
Specification and Verification of GPGPU
Programs using Permission-Based Separation

Logic?

Marieke Huisman and Matej Mihelčić

University of Twente, The Netherlands,
{m.huisman,m.mihelcic}@utwente.nl

Abstract. Graphics Processing Units (GPUs) are increasingly used for
general-purpose applications because of their low price, energy efficiency
and enormous computing power. Considering the importance of GPU
applications, it is vital that the behaviour of GPU programs can be
specified and proven correct formally. This paper presents our ideas how
to verify GPU programs written in OpenCL, a platform-independent
low-level programming language. Our verification approach is modular,
based on permission-based separation logic. We first present the main
ingredients of our logic, and then illustrate its use on several example
kernels. We show in particular how the logic is used to prove data-race-
freedom and functional correctness of GPU applications.

1 Introduction

Graphics processing units (GPUs) have initially been designed to support com-
puter graphics. Their specific architecture allows rapid memory manipulation,
provides high processing power and massive parallelism, which allows for effi-
cient solving of typical graphics-related tasks. However, such architectures are
also suitable for many other programming tasks, leading to the development of
the area of GPGPU (General Purpose GPU) programming. Until 2006. GPGPU
programming was mainly done in CUDA [9], a proprietary GPU programming
language from NVIDIA. However, recently a new platform-independent, low-
level programming language standard for GPGPU programming, OpenCL [10],
has been developed. As a result, GPUs are now used in many different fields,
including media processing [5], medical imaging [15] and eye-tracking [12].

Despite the platform-independence, writing OpenCL programs still requires
working on a relatively low level, and optimizing applications for the actual
type of device used. Given the importance, range and increasing complexity of
GPGPU applications today, formal techniques to reason about correctness of
GPGPU programs are thus necessary. This paper presents a verification tech-
nique for GPGPU programs based on permission-based separation logic.

Before discussing our verification approach, we first briefly discuss the main
characteristics of the GPU architecture (for more details, we refer to the OpenCL

? This work is supported by the EU FP7 STREP project CARP (project nr. 287767).

II

specification [10]). A GPU runs hundreds of threads simultaneously. All threads
within the same kernel execute the same instruction, but on different data:
the single instruction multiple data (SIMD) execution model. GPU kernels are
invoked by a host program running on a CPU. Threads are logically grouped
into work groups and have local and global identifiers, where global identifier
are computed from the local identifier and the work group characteristics. The
main means of synchronisation within a kernel are barriers: a thread blocks at
the barrier until all other threads have also reached this barrier. The memory
hierarchy is quite complex. Each thread has access to four distinct memory
regions: global, local, constant and private memory. Private memory is local to a
single thread, local memory is shared between different threads in a work group,
and global memory is accessible by all threads in a kernel, and by the host
program. Constant memory is a dedicated part of global memory, allocated and
initialized by the host, remaining constant throughout the execution of a kernel.

As mentioned above, this paper discusses how we verify GPGPU kernels.
Our main inspiration is the use of permission-based separation logic to reason
about multithreaded programs [3, 6]. Key ingredient is to annotate a program
with read and write permissions. A location can only be accessed or updated if a
thread holds the appropriate permission for this location. Program annotations
are framed by permissions: a functional property can only be specified and veri-
fied if a thread holds the appropriate permissions. Permissions can be split and
combined, to make them change between read and write permissions. Soundness
of the logic guarantees that at most one thread at the time can hold a write
permission, while multiple threads can simultaneously hold a read permission to
a location. Thus, if a thread holds a permission on a location, the value of this
location is stable, i.e., it cannot be changed by another thread. Soundness of the
logic also ensures that a program can only be verified if it is free of data races.

To adapt this idea to the GPGPU setting, for each kernel we specify all the
permissions that are needed to execute the kernel. Upon invocation of the kernel,
these permissions are transferred from the host code to the kernel. Within the
kernel, the available permissions are distributed over the threads. Every time
a barrier is reached, a barrier specification specifies how the permissions are
redistributed over the threads (similar to the barrier specifications of Hobor et
al. [8]). The barrier specification also specifies functional pre- and postconditions
for the barrier. Essentially this specifies how knowledge about the global state
upon reaching the barrier is spread over the different threads.

The remainder of this paper is organised as follows. Section 2 presents more
details about our verification approach; Section 3 presents several verification
examples, and Section 4 discusses conclusions, related work and future work.

2 Permission-based Separation Logic for GPGPU Kernels

This section describes our approach to verify GPGPU kernels. We first give a
short overview how permission-based separation logic is used to reason about
concurrent programs, and then show how we adapt it to OpenCL kernels.

III

2.1 Permission-based Separation Logic

Separation logic [14] is originally developed as an extension of Hoare logic [7] to
enable reasoning about programs with pointers, as it allows to reason explicitly
about the heap. Soon it was realised that this setting was also convenient to rea-
son modularly about concurrent programs [13]: if two threads work on disjoint
parts of the heap, they do not interfere with each other.

However, classical separation logic is not permissive enough to reason about
concurrent programs: it requires use of mutual exclusion mechanisms for all
shared locations, and it forbids simultaneous reads to shared locations. To over-
come this, Bornat et al. [3] extended separation logic with permissions. Permis-
sions, initially introduced by Boyland [4], contain numerical fractions denoting
access rights to a shared location. A full permission 1 denotes a write permission,
whereas any fraction in the interval (0, 1) denotes a read permission. Permissions
can be split and combined, thus a write permission can be split into multiple read
permissions, and sufficient read permission can be joined into a write permission.

Assertions in separation logic are expressed as first order logic formulas,
extended with three special operators: the points-to predicate, combined with
a permission, the separating conjunction (*) and the separating implication (or
magic wand, -*). The syntax of formulas F is formally defined as follows:

lop ∈ {*, -*, &, |} qt ∈ {∃,∀} π ∈ (0, 1]
F ::= e | PointsTo(x, π, v) | F lop F | (qt T α)(F)

In classical Hoare logic, assertions are properties over the state. In separation
logic, the state is explicitly divided over different heaps (mappings of memory
locations to values). Intuitively, an assertion PointsTo(x, π, v) (or x 7 π−−→ v in
traditional notation) holds for a thread t if the variable x points to a location
that contains the value v, and in addition, the thread t has permission π to ac-
cess this location. For convenience, we sometimes use Perm(x, π) to abbreviate
∃v.PointsTo(x, π, v). We denote expressions with e. Expressions are built from
variables, values, logical and arithmetical operators applied to variables and val-
ues. A formula φ1 *φ2 holds if a heap can be split in two disjoint heaps such that

the first heap satisfies φ1, while the second heap satisfies φ2. We use * v∈V F (v)
as the universal separating conjunction quantifier. A formula φ1 -* φ2 holds for
any heap that has the following property: if the heap is extended with a disjoint
heap that satisfies φ1, then the combined heap satisfies φ2. The separating im-
plication is sometimes also read as a trade operation: the resources specified by
φ1 are exchanged for the resources specified by φ2.

2.2 Verification of GPGPU Kernels

To adapt permission-based separation logic for kernels, we need to distinguish
explicitly between properties over global and local memory. Thus, every formula
over permissions can be separated into formulas over global and local memory.
Given a formula over permissions F , we use F|glob and F|loc to denote the sub-
formulae with the permissions over global and local memory, respectively. With

IV

our logic we are able to prove that a kernel does not have data races, and that
it respects certain functional correctness properties.

Intended kernel behaviour is specified by the following constructs:

– The kernel specification is a triple (Kres ,Kpre ,Kpost). Formula Kres specifies
all resources in global memory that are passed from the host program to the
kernel. Further, the kernel specification specifies functional properties as pre-
and postcondition,Kpre andKpost , respectively. A kernel can only be invoked
by a host program that transfers the necessary resources and respects the
preconditions. Notice that locations defined in the local memory space of a
kernel are only valid inside the kernel body and thus the kernel always holds
write permissions for these locations.

– Permissions and conditions in the kernel are distributed over the kernel’s
threads by the thread specification (Tres , Tpre , Tpost). The thread’s resource
specification Tres specifies the resources over global and local memory as-
signed to the thread. The thread’s pre- and postcondition (Tpre and Tpost)
specify further properties of these resources. The formulas in the thread
specification are expressed in terms of the thread identifier.

– A barrier specification (Bres , Bpre , Bpost) specifies resources, and a pre- and
postcondition for each barrier in the kernel. The resources Bres specify how
permissions are redistributed over the threads (depending on the kind of
barrier, these can be only permissions on local memory, only permissions on
global memory, or a combination of global and local memory). The barrier
precondition Bpre specifies the property that has to hold when a thread
reaches the barrier. The barrier postcondition Bpost specifies the property
that may be assumed to continue verification of the thread. It should be
framed by Bres , i.e., it may only state something about locations in Bres .

Notice that it is sufficient to specify a single permission formula for a kernel;
these are the permissions required and returned by the kernel. Within a kernel,
the only way to redistribute permissions is at a barrier, the code between barriers
holds the same set of permissions at all times. If we only check for data races,
the kernel and thread postconditions will typically be true.

Given a fully annotated kernel with body Kbody , a set of global thread iden-
tifiers Tid , a set of local thread identifiers LTid , and a set of local memory
locations Local , verification of the kernel behaviour essentially boils down to
verification of the following properties.

– The Hoare triple {Tres *Tpre} Kbody{Tpost} is proven correct using standard
rules for permission-based separation logic (as in [6]). Each barrier is verified
as a method call with precondition Bpre and postcondition Bres *Bpost

1.
– The kernel resources are shown to be sufficient for the thread specification

if the global memory resources for the thread are passed to the kernel, the
kernel’s precondition implies the thread’s precondition, and no two threads

1 Notice that the properties for locations described in Bpost can only be used if there
is no thread that holds a write permission for those locations.

V

have write access to the same location (either in global or local memory).
This is expressed by the following two formulas:

Kres *Kpre -* * tid∈Tid (Tres |glob *Tpre)

* v∈Local Perm(v, 1) -* * ltid∈LTid Tres |loc

– For each barrier with a memory fence on global memory, we show that it
redistributes only the permissions that are available in the kernel, and it
does not duplicate write permissions.

Kres -* * tid∈Tid Bres |glob

– We do a similar check for each barrier with a local memory fence. If there is
no control flow divergence between work groups, it is sufficient to show this
for an arbitrary work group.

* v∈Local Perm(v, 1) -* * ltid∈LTid Bres |loc

– For each barrier with a global memory fence, we show that its postcondition
follows from the precondition (over all threads).

* tid∈Tid Bpre -* * tid∈Tid Bpost |RGPerm(tid)

where Bpost |RGPerm(tid) restricts the formula Bpost to the set of locations in
global memory that can be read by thread tid .

– Similarly, for each barrier with a local memory fence, we show that its post-
condition follows from the precondition (over all threads).

* ltid∈LTid Bpre -* * ltid∈LTid Bpost |RLPerm(ltid)

where Bpost |RLPerm(ltid) restricts the formula Bpost to the set of locations in
local memory that can be read by thread ltid .

– Finally we show that the universal quantification of all threads’ postcondi-
tions imply the kernel’s postcondition.

* tid∈Tid Tpost -*Kpost

Finally, when verifying the host code, it is verified that sufficient permissions
are given to the kernel, and that the precondition is established. Thus, kernels
with an incorrect resource specification, e.g., requiring write permissions on the
same location twice, cannot be invoked, because the call from the host to the
kernel cannot be verified.

3 Examples

This section discusses several example kernels to illustrate how they are ver-
ified using our approach. For convenience we use the following shorthands in

VI

Kernel spec: (* i∈[0...size−1] Perm(a[i], 1) * Perm(b[i], 1), size = n ∧ num threads = n, true)
Thread spec: (Perm(a[tid], 1) * Perm(b[tid], 1), true, true)

k e r n e l void example (g l o b a l i n t ∗a , g l o b a l i n t ∗b) {
i n t t i d = g e t g l o b a l i d (0) ;
a [t i d]= t i d ;
b [t i d] = a [(t i d+1)% s i z e] ; }

Fig. 1. Fields access with insufficient permissions

k e r n e l void example (g l o b a l i n t ∗a , g l o b a l i n t ∗b) {
i n t t i d = g e t g l o b a l i d (0) ;
a [t i d]= t i d ;
barrier(CLK GLOBAL MEM FENCE); //B
b [t i d] = a [(t i d+1)% s i z e] ; }

Fig. 2. Corrected kernel code with barrier

specifications: tid denotes the result of the function call get global id(0), and
num threads denotes the the number of threads executing the kernel. This in-
formation is defined in the host code before executing the kernel.

First we start with some examples where we only consider data race prop-
erties. Consider the simple example kernel in Figure 1. It is obvious to see that
this kernel has a data race, because for example the thread with id 1 could be
writing its id in location a[1], at the same time as the thread with id 0 is read-
ing this location. This problem is detected when verifying the kernel body: the
assignment b[tid] = a[(tid+ 1)%size] cannot be verified because the thread does
not have sufficient permissions to access location a[(tid+ 1)%size]. Suppose we
try to solve this by changing the thread specification as follows:

(Perm(a[tid], 1) * Perm(a[(tid + 1)%size],
1

2
) * Perm(b[tid], 1), true, true)

With this specification, the kernel body itself can be verified. However the

condition Kres -* * tid∈Tid Tres |glob cannot be verified, because together all
threads running the kernel require more permissions on the elements of a than
are available in the kernel. Instead, the correct way to solve this is to insert
a global memory fence barrier, as in Figure 2. Of course, this also requires a
barrier specification. With the following barrier specification for B, the kernel
(as specified in Figure 1) can indeed be verified.

Barrier spec(B) : (Perm(a[(tid + 1)%size], π) * Perm(b[tid], 1), true, true)

However, for a different barrier specification, verification might fail. Con-
sider for example the following barrier specification, which redistributes more re-

sources than the kernel possesses, i.e., it violates the condition Kres -* * tid∈Tid

Bres |glob .

Barrier spec(B) : (Perm(a[tid], 1) * Perm(a[(tid + 1)%size],
1

2
) * Perm(b[tid], 1), true, true)

VII

Finally, to illustrate verification of functional correctness properties, consider
again the kernel in Figure 2. For this kernel, we can show for example that the
following specifications are respected:

Kernel spec: (* i∈[0...size−1] Perm(a[i], 1) * Perm(b[i], 1),
size = n ∧ num threads = n,∀i∈[0...size−1]b[i] = (i+ 1)%size)

Thread spec: (Perm(a[tid], 1), true, b[tid] = (tid + 1)%size)
Barrier spec(B) : (Perm(a[(tid + 1)%size], 12) * Perm(b[tid], 1),

a[tid] = tid , a[(tid + 1)%size] = (tid+ 1)%size)

4 Conclusions, Related and Future Work

This paper presents a verification technique for GPGPU kernels, based on permis-
sion-based separation logic. The main specifics are that (i) for each kernel we
specify all permissions that are necessary to execute the kernel, (ii) the permis-
sions in the kernel are distributed over the threads, and (iii) at each barrier the
permissions are redistributed over the threads. Verification of individual threads
uses standard program verification techniques, while additional verification con-
ditions check consistency of the specifications.

Related Work There already exists some work on the verification of GPU kernels.
However, their focus is on the verification of the interleaving of two arbitrary
threads, whereas we verify an arbitrary single thread. We believe this makes our
approach more suitable to verify also functional correctness properties.

Guodong and Gopalakrishnan [11] verify CUDA programs by symbolically
encoding thread interleavings. They were the first to observe that it was sufficient
to verify the interleavings of two arbitrary threads. For each shared variable they
use an array to keep track of read and write access, and where in the code they
occur. By analysing this array, they can detect possible data races.

Betts et al. [2] verify GPU programs based on a novel operational seman-
tics called synchronous, delayed visibility. They log writes and reads to shared
variables made by two arbitrary threads and assert at each barrier that there
has not been any data races between those reads and writes. The two threads,
with assertions are encoded into BoogiePL, and then verified using standard
verification condition generation.

The main synchronization mechanism in GPGPU programs are barriers. We
tailored the approach of Hobor et al. [8] for Pthreads-style barriers to OpenCL
barriers. Since OpenCL barriers are simpler, our specifications also are much
simpler. For each barrier it is sufficient if we specify how permissions are redis-
tributed over threads, with associated functional properties. In constrast, Hobor
et al. need a complete state machine to specify the barrier behaviour.

Future Work We are currently at the first steps of our project, and there is
still much work to be done. First of all, a detailed formalisation of the logic
and its soundness proof has to be worked out. To support the logic, we will

VIII

develop tool support as an extension of the VerCors tool [1], a tool to reason
about multithreaded Java programs using permission-based separation logic. To
further enhance tool support, we will study automatic generation of permission
specifications, which would alleviate the need for user-written specifications.

The main focus of our work on the verification of GPGPU programs will
be the verification of functional properties. In this paper, we have illustrated
this on an example, but we need to study more examples. We will also look
at other typical GPGPU correctness properties, such as the absence of barrier
divergence2 and study how these can be verified in our approach. Finally, we will
investigate how to reason about the host program. This will allow verification of
multi-kernel applications running in a heterogeneous setting.

Acknowledgements We are very grateful to Christian Haack, who helped clari-
fying many of the formal details of the logic.

References

1. A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski, The Ver-
Cors project: Setting up basecamp, in PLPV 2012, 2012, pp. 71–82.

2. A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, GPUVer-
ify: a verifier for GPU kernels, in OOPSLA’12, ACM, 2012, pp. 113–132.

3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, Permission ac-
counting in separation logic, in POPL ’05, ACM, 2005, pp. 259–270.

4. J. Boyland, Checking interference with fractional permissions, in SAS’03,
Springer-Verlag, 2003, pp. 55–72.

5. B. Cowan and B. Kapralos, GPU-based acoustical occlusion modeling with
acoustical texture maps, in AM ’11, ACM, 2011, pp. 55–61.

6. C. Haack, M. Huisman, and C. Hurlin, Reasoning about Java’s reentrant locks,
in APLAS’09, G. Ramalingam, ed., vol. 5356 of LNCS, Springer, 2008, pp. 171–187.

7. C. A. R. Hoare, An axiomatic basis for computer programming, Commun. ACM,
26 (1983), pp. 53–56.

8. A. Hobor and C. Gherghina, Barriers in concurrent separation logic, in ESOP
2011, Springer, 2011, pp. 276–296.

9. E. K. Jason Sanders, CUDA by Example: An Introduction to General-Purpose
GPU Programming, Addison-Wesley Professional, 2010.

10. Khronos Group, The OpenCL 1.2 Specification, 2011.
11. G. Li and G. Gopalakrishnan, Scalable SMT-based verification of GPU kernel

functions, in SIGSOFT FSE 2010, Santa Fe, NM, USA, ACM, 2010, pp. 187–196.
12. J. B. Mulligan, A GPU-accelerated software eye tracking system, in ETRA ’12,

ACM, 2012, pp. 265–268.
13. P. W. O’Hearn, Resources, concurrency, and local reasoning, Theoretical Com-

puter Science, 375 (2007), pp. 271–307.
14. J. Reynolds, Separation logic: A logic for shared mutable data structures, in Logic

in Computer Science, IEEE Computer Society, 2002, pp. 55–74.
15. S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. W. Hwu, Z.-P. Liang, and

B. P. Sutton, Accelerating advanced MRI reconstructions on GPUs, in CF ’08,
ACM, 2008, pp. 261–272.

2 All threads in the same work group must reach the same barrier, otherwise the
program behaviour is undefined.

