program store. We use accessor functions
prog and store, respectively. A store is the current state of the program memory
by mapping a value to the location of each program variable. Let L be a set
of low variables. Given a store s, we use s|, to denote the restriction of the
store where only the variables in L are defined. We say stores s; and sg are
low-equivalent, denoted s1 =j, so, iff s1 . = 82|, i.e., the values of all variables
in L in s; and sy are the same.

The small step operational semantics of our program language is standard.
Individual transitions of the operational semantics are assumed to be atomic.
As an example, we have the following rules for parallel composition (with their
usual counterparts for Cs):

(C1,81) — (e, 81) (C1,51) — (C1,81) Ci#e

(C1] C2y81) = (C2y 1) (C1] Cay81) — (C1 | Ca,51)
We also have a special transition step for terminated programs, ensuring
that all traces are infinite. Thus, we assume that the attacker cannot detect
termination.

(e,8) = (e, s)

Given configuration (C,s), an infinite list of configurations T = cpcica...
(T : Ny — Conf) is a trace of (C,s), denoted (C,s) | T, iff ¢y = (C,s) and
Vi € Ng. ¢; = ¢;y1. Let Trace((C, s)) denote the set of traces resulting from the
executions of a program C' from a store s, i.e., Trace({C,s)) = {T|(C,s) | T}.
Let Trace*({C, s)) denote the set of all finite prefixes of traces in Trace({C,s)),
i.e., Trace*({(C,s)) = {m|lmr CT AT € Trace({C, s))} where C denotes the prefix
relation on traces. Let last(m) denote the last state of a finite trace .

Let T}, for i € N, denote the i*" element in the trace, i.e., T; = ¢;. We use
T«; to denote the prefir of T upto the index i, i.e., Tw; = ToT7 ..., T;. When
appropriate, this is implicitly lifted to an infinite trace stuttering in T; forever.

Further, we use T'|, to denote the projection of a trace to a store containing only
the variables in L. Formally: T'|, = map(_|, o store)(T'). When L is a singleton
set {l}, we simply write T'|,. Finally, in the examples below, when writing an
infinite trace that stutters forever from state T; onwards, we just write this as a
finite trace T = [T07 Tl, N 7Ti717 Tz]

2.2 Stuttering and Prefixing Equivalences

The key ingredient in the different definitions of observational determinism is
the equivalence of traces upto stuttering or upto stuttering and prefixing. For
completeness, we give the formal definitions of these equivalences.

The definition of stuttering equivalence is based on [10, 7]. It uses an auxiliary
notion of stuttering equivalence upto indexes i and j.

Definition 1 (Stuttering equivalence). Traces T and T’ are stuttering equiv-
alent upto ¢ and j, written T ~; ; T', iff we can partition Tw; and T «; into
n blocks such that elements in the p'" block of T; are equal to each other and
also equal to elements in the p'™ block of T'«; (for all p < n). Corresponding
blocks may have different lengths.

Formally, T ~; ; T" iff there are sequences 0 = ko < k1 < ky < ... <k, =
i+1land0=go < g1 < g2 <...<gn=7+1 such that for each 0 < p < n
holds:

Ty, =Thps1 = =Thp 1 =T, =Ty 11 =-=T,

p+1— = Lgpp—1-

T and T' are stuttering equivalent, denoted T ~ T", iff
Vi, 3j. T iy TV AVG. 3i T iy T

Stuttering equivalence defines an equivalence relation, i.e., it is reflexive,
symmetric and transitive.

Equivalence upto stuttering and prefixing is defined as one trace being stut-
tering equivalent to a prefix of the other trace.

Definition 2 (Prefixing and stuttering equivalence). Traces T and T’ are
prefixing and stuttering equivalent, written T ~, T', iff 3.7 ~ T’ «;VT; ~ T".

2.3 Scheduler

A multi-threaded program executes threads from a set of live threads. During
the execution, a scheduling policy § repeatedly decides probabilistically which
thread shall be picked to proceed next with the computation. Different scheduling
policies differ in how they make this decision, e.g., a uniform scheduler chooses
threads randomly and hence all possible interleavings of threads are considered; a
round-robin scheduler assigns equal time slices to each thread in circular order.
They also differ in the information on which they base the decision, e.g., a
uniform scheduler needs to know the number of current live threads while a

round-robin scheduler, beyond knowing this information, also remembers their
previous scheduling choices.

To cover various kinds of schedulers, we let scheduler be history-dependent,
i.e., in addition to the current system state, scheduler’s behavior also depends
on the trace leading to that state. Let C' be a program and s be an initial store
of C. Given a finite trace m € Trace*({C,s)), a scheduler § which schedules the
transition last(mw) — ¢ with probability §(7)(c) is formally defined as follows.

Definition 3. A scheduler § for C starting at s is a function,
0 : Trace*((C,s)) — D(Conf),
such that for all finite traces m € Trace*((C, s)), if §(mw)(c) > 0 then last(m) — c.

Where D(X) denotes the set of all probability distributions over X. A prob-
ability distribution over a set X is a function p that assigns a probability in [0, 1]
to each element of X, i.e., u € X — [0, 1], such that the sum of the probabilities
of all elements is 1, i.e., > oy pu(z) = 1. If X = {20, 21,...}, we often write the
probability distribution p as,

ﬂ(x)mGX = {xO = ,LL(Z'o),Iﬂl — ,LL((L'l), o '}a

or
w(xo) if x=xg

(@) gex = { w@1) ifz=a

Furthermore, for ¢ — {¢’ — p(c')}, we simply write ¢ —, ¢’ when u is clear
from the context and p(c’) = p. This expression denotes that the probability of
a transition from c to ¢’ is p,

This model of scheduler is general enough to describe any scheduler that uses
the full history of computation to generate probabilities for picking the threads.
In the following, we formally describe the behaviors of some popular scheduling
policies, such as uniform scheduler and round robin scheduler.

From the program of the last configuration last(n), it is possible to derive
the number of current live threads. We store this number in a scheduler variable
nthr. We also assume that active threads are implicitly numbered consecutively
by their positions in the set of live threads, e.g., from 0 to (nthr — 1).

Given last(m) = (Co | C1 | -+ - | Cnthr—1,8), the uniform scheduler dyy; () is
simply,
L ife={(Col-[C| | Cotnroi,
um(m)(€) = pus(e) = § w1 €= G0l LG G, o)
0 otherwise
for any i € {0...nthr —1}. This means that last(r) = _1_(Co |-~ [Ci |-~ |

Chthr—1, 8), in which the thread C; is picked and changed to C..

Let the scheduler variables thr,,. denote the position of the executed thread
in last(m) and nstp denote how many consecutive steps this thread has been
picked. A round-robin scheduler which chooses the same thread for m steps
before switching to the next thread can be defined as follows,

1. nstp < m and the thread at position thry,.. does not terminate,

6R0undr(7‘-)(c) - MRoundr(c) -
{1 ife=(Col | Chy |+ | Cotnr—t,s)

0 otherwise
2. nstp < m and the thread at position thrp,. terminates, or nstp = m

6R0Undr(ﬂ—) (C) = ;U’Roundr(c) =

1 ife=(Col---| Czthrme+1) mod nthr |~ | Cnthr—1,)
0 otherwise

In this report, if the scheduler is not mentioned explicitly, a uniform scheduler
is assumed.

Because a program is always executed under the control of a specific schedul-
ing policy §, we replace the notation ¢; —, ¢; by ¢; =5, ¢j, which means that
the probability of a transition from ¢; to c¢; under the scheduling policy ¢ is p.
We can write ¢; —, c¢; whenever ¢ is clear from the context. We use notation
C1 |p C2 to denote that the probability of the next transition corresponding to
a transition of C is p. We just simply write C; | C2 when p = 1/2.

We parameterize (C,s) |} T by (C,s) |5 T. We write (C,s) | T when a
uniform scheduler is used. Let Traces({C, s)) denote the set of traces resulting
from the executions of a program C' from a store s under the scheduling policy 4.
Let Trace;((C, s)) denote the set of all finite prefixes of traces in Traces((C, s)).
Notice that Traces((C,s)) C Trace((C, s)).

3 Observational Determinism in the Literature

This section presents the existing definitions of observational determinism for-
mally, and discusses their shortcomings. The next two sections present our im-
proved definitions.

3.1 Existing Definitions of Observational Determinism

Given any two low equivalent initial stores, s; =y, s2, a program C' is observa-
tionally deterministic, according to

— Zdancewic and Myers [18]: iff any two low location traces are equivalent upto
stuttering and prefixing.

v, T <C, 81> T A <0782> VT = Ve L.T|l ~p T/|l.

— Huisman et al. [7]: iff any two low location traces are equivalent upto stut-
tering.

VT, T (C,s1) U T A(Cys2) U T = VIEL.T), ~T',.

— Terauchi [15]: iff any two low store traces are equivalent upto stuttering and
prefixing.

VT,T/. <C,81> U T A <C,82> “T/ = T‘L ~p T’|L.

Zdancewic and Myers, followed by Terauchi, allow equivalence upto prefixing.
This has as an advantage that it removes the obligation to consider program ter-
mination. The definition of Huisman et al. is stronger than the one of Zdancewic
and Myers, as it only allows stuttering equivalence. Both definitions of Zdancewic
and Myers, and Huisman et al. only specify equivalence of traces on each single
low location separately, they do not consider the relative order of variable up-
dates, while Terauchi does. In particular, Terauchi’s definition is stronger than
Zdancewic and Myers’ definition as it requires equivalence upto stuttering and
prefixing on low store traces instead of on low location traces.

3.2 Shortcomings of These Definitions

Unfortunately, all these definitions have shortcomings. We believe that allowing
prefixing can reveal secret information. Further, as observed by Terauchi, attack-
ers can derive secret information from the relative order of updates. However,
the requirement that traces have to agree on updates to all the low locations as
a whole, as in Terauchi’s definition, is overly restrictive. Besides, all these defini-
tions are not scheduler-independent: an accepted program can be insecure under
a specific scheduler (as they are all expressed over a nondeterministic scheduler
only). These shortcomings are illustrated below by several examples. In all ex-
amples, we assume the observational model is that attackers can access the full
code of the program, observe the traces of public data, and even possibly limit
the set of possible program traces by choosing an appropriate scheduler.

How prefixing equivalences can reveal information Consider the following
program (from [7]). Suppose h € H and 11, 12 € L.

Ezxzample 1.

11:=0; 12 :=0;
while(h>0)do {11:=11+1; h:=h—1};

A low store trace 1ls.2d'e_no1t’ed by a sequence of low stores, containing the values of
the low variables in order, i.e., (11, 12). If we execute this program from several
low equivalent stores for different values of h, we obtain the following low store
traces.
Caseh=1:T, =[(
Caseh=2:T, =[(
Caseh=3:T, =[(
Caseh=4:T, =[(

As the low location traces of this program are stuttering and prefixing equivalent,
this program is observationally deterministic according to Zdancewic and Myers.
However, this program is insecure because the final value of 11 reveals the initial
value of h (attackers can access the full code of the program). This illustrates
that allowing equivalence upto prefixing can reveal secret information.

Terauchi strengthens the definition of Zdancewic and Myers by requiring that
the traces need to agree on the low stores as a whole, instead of just individual
locations. Therefore, Example 1 is rejected by Terauchi. However, also with
Terauchi’s definition, partial information still can be leaked because of prefixing,
as illustrated by the following example.

Ezample 2.

11 :=0;12 := 0;
{if (11 ==1) then (12:=h) else skip}|11:=1

where h is a boolean.

Let C7 and C5 denote the left and right operands of the parallel composition
operator. If we execute this program, we obtain store traces of the following
shapes.

] execute Cy first
, (1,0)] execute Cs first
] execute C first

Caseh=0:T, = H
Caseh=1:T, = &

Thus, when h = 1, we can terminate in a state where 12 = 1. However, when
h = 0, we can only terminate in a state where 12 = 0. The low store traces
generated by this program are equivalent upto stuttering and prefixing. Thus,
according to the definitions of Zdancewic and Myers, and Terauchi, this program
is observationally deterministic. However, this program is not secure by the fact
that when the value of 12 changes, an attacker can conclude that surely h = 1.

How the relative order of updates can reveal information Zdancewic
and Myers (followed by Huisman et al.) consider each low variable location
independently because they argue that internal observations of the two variable
locations can only observe the relative order of their updates by using code
that contains races. Zdancewic and Myers define a race to happen when two
accesses to the same location are unordered. As we mentioned before, this is a
non-standard definition of data race, and in addition, this argument about the
relative order of updates is not correct. Consider the following program (from
Terauchi [15]).

Ezample 3.
11 :=0;12 := 0;
if (h > 0) then {11:=1; 12:=1}
else {12:=1;11:=1}

This program is sequential, and thus does not contain any races. However, an
attacker can still observe the relative order of two updates. To illustrate this, if
we execute this program, we get executions of the following shapes.

Caseh>0:T, =((0,0),(1,0),(1,1)]
Caseh < 0: T, = [(0,0),(0,1), (1,1)]

Attackers can learn information about h by observing whether 11 is updated
before 12. Thus this program is insecure. This shows that it is not sufficient
to require that only the low location traces are deterministic for a program to
be secure. Terauchi solves this by strengthening the definition of observational
determinism to low store traces, but this results in an overly restrictive definition,
as illustrated next.

How too strong conditions reject too many programs The restrictiveness
of Terauchi’s definition arises from the fact that no variation in the relative order
of updates is allowed at all. This rejects many harmless programs, such as for
example,

Ezample 4.
11:=0; 12 :=0;
11:=3]12:=4

Let Cp be “11 := 3”7, and Cy “12 := 4”. If we execute this program, we get traces
of the following shapes.

T [(0,0),(3,0), (3,4)] execute Cy first
e = { [(0,0),(0,4), (3,4)] execute Cy first

L

Thus this program is rejected by Terauchi because not all low store traces are
equivalent upto stuttering and prefixing.

How scheduling policies can be exploited by attackers The security of a
program depends strongly on the choice of scheduler. In all examples given so far,
a nondeterministic scheduler is assumed. However, the scheduler may vary from
execution to execution. Under a specific scheduling policy, some traces cannot
occur. From the limited set of possible traces, sometimes secret information can
be derived. This can be exploited by an attacker that can choose the scheduler.
This sort of attack is often called a refinement attack [13, 2], because the choice
of scheduling policy refines the set of possible program traces. Consider the
following example,

Example 5.

1:=0;
{{if (h > 0) then sleep(n)}; 1:= 1} [1:=0

where sleep(n) abbreviates n consecutive skip commands.

10

Let C7 and C5 denote the left and right operands of the parallel composition
operator. This program is accepted by the definitions of Zdancewic and Myers,
and Terauchi. However, suppose we execute this program using a round-robin
scheduling policy, i.e., it picks a thread and then proceeds to run that thread
for m steps, before giving control to the next thread. If m < n we obtain store
traces of the following shapes.

.) _ [1(0), (1), (0)] execute C first
Caseh<0:T), = { [(0), (0), (1)] execute Cq first

Caseh > 0:

T o— { [(0), (0),...,(0),(1)] execute C; first
o [(0), (0),...,(0),(1)] execute Cy first

Thus, with this scheduling policy, when h < 0, we can terminate in a state
where 1 = 0 or 1 = 1. However, when h > 0, we can only terminate in a
state where 1 = 1 because the round-robin scheduler will not let C'; finish the
sleep command before giving the turn to Cy. Thus, the final value of 1 reveals
whether h is positive or not. This program shows that Zdancewic and Myers,
and Terauchi’s definitions are not scheduler-independent.

In this example, there is an encoding of a timing leak into an implicit flow.
Hence, this attack is also called internal observable timing attack [18,14,12]. In a
multi-threaded program, information can be derived from observing the internal
timing of actions. Thus, an attacker does not need access to a clock to learn
information about the private data, which makes this attack highly dangerous.
Often a timing leak does not manifest itself when a scheduler is completely
nondeterministic, but only when a more deterministic scheduling policy is used.

Notice that under a nondeterministic scheduler, the initial value of h cannot
be derived. However, it is actually desirable that this program is rejected because
1 is not deterministic. This program is similar to the program “1:=0]1:=1".
In the literature it has been shown how nondeterminism of a low variable can
be exploited to make other programs reveal information. Suppose one of the
two assignments falls on the same cache line as a piece of data used by another
apparently secure program, and access to this data is conditioned on confidential
information. Then this assignment is more likely to happen last, and in this way
it can be used to derive information about the confidential data, see [18, 16].

However, the program “11 := 3| 12 := 4” in Example 4 is considered secure
because it writes to two different locations.

Due to the fact that an attacker knows the full code of the program, when
he chooses an appropriate scheduler, he can limit the set of outputs, and then
derive secret information. The following example shows that the definition of
Huisman et al. is also not scheduler-independent.

Ezample 6.

11:=0;12:=0;
{if (b > 0) then 11:=1else 12:=1}[{11:=1;12:=1}|{12:= 1;11:= 1}

11

This program is secure under a nondeterministic scheduler. An attacker can not
derive secret information from the observation of public variables because the
changes of each low location does not depend on the high variable h. In addition,
secret information cannot be derived from the observation of relative order of
updates because whether 11 or 12 is updated first does not depend on the value
of h. However, when an attacker chooses a scheduler which always executes the
leftmost thread first, he gets only two different kinds of traces, corresponding to
the values of h.

Caseh >0:T, =[(0,0),(1,0),(1,1),...]

Case h <0:7, =[(0,0),(0,1),(1,1),...]

In this case, this program is still accepted by the definitions of Zdancewic
and Myers, and Huisman et al. but this program is not secure anymore. The
order of updates helps the attacker derive information about h.

To conclude, the examples above show that all the existing definitions of
observational determinism allow programs to reveal private data because they
allow equivalence upto prefixing, as in the definitions of Zdancewic and Myers,
and Terauchi, or do not consider the relative order of updates, as in the defi-
nitions of Zdancewic and Myers, and Huisman et al. The definition of Terauchi
is also overly restrictive, rejecting many secure programs. Moreover, all these
definitions are not scheduler-independent. They accept insecure programs under
some scheduling policies. This is our motivation to propose a new definition of
scheduler-specific observational determinism. This definition on one hand only
accepts secure programs, and on the other hand is less restrictive on harmless
programs w.r.t. a particular scheduler. Based on this definition, we derive a
scheduler-independent definition which is robust with respect to any scheduler.

4 Scheduler-specific Observational Determinism

This section defines observational determinism w.r.t. a particular scheduler. The
next section will then discuss how this definition is used to defined scheduler-
independent observational determinism. To overcome the problems discussed
above, we adapt the existing definitions. We say that a program is observationally
deterministic under a particular scheduler if any two low location traces are
stuttering equivalent and for any low store trace produced from one initial store,
there exists a low store trace produced from the other initial low equivalent store
such that these two traces are stuttering equivalent.

Given a scheduling policy o, scheduler-specific observational determinism is
defined formally as follows.

Definition 4 (o-specific observational determinism).
A program C' is o-specific observationally deterministic w.r.t. L iff for all
initial low equivalent stores s1,S2, s1 =L S2, the following conditions are satis-

fied.
VI, T'(C,51) bo TA(C,52) bo T = Vi€ LT |, ~T",.
-VTA(C,51) o T3T'(C, 52) Vo T' NT |, ~ T,

12

We require that low location traces evolve deterministically, and in addi-
tion, there always exists a matching relative order of updates. Notice that this
definition does not allow information to be leaked because of prefixing equiv-
alence. Moreover, it releases the requirement that all low store traces have to
agree on the relative order of updates. Our definition differs from the previous
definitions of observational determinism in one important aspect: the existential
condition. This condition relates strongly to the used scheduling policy because
traces model possible runs of a program under that scheduling policy and refine-
ments of the set of traces, when the scheduling policy changes, cannot guarantee
this condition.

4.1 Properties of Scheduler-specific Observational Determinism

To illustrate that Definition 4 captures the intended meaning of observational
determinism best, we discuss different properties of the definition.

Property 1 (Deterministic low location traces). If a program is accepted by Def-
inition 4, no secret information can be derived from the publicly observable
location traces. It is required that the low locations individually evolve deter-
ministically, and thus, the values of private variables may not affect the values of
low variables. Therefore, an attacker cannot derive any secret information from
the individual low location traces.

Property 2 (Deterministic relative order of updates). If a program is accepted
by Definition 4, no information can be derived from the relative order of updates
because there is always a matching low store trace.

Properties 1 and 2 prevent an attacker from deriving secret information from the
observation of the public location traces and the relative order of updates. Thus,
all insecure programs in Examples 1,2, 3, and 5 are rejected by our definition
under the nondeterministic scheduling policy.

The program in Example 6 is secure under a nondeterministic scheduler and
it is accepted by our definition instantiated accordingly. However, it is insecure
under the scheduler which always chooses the leftmost thread to execute first;
and hence, it is rejected if we instantiate the definition with this scheduler.
Thus, given a scheduling policy o, if a program is accepted by our definition,
instantiated for this scheduler, we can conclude that the program is secure under
the scheduling policy o.

Property 3 (Less restrictive on harmless programs). Compared with Terauchi’s
definition, Definition 4 accepts more innocent programs.

For example, Example 4, which is secure, is accepted by our definition instan-
tiated with a nondeterministic scheduler, but rejected by Terauchi. Similarly,
Example 6 is also accepted by our definition instantiated with a nondetermin-
istic scheduler, but rejected by Terauchi. This illustrates that our definition is
more permissive: it allows some freedom in the order of individual updates, as
long as a matching execution exists.

13

Even though the properties above illustrate that Definition 4 captures obser-
vational determinism well, there are still some restrictions. In particular, Defi-
nition 4 cannot distinguish between a nondeterministic change of a low location
variable (not depending on private data) and a change that does depend on
private data. For example, the program “l1:=0]1:=1" will be rejected by
Definition 4 under a nondeterministic scheduler. However, notice again that it
is actually desirable that this program is rejected.

Thus, we have the following property for Definition 4

Property 4 (All low non-deterministic programs are rejected).

However, notice that this does not mean that Example 4, which is considered
secure, is rejected. Notice further that the nondeterminism property also applies
to all earlier definitions of observational determinism.

5 Scheduler-independent Observational Determinism

The next question is whether there exists a scheduling policy o and a security
specification such that if a program is accepted by this security specification, it
is secure under any scheduling policy. This motivates the notion of scheduler-
independent observational determinism.

Execution of a program under a nondeterministic scheduler means that we
consider all possible interleavings of threads. Any scheduling policy o is a re-
finement of a nondeterministic scheduler; thus the set of possible program traces
under the scheduling policy o is a subset of the set of possible program traces un-
der a nondeterministic scheduler. If we quantify Definition 4 over all schedulers,
it requires that each low store trace produced from one initial store under a non-
deterministic scheduler must be matched with every low store trace produced
from the other initial store. For example, the program “1 := 3 | h:= 5 | skip” is
secure, regardless of which scheduler is used.

Therefore, the formal definition of scheduler-independent observational de-
terminism can be stated as follows,

Definition 5 (Scheduler-independent observational determinism).

A program C' is scheduler-independent observationally deterministic w.r.t. L
iff for all initial low equivalent stores s1,S2, s1 =y, S2, the following condition is
satisfied.

VI, T (Cys)) U T A(Cyso) U T = T, ~ T,

The following theorem states that if a program is accepted by Definition 5, it is
also o-specific observationally deterministic under any scheduling policy o.

Theorem 1. For any two initial low equivalent stores, if any two store traces
obtained from the execution of a program under a nondeterministic scheduler are
stuttering equivalent, this program is secure under any scheduling policy.

14

Proof. Any scheduling policy is a refinement of a nondeterministic scheduler,
and by Definition 5, any two low store traces are stuttering equivalent. There-
fore, any two low location traces are stuttering equivalent and any low store
trace can be matched (because all low store traces are stuttering equivalent).
Thus, all conditions of Definition 4 are respected and the program is o-specific
observationally deterministic.

6 Conclusion

This paper presents a new formal definition of scheduler-specific observational
determinism that approximates the intuitive definition of observational observa-
tion well. If a program is accepted under a specific scheduler, no secret informa-
tion can be derived from the publicly observable location traces or the relative
order of updates. We also argue that our definition accepts a large class of secure
programs.

In the worst case, i.e., in the case of refinement attacks where an attacker can
choose a scheduler, the security specification should be scheduler-independent.
Therefore, this paper also proposes a definition of scheduler-independent obser-
vational determinism. This is derived from the scheduler-specific definition by
quantifying over all possible security policies. If a program is accepted by the
scheduler-independent security condition, no private information can be derived
from it, regardless of which scheduler is used.

6.1 Related Work

The idea of observational determinism originates from the notion of noninterfer-
ence, which only considers input and output of programs. We refer to [13, 7] for
a more detailed description of noninterference, its verification, and a discussion
why it is not appropriate for multi-threaded programs.

Roscoe [11] was the first to state the importance of determinism to ensure
secure information flow of multi-threaded programs. The work of Zdancewic
and Myers, Huisman et al., and Terauchi [18,7, 15] has been mentioned above.
They all propose different formal definitions of observational determinism, with
a corresponding verification method.

Notice that observational determinism is a possibilistic secure information
flow property: it only considers the nondeterminism that is possible in an exe-
cution, but it does not consider the probability that an execution will happen.
However, when a scheduler’s behavior is probabilistic, some threads might be ex-
ecuted more often than others, which opens up the possibility of a probabilistic
attack. In order to cope with such attacks, the theory of probabilistic nonin-
terference has been developed [17,14]. In particular, Sabelfeld and Sands [14]
develop a probabilistic noninterference criterion, based on a partial probabilistic
low bisimulation which is an adaptation of Larsen and Skou’s notion of proba-
bilistic bisimulation [9].

15

Finally, Russo and Sabelfeld take a different approach to ensure security of
a multi-threaded program. They propose to restrict the allowed interactions be-
tween threads and scheduler [12]. This allows them to present a compositional
security type system which guarantees confidentiality for a wide class of sched-
ulers. However, the proposed security specification is similar to noninterference,
just considering input and output of a program.

6.2 Future Work

As future work, we will develop a way to verify adherence to the new definition
of observational determinism. A common way to do this for information flow
properties is to use a type system. However, such a type-based approach is in-
sensitive to control flow, and rejects many secure programs. Therefore, recently
self-composition has been advocated as a way to transform the verification of
information-flow properties into a standard program verification problem [3,1].
We will exploit this idea in a similar way as in our earlier work [7, 6] and trans-
late the verification problem into a model checking problem over a model that
executes the program to be verified twice, in parallel with itself. We believe that
our definition can be characterized by LTL [8] and CTL logics [8]. For both
logics, good model checkers exist that we can use to verify the information flow
property. We will encode the characterizations of observational determinism in
one (or more) model checkers.

In a separate line of work, we will also study how probabilism can be used to
guarantee secure information flow. In particular, we plan to study whether the
definition of probabilistic noninterference of Sabelfeld and Sands [14] is satisfac-
tory. If it is not, then we will propose a new definition of probabilistic noninter-
ference and also a method to verify it on a multi-threaded program.

Acknowledgment

The authors would like to thank Jaco van de Pol for his useful comments and
the anonymous reviewers for useful feedback of an earlier version of this paper.
Our work is supported by the Netherlands Organization for Scientific Research
(NWO).

References

1. G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-composition.
In R. Foccardi, editor, Computer Security Foundations Workshop, pages 100-114.
IEEE Press, 2004.

2. G. Barthe and L.P. Nieto. Formally verifying information flow type systems for
concurrent and thread systems. In Proceedings of the 2004 ACM workshop on
Formal methods in security engineering, FMSE ’04, pages 13—22, New York, NY,
USA, 2004. ACM.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Darvas, R. Hahnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Security in
Pervasive Computing, volume 3450 of Lecture Notes in Computer Science, pages
193-209. Springer-Verlag, 2005.

J. Goguen and J. Meseguer. Security policies and security models. In IEEE Sym-
posium on Security and Privacy, pages 11-22. IEEE Press, 1982.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification, third
edition. Addison Wesley, 2005.

M. Huisman and H.-C. Blondeel. Model-checking secure information flow for multi-
threaded programs. In Theory of Security and Applications (Tosca), Lecture Notes
in Computer Science. Springer-Verlag, 2011. To appear.

M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterization of ob-
servation determinism. In Computer Security Foundations Workshop. IEEE Com-
puter Society, 2006.

M. Huth and M. Ryan. Logic in computer science: modeling and reasoning about
the system. Cambridge University Press, second edition, 2004.

K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Informa-
tion and Computation, volume 94, pages 1-28, 1992.

D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-
out the next-time operator. In Inf. Processing Letters, volume 63, pages 243-246,
1997.

A.W. Roscoe. Csp and determinism in security modeling. In IEEE Symposium on
Security and Privacy, page 114. IEEE Computer Society, 1995.

A. Russo and A. Sabelfeld. Security interaction between threads and the scheduler.
In Computer Security Foundations Symposium, pages 177-189, 2006.

A. Sabelfeld and A. Myers. Language-based information flow security. In IEEE
Journal on Selected Areas in Communications, volume 21, pages 5—19, 2003.

A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Computer Security Foundations Workshop, pages 200-214, 2000.

T. Terauchi. A type system for observational determinism. In Computer Science
Foundations, 2008.

T.V. Vleck. Timing channels. In Poster session at IEEE TCSP conference, 1990.
Available via http://www.multicians.org/timing-chn.html.

D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
In Journal of Computer Security, volume 7, pages 231-253, 1999.

S. Zdancewic and A.C. Myers. Observational determinism for concurrent program
security. In Computer Security Foundations Workshop, pages 29-43. IEEE Press,
June 2003.

17

