
Formal Specifications for Java’s Synchronisation
Classes

Afshin Amighi and Stefan Blom and Marieke Huisman
and Wojciech Mostowski and Marina Zaharieva-Stojanovski

Formal Methods and Tools, University of Twente, The Netherlands
Email: {a.amighi,s.blom,m.huisman,w.mostowski,m.zaharieva}@utwente.nl

Abstract—This paper discusses formal specification and veri-
fication of the synchronisation classes of the Java API. In many
verification systems for concurrent programs, synchronisation
is treated as a primitive operation. As a result, verification
rules for synchronisation are hard-coded in the logic, and not
verified. These rules describe the concrete semantics of the
given synchronisation primitive, and manage how resources are
protected by synchronisation.

In contrast, this paper describes several synchronisation prim-
itives at the specification level, by specifying the behaviour of
synchronisation routines from the Java API at method level using
permission-based Separation Logic. This gives a generalised,
high-level, and easily extendable approach to formalisation of
arbitrary synchronisation mechanisms, which allows for mod-
ular treatment of synchronisation in verification. Notably, our
approach does not only apply to locks, but also to other
synchronisation mechanisms such as semaphores and latches that
we also discuss in the paper. Finally, we used the verification tool
that we are developing and successfully verified (so far simplified)
reference implementations of all presented synchronisers; the
paper discusses the verification of one of them.

I. INTRODUCTION

Concurrency is globally present in practically all modern
production software. The complexity of concurrent program
behaviours makes it challenging to guarantee correct func-
tioning of such software. This has led to a strong demand for
formal verification systems to deal with concurrent programs.
As a result, several techniques and verification tools [1], [2],
[3], [4] have emerged that provide automated reasoning for
realistic concurrent software. Many of the underlying program
logics employed in these recent verification systems share the
following characteristics: (i) they are based on the notion of
read and write permissions to access heap locations [5], [6],
and (ii) they explicitly handle the program heap [7] (typically
using or inspired by Separation Logic [8]). These ingredients
are sufficient to support thread-modular verification, i.e., ver-
ification of a single thread in isolation. Moreover, successful
verification of all program threads annotated with permissions
guarantees that the concurrent program is free of data races.

The VerCors project concentrates on the application of
permission-based Separation Logic to multi-threaded Java
programs [9], [10]. It focuses in particular on the concurrent
data structures of the Java API, where the goal is to specify
and verify full functional correctness properties, rather than to
reason only about interference between multiple threads.

Locking and other synchronisation mechanisms are an es-
sential part of these concurrent data structures (and other con-
current programs). Many verification systems for concurrent
programs consider locking as a primitive operation of the
language, and the reasoning system provides explicit rules for
handling this. Also in our initial work, we formalised Java’s
reentrant locks as primitive operations in the logic [11].

The core of almost any lock formalisation is the notion of
a resource invariant [1] that makes the implicit information
about the resources (heap locations) protected by the lock
explicit by defining the access rights to the locations that are
protected by the lock. Based on this notion, the verification
of a program using locks essentially boils down to checking
permission transfer: upon locking, permissions are transferred
from the lock’s resource invariant to the locking thread; upon
unlocking, the thread transfers all the permissions back into
the lock. Only the thread that currently holds the permissions
can access the protected location.

This paper shows how the treatment of resource invariants is
lifted to the API level of Java, i.e., we provide a specification-
based approach to reason about locks. To make the approach
applicable to different synchronisation mechanisms, we gen-
eralise the notion of a lock, i.e., we consider any routine
that uses synchronisation to transfer a set of permissions as a
locking routine. With our approach, we can specify arbitrary
synchronisation mechanisms from the Java API in a similar
way, and provide the ability to reason with these specifications
modularly. The overall added value of our approach is the
consequent ability to reason about arbitrary concurrent Java
programs. This supports the goals of the VerCors project: Java
concurrent data structures use the API locks extensively, hence
we need to have them specified and verified in order to verify
the correctness of any of the data structure implementations.

Concretely, this paper illustrates our approach by presenting
Separation Logic specifications for the following synchro-
nisation classes: the reentrant read-write family of locks,
semaphore, and the count-down latch. This selection is guided
by the results of an analysis of the Qualitas Corpus benchmark
suite [12] using the Histogram tool [13], identifying the most-
often used classes of the java.util.concurrent API.

An on-going part of our project is the development of an
automated tool set for our logic. For the work presented here
we already use our tool to a large degree; slightly simplified
reference implementations of all the discussed synchronisers

c© IEEE

have been successfully verified w.r.t. our specifications. These
verified implementations are all available on-line together with
a web-based version of our tool [14].

The rest of the paper is organised as follows. Sect. II pro-
vides background on permission-based Separation Logic, and
a short description of the synchronisation classes from the Java
API. Sect. III discusses the specification of the synchronisation
classes mentioned above. Sect. IV discusses the verification
of one of our reference implementations. Finally, Sect. V
concludes the paper with plans for the future and related work.

II. BACKGROUND

This section briefly introduces permission-based Separation
Logic, and how it supports reasoning about multi-threaded
Java programs, and in particular reentrant locks. For more
information, we refer to [10], [11], [15]. It also provides some
background information on the Java concurrency API.

A. Resource Protection with Permissions

Separation Logic originally has been proposed as an ex-
tension of Hoare Logic to reason about mutable data struc-
tures [8]. However, it is also suitable to reason about multi-
threaded programs [1], because it allows one to reason ex-
plicitly about the heap, and to identify which part of the
heap is affected by a thread. This paper uses permission-based
Separation Logic, a variant of Separation Logic where access
to a location is decorated with a read or write permission.

In classical Hoare Logic, assertions are properties over the
state. In Separation Logic, the state is explicitly divided into
the heap, where all object information is stored, and the
store, containing information related to the current method
call. We distinguish between resource expressions (R, typical
elements ri) and logical expressions (E, typical elements ei),
with the subset of logical expressions of type boolean (B,
typical elements bi). Formulas in our logic are defined by the
following grammar:

R ::� b | PointsTo(field, frac, e)
| Perm(field, frac) | p\forall � T v; b; rq
| r1 �� r2 | b1��¡ r2 | e.Ppe1, � � � , e2q

E ::� any pure expression
B ::� any pure expression of type boolean

where T is an arbitrary type, v is a variable name, P is an
abstract predicate [16] of a special type resource, field is a
field reference, and frac denotes a fractional permission.

Intuitively, an assertion PointsTo(e.f, π, v) (or e.f π
ÞÑ v

in classical notation) holds for a thread t if the expression
e.f points to a location on the heap that contains the value
v, and in addition, the thread t has at least permission π to
access this location. When the value is not important, we
often use Perm, using that PointsTope.f, π, vq is equivalent
to Permpe.f, πq && e.f �� v. A formula φ1 ��φ2 holds
for a heap if the heap can be split into two disjoint heaps,
with the first sub-heap satisfying φ1, and the second sub-heap
satisfying φ2. Finally, assertions can use abstract predicates
P to encapsulate the state space [16]. Below, we sometimes

use an additional requirement that the abstract predicate is a
group [10], i.e., it can be split over permissions.

Permissions π are values in the domain p0, 1s. Each thread
always holds a set of permissions on locations. If a thread has
a full permission i.e., the value 1, for a location, then it has
permission to write this location. If a thread has a fractional
permission, i.e., a fraction less than 1, then it has a read
permission for this location. Soundness of the logic ensures
that the total number of permissions on a location never
exceeds 1. Thus, at most one thread at a time can be writing a
location, and whenever a thread has a read permission, all other
threads holding a permission on this location simultaneously
can have a read permission only. This ensures that verified
programs are data-race-free. Permissions can be split and
combined, to change between read and write permissions, and
they can be transferred between threads upon thread creation,
upon joining a terminated thread, and by synchronisation.
The modularity in reasoning is supported by the semantics
of the separating conjunction. Exclusive access to a location
guarantees that the location is not aliased with other locations
on the heap and thus can be reasoned about in isolation. Partial
access, on the other hand, guarantees the read-only property
for the location, i.e., its value never changes in the scope of a
non-exclusive access permission. In turn, this ensures that we
do not have to reason about thread interference.

The concrete syntax of our specifications is a combination
of permission-based Separation Logic with the Java Modeling
Language (JML)1 [17], including features like ghost fields. In
addition, method and class specifications can be preceded by
a given clause, declaring the method and class specification-
only parameters. Method specification parameters are passed
(implicitly) at method calls, class parameters are passed at type
declaration and instance creation, resembling the parametric
types mechanism of Java. Building on the JML annotation
language allows us to specify permission access properties side
by side with complex functional properties. In the scope of the
synchronisation classes, however, the permissions are the main
focus.

B. Reasoning about Built-in Locks

As mentioned above, permissions are transferred upon syn-
chronisation. We briefly describe the logic to reason about
built-in Java reentrant locks developed by Haack et al. [11],
which forms the basis of the work in this paper. We lift
this logic to specification-level and generalise it to other
synchronisation mechanisms in the Java API.

Following O’Hearn [1], for each lock, an abstract predicate
inv describing the resource invariant is specified, describing
which locations are protected by the lock. Whenever a lock
is acquired for the first time, the locking thread obtains these
resources, and thus can access the data protected by the thread.
Upon final release of the lock, the thread is forced to give
up the resources. To distinguish initial acquirings and final

1Hence we also diverted from the classical Separation Logic notation of �
for the separating conjunction to �� in order to maintain the multiplication
operator.

Γ $ u, S : Object, lockset
(Lock)

Γ; v $
tLockSet(S) ∗u R S ∗u.initu

u.lock()
tLockSet(u � S) ∗u.invu

Γ $ u, S : Object, lockset
(Re-Lock)

Γ; v $ tLockSet(u � S)uu.lock()tLockSet(u � u � S)u

Fig. 1. Proof rules for initial and reentrant acquiring of a lock from [11].

releases from reentrant acquirings and releases, each thread
maintains a multi-set LockSet that keeps track of all locks
(including their multiplicity) that the thread currently holds.
The lock sets are necessary to properly treat lock reentrancy:
if a thread acquires a lock that is already in the lock set, it
does not obtain any permissions, and if a thread releases a
lock, it does not have to give up any permissions if the lock
afterwards is still in the lock set.

In addition, Haack et al. developed some technical machin-
ery for lock initialisation. A lock can only be used when it
has been initialised, i.e., the access permissions specified in the
resource invariant are stored “into” the lock. Lock initialisation
is indicated by a specification-only commit statement: the proof
rule for commit ensures that the permissions from the thread
are absorbed into the lock, and the lock is ready to be used.

To give a flavour of this logic, Fig. 1 presents the proof
rules from [11] for initial and reentrant acquiring of a lock.
The first rule states that if a thread locks u, and the set
of currently held locks does not contain u yet, then upon
completion of the u.lock() statement, u is in the lock set,
and the resource invariant has been transferred to the thread
holding the lock on u. However, as indicated by the second
rule, if u is already held by the current thread, no permissions
are transferred, only bookkeeping of the additional acquiring
of the lock is done. Note that here the statement u.lock()
is a built-in instruction of the language. Reasoning about
the Java synchronized statement requires a straightforward
translation to suitable o.lock() and o.unlock() statements.
This paper shows that this approach generalises to the other
synchronisation classes from the Java API as well.

However, in our approach, resource invariants may be
parametrised with a fraction expression, to support both write
and read-only locking scenarios with just one predicate, i.e.,
instantiating the predicate with a concrete value makes the
resource invariant describe a write permission, a read permis-
sion, or a mixture of both. Class Object declares a default
predicate inv, setting it to true. This definition can be referred
to and extended in subclasses and interfaces.

C. The Java Concurrency API

Basic concurrency support in Java is provided by the Thread
class. Further, every object can function as a lock, using the
synchronized keyword, which makes it impossible to forget to
release a lock. However, this also puts strong restrictions on the
design and implementation of (bigger) systems; in particular,
its syntactic limitations make it impossible to acquire and
release locks at arbitrary points in the code.

«interface»
Lock

+lock() : void
+unlock() : void

ReentrantLock

«interface»
ReadWriteLock

+readLock() : Lock
+writeLock() : Lock

ReentrantReadWriteLock

ReentrantReadWriteLock:
ReadLock

ReentrantReadWriteLock:
WriteLock

Fig. 2. The hierarchy of locks in the java.util.concurrent package.

This has been addressed by the Java concurrency package
java.util.concurrent introduced in Java 1.5 [18]. Among other
things, this package features: (i) locks and other synchronisa-
tion primitives, (ii) the Executor framework, providing task-
based parallelism, (iii) thread-safe data structures, such as
maps and queues, and (iv) support for atomic variables.

In its basic form, the lock, specified by the Lock interface,
provides either exclusive or controlled shared access to a
shared resource. For situations where, depending on the ex-
ecution context, either shared or exclusive access is required,
the API defines a ReadWriteLock interface. All interfaces are
implemented by classes that support lock reentrancy. Fig. 2
shows the complete hierarchy of Java’s lock classes.

In addition, the concurrency package contains implemen-
tations of several other synchronisation classes, such as a
semaphore, a count-down latch, and a cyclic barrier.

To find out which classes are most often used, and where
thus our specifications efforts are most useful, we counted the
number of references to classes in the concurrency packages
for each of the projects in the standard Qualitas Corpus
benchmark suite [12] using our Histogram tool [13]. Fig. 3
shows which synchronisation classes are in the top 25 of most-
used classes. The analysis further shows that the reentrant
family of locks is used most often: 22 out of 29 systems that
use locks reference the ReentrantLock class.

III. SPECIFICATIONS OF THE SYNCHRONISATION CLASSES

This section presents Separation Logic specifications for
several synchronisation classes from the Java concurrency API.
As mentioned above, the starting point for our specifications
is the earlier formalisation of reentrant Java locks [11], [15],
but we lift all elements of that formalisation to the specifica-
tion layer. Therefore, the underlying concepts can be shared,

Place #Refs #Projects Class name
5 644 22 locks.ReentrantLock

10 1170 18 locks.ReentrantReadWriteLock
11 2633 17 locks.Lock
14 387 15 CountDownLatch
18 534 13 locks.ReadWriteLock

Fig. 3. The synchronisation classes in the top 25 of most used concurrency
classes in the java.util.concurrent package.

reused, and adapted by different synchronisation classes of the
Java concurrency API. In particular, the notion of a resource
invariant is at the base of all the specifications. In essence, all
specifications of the synchronisation methods express how per-
missions are transferred between the thread and the resource
invariant. This describes the essential differences between the
synchronisation mechanisms.

Below, we first discuss how lock initialisation is treated at
specification level. Then we show how the logic for built-in
reentrant locks from [11] is generalised to specify the Lock
interface, and how the specifications of ReentrantLock and
ReadWriteLock both are built on top of this general speci-
fication for Locks. Moreover, to illustrate that also other syn-
chronisation mechanisms can be specified using the same ap-
proach, we discuss specifications of two other frequently used
synchronisation classes: Semaphore and CountDownLatch.

A. Initialisation of Resource Invariants

As mentioned above, resource invariants have to be ini-
tialised, i.e., the permissions have to be transferred “into” the
synchroniser, before the synchronisation mechanism can be
used. This ensures that the resources can be passed to a user
upon synchronisation without introducing new resources.

Initialisation of the resource invariant is done in the same
way for all synchronisation mechanisms: class Object declares
a boolean field initialized that tracks information about the
initialisation state of the resource invariant. Newly created
locks are not initialised; the specification-only method commit
can be used by the client code to irreversibly initialise the lock.
This means that the resources protected by the lock, as spec-
ified in inv, become shared. To achieve this, commit requires
the client to provide the complete resource invariant inv(1),
together with an exclusive permission to change initialized.
The method consumes the invariant (“stores it into the lock”).
Moreover, it ensures that initialized cannot be changed anymore
by consuming part of the permission to access this field,
effectively making it read-only. For convenience, the result of
commit is encapsulated in a single resource predicate initialized,
which can be passed around and used as a permission ticket
for locking operations, see below.
//@ ghost boolean initialized = false;
//@ group resource initialized(frac p) = PointsTo(initialized, p/2, true);

//@ requires inv(1) ∗∗ PointsTo(initialized, 1, false);
//@ ensures initialized(1);
public void commit();

The default location for the call to commit is at the end of the
constructor of the synchronisation object. More complex lock
implementations (that we do not discuss in this paper) may
require moving this call to another location in the program.

The actual resource invariant is typically decided by the user
of the synchronisation class, therefore it is passed as a class
parameter. For example, given a two-point coordinate class
using a ReentrantLock, the resource invariant that protects the
x coordinate (only) is specified with xInv, which is passed both
during type declaration and during instantiation of the lock:
//@ resource xInv(frac p) = Perm(x, p);

Lock/∗@< xInv, . . . >@∗/ xLock = new ReentrantLock/∗@<xInv>@∗/();

As mentioned in Sect. II, in our specifications such parameters
(of which there will be more, hence the “. . . ” above) are
received through variables specified with the given keyword.

B. Lock Hierarchy Specification

The synchronisation classes in the Lock hierarchy in the
concurrency package (see again Fig. 2) are devoted to resource
locking scenarios where either full (write) access is given to
one particular thread or partial (read) access is given to an
indefinite number of threads. We first discuss the specification
of the Lock interface, and then we proceed with specifications
of different lock implementations.

1) Lock Interface Specification: As explained above, our
specification approach of the synchronisation mechanisms is
inspired by the logic of Haack et al. [11]. However, we cannot
just translate the rules from this logic (as in Fig. 1) into
method specifications of the Lock interface, because the Lock
interface can be used in different and wider settings than
considered by Haack et al. In particular, Lock implementations
may be non-reentrant; they may be used to synchronise non-
exclusive access; and they may be used in coupled pairs to
change between shared and exclusive mode (see the read-write
lock specification below). Therefore, compared to the work of
Haack et al., the following changes for the specification given
in Lst. 1 are necessary:

 The locks are parametrised by boolean variables
isExclusive and isReentrant, which can be correspond-
ingly instantiated by implementations.

 To allow non-exclusive synchronisation, resource invari-
ants have to be groups, see Sect. II-A.

 For the non-exclusive locking scenarios the client pro-
gram has to record the amount of the resource fraction
that was obtained during locking, so that the lock can
reclaim the complete resource fraction upon unlocking.
This information is passed around in the held predicate,
which holds this fraction. This is purposely not declared
as a group, so that clients are obliged to return their whole
share of resources. The held predicate is returned during
locking in exchange for the initialized predicate which is
temporarily revoked for the time that the lock is acquired.

 For situations where several locks share the same resource
and are effectively coupled as one lock, we need to ensure
that only one lock is locked at a time. The coupling itself
is realised by holding a reference to the parent object that
maintains the coupled locks. The exclusive use of coupled
locks is ensured by storing and checking this parent object
in the set of currently held locks.

 A separate specification case is provided for reentrant
locking, if the isReentrant flag is set.

As a result, in the specification of method lock() (Lst. 1, line 9–
17), when the lock is acquired for the first time, the locking
thread gets permissions from the lock. If the lock is reentrant,
and the thread already holds the lock, then no new permission
is gained, only the multi-set of locks held by the current thread

//@ given group (frac �> resource) inv;
2 //@ given boolean isExclusive, isReentrant;

public interface Lock {
4 //@ group resource initialized(frac p);

//@ resource held(frac p);
6

//@ ghost public final Object parent;
8

/∗@ given bag<Object> S, frac p;
10 requires LockSet(S) ∗∗ !(S contains this) ∗∗ initialized(p);

requires parent != null ==> !(S contains parent);
12 ensures LockSet(this::parent::S) ∗∗

inv(isExclusive ? 1 : p) ∗∗ held(p);
14 also

requires isReentrant ∗∗ LockSet(S) ∗∗
16 (S contains this) ∗∗ held(p);

ensures LockSet(this::S) ∗∗ held(p); @∗/
18 void lock();

20 /∗@ given bag<Object> S, frac p;
requires LockSet(this::S) ∗∗ (S contains this) ∗∗ held(p);

22 ensures LockSet(S) ∗∗ held(p);
also

24 requires held(p) ∗∗ inv(isExclusive ? 1 : p);
requires LockSet(this::parent::S) ∗∗ !(S contains this);

26 ensures LockSet(S) ∗∗ initialized(p); @∗/
void unlock();

28 }

Lst. 1. Specification of the Lock interface.

is extended with this lock (where :: denotes bag addition). For
coupled locks (where the parent is not null) the presence of
the parent in the lock set is also checked and recorded, to
prevent parallel use of the coupled locks. The specification of
method unlock() describes the reverse process (Lst. 1, line 20–
26): if the multi-set of locks contains the specific lock only
once, then this means the return of permissions to the lock
(i.e., inv does not hold in the postcondition) according to the
held predicate; otherwise, the thread keeps the permissions,
but one occurrence of the lock is removed from the multi-set.

2) ReentrantLock Specification: Class ReentrantLock im-
plements the Lock interface as an exclusive, reentrant lock.
Thus, it inherits all specifications from Lock and appropriately
instantiates the class parameters isReentrant and isExclusive:
//@ given group (frac �> resource) inv;
class ReentrantLock implements Lock /∗@< inv, true, true >@∗/ {

3) ReadWriteLock Specification: The ReadWriteLock is not
a lock itself, but a wrapper of two coupled Lock objects: one
of them provides exclusive access for writing (WriteLock),
while the other allows concurrent reading by several threads
(ReadLock). The two classes are commonly implemented as
inner classes of the class that implements the ReadWriteLock
interface (see Fig. 2 on page 3). The two locks are intended to
protect the same memory resources. Hence our specifications
in Lst. 2 state that the two getter methods for obtaining the two
locks return a lock object with the same resource inv, but which
are exclusive and non-exclusive, respectively. The aggregate
read-write lock has to be initialised itself. Further, we state
in the respective postconditions of the getter methods that the
obtained locks are initialised and hence can be acquired, and
that they have the same parent object, which is an instance of

//@ given group (frac �> resource) inv;
2 //@ given boolean reentrant;

interface ReadWriteLock {
4 //@ group resource initialized(frac p);

6 /∗@ given frac p;
requires initialized(p);

8 ensures \result.parent == this ∗∗ \result.initialized(p); @∗/
/∗@ pure @∗/ Lock /∗@< inv, false, reentrant >@∗/ readLock();

10

/∗@ given frac p;
12 requires initialized(p);

ensures \result.parent == this ∗∗ \result.initialized(p); @∗/
14 /∗@ pure @∗/ Lock /∗@< inv, true, reentrant >@∗/ writeLock();

}

Lst. 2. Specification of the ReadWriteLock interface.

the class implementing the ReadWriteLock interface.

C. Semaphore Specification

The Semaphore class represents a counting semaphore. It
is used to control threads’ accesses to a shared resource, by
restricting the number of threads that can access a resource
simultaneously. Each semaphore is provided with a property
permits, that represents the maximum number of threads that
can access the protected resource. Accessing the resource must
be preceded by acquiring a permit from the semaphore. A
semaphore with n permits allows a maximum of n threads
to access the same resource simultaneously. If n threads are
holding a permit, a new thread that tries to acquire a permit
blocks until it is notified that a permit is released.

When initialised with more than 1 permit, a semaphore
closely corresponds to a non-reentrant ReadLock, but with
the number of threads accessing the shared resource explic-
itly stated and controlled. When initialised with 1 permit,
it provides exclusive access, and behaves the same as a
non-reentrant WriteLock. Therefore, the specification of the
semaphore is a stripped-down version of the Lock specification
(see Lst. 3). In particular, semaphores are never reentrant, and
they are not used in coupled combinations. Moreover, since
the maximum number of threads that can access the shared
resource is predefined with the permits field, we can also limit
ourselves to simply providing each acquiring thread with an
equal split of 1/permits of the resource invariant. Note also that
there is no access permission required for the permits field as
it is declared to be final and hence can never change after
initialisation.

D. CountDownLatch Specification

Essentially, a count-down latch is a distributed multi-thread
lock. Typically, a parent thread initialises a latch with a count
and then passes it to a number of worker threads together with
some shared resource for the threads to work on. Each worker
thread, once finished, calls method countDown() on the latch
to signal that it releases its share on the resource. Threads can
wait for all worker threads to finish by calling the blocking
await() method. Each call to countDown() decreases the internal
latch counter, and once this reaches zero, all awaiting threads
unblock and can use the protected resource again.

//@ given group (frac �> resource) inv;
2 public class Semaphore {

//@ resource held(frac p);
4

//@ ghost final int permits;
6

//@ requires inv(1) ∗∗ permits > 0;
8 //@ ensures initialized(1) ∗∗ this.permits == permits;

public Semaphore(int permits);
10

//@ given frac p;
12 //@ requires initialized(p);

//@ ensures inv(1/permits) ∗∗ held(p);
14 public void acquire();

16 //@ given frac p;
//@ requires inv(1/permits) ∗∗ held(p);

18 //@ ensures initialized(p);
public void release();

20 }

Lst. 3. Specification of the Semaphore class.

//@ given group (frac �> resource) inv;
2 public class CountDownLatch {

//@ resource held(frac p);
4

//@ requires count > 0;
6 //@ ensures initialized(1);

//@ ensures (\forall∗ int i; 0 <= i && i < count; held(1/count));
8 public CountDownLatch(int count);

10 //@ given frac p;
//@ requires held(p) ∗∗ inv(p);

12 public void countDown();

14 //@ given frac p;
//@ requires initialized(p);

16 //@ ensures inv(p);
public void await();

18 }

Lst. 4. Specification of the CountDownLatch class.

In the context of our work, the await() is technically a
locking operation – permissions are transferred to the calling
thread – while countDown() is an unlocking operation – the
calling thread gives up permissions for resources it worked on.
Thus, intuitively, compared to the lock, the flow of resource
permissions is reversed. Moreover, latches are distributed: each
worker thread performs only a partial unlock to collectively
achieve a full one, and all awaiting threads do a distributed
lock. A high-level specification for the latch that can account
for all possible resource redistribution scenarios between n
worker threads that call countDown and a different number m
of awaiting threads is difficult to achieve without introducing
major complexities. Therefore, here we only discuss one basic
scenario and only sketch ideas for a more general solution.

Our basic scenario assumes that each worker thread gets
an equal non-exclusive share of some resource, and awaiting
threads receive a fractional split of the whole resource. Note
that if there is only one awaiting thread, it can reclaim the
whole resource invariant protected by the latch. The associated
specifications are shown in Lst. 4. When the latch is con-
structed (lines 5–8) two predicates are returned: initialized(1),

reflecting the ability of the receiving thread to call await, plus
count number of equal held predicates. The thread that created
the latch should pass these to each of the worker threads, along
with a corresponding split of the resource invariant, i.e., it is
not the responsibility of the latch to distribute the resource
invariant at this point. When calling countDown (lines 10–12),
the worker thread presents its held predicate and an associated
fraction of the resource invariant, which is then consumed
back into the latch. The await method (lines 14–17) expects
at least a fraction of the initialized predicate and returns an
associated split of the resource invariant. In case there is only
one awaiting thread and the initialized predicate is unsplit, the
complete resource invariant is returned.

A generalised usage scenario for the latch requires to
arbitrarily split the resource invariant for the worker threads,
e.g., in such a way that each worker has an exclusive access
to part of the resource, rather than a shared access to the
whole resource. Upon completion of all n countDown calls,
the resource invariant is reconstructed into a full one and then
split again according to another division schema for the m
awaiting threads. The core idea to solve this is to provide
separate splits of the resource invariant for the countDown
and await operations, and carry around the identity of the
corresponding calling thread in an integer parameter, resulting
in sets of cdPred(i) and awPred(j) predicates such that:

inv(1) ∗�∗ (\forall∗ int i; 0 <= i && i < nCountDown; cdPred(i))
inv(1) ∗�∗ (\forall∗ int j; 0 <= j && j < nAwait; awPred(j))

where ∗�∗ denotes a separating equivalence (two-way magic
wand [8]), while nCountDown and nAwait correspond to the
numbers of worker and awaiting threads, respectively.

IV. VERIFICATION OF SYNCHRONISATION CLASSES

To show adequacy of our specifications, they should be
verified w.r.t. the Java reference implementation. All syn-
chronisation classes of the java.util.concurrent package, in-
cluding the ones discussed here, are implemented on top of
a generic synchronisation framework: Doug Lea’s family of
AbstractSynchronizer classes [19]. This framework provides
(1) the actual, generic synchronisation facility, implemented in
terms of compare-and-set operations over atomic integers, and
(2) fairness control, implemented in terms of thread queues.

We are currently developing an automated tool set, called
VerCors, for the verification of Java programs annotated
with permission-based Separation Logic. Our tool leverages
existing verification solutions to multi-threaded Java programs;
in particular, we encode our verification problems into the
Chalice language [2] and then use the Chalice verifier to
prove the translated programs correct w.r.t. their specifications.
Although Chalice is based on implicit dynamic frames, instead
of Separation Logic, its support for concurrency, resource
invariants and permission transfer, and the fact that it is fully
automated, makes it very suitable for our purpose.

As our tool is under development, it is not yet able to deal
with the full specifications as presented in this paper – notably,
it cannot reason about LockSet predicates directly yet – or with
the complexity of the actual Java reference implementations of

//@ given group (frac �> resource) inv;
2 public class SimpleReentrantLock {

//@ resource state(int id, int lev) = (lev > 0) ==> Perm(count,1);
4 //@ boolean trans(int c, int n) = (c==U && n>0) || (c>0 && n==U);

//@ frac share(int val) = val==U ? 1 : 0;
6

private final int U = 0;
8 private AtomicInteger/∗@<inv, share, trans>@∗/ sync;

private int count = 0;
10

//@ requires inv(1);
12 //@ ensures (\forall∗ int t; t>0 ; state(t, 0));

public SimpleReentrantLock(){
14 sync = new AtomicInteger/∗@<inv, share, trans>@∗/ (U);

}
16

//@ given int lev;
18 //@ requires state(tid, lev) ∗∗ tid > 0;

//@ ensures state(tid, lev+1) ∗∗ (lev == 0 ==> inv(1));
20 public void lock(int tid){

int cur = sync.get() ;
22 if (tid == cur) { count++; } else {

while (!sync.compareAndSet(U, tid));
24 count = 1;

}
26 }

28 //@ given int lev;
//@ requires state(tid, lev) ∗∗ tid>0 ∗∗ lev>0 ∗∗ inv(1);

30 //@ ensures state(tid, lev�1) ∗∗ (lev > 1 ==> inv(1));
public void unlock(int tid){

32 if (tid == sync.get())
if (count == 1) {

34 count = 0; sync.set(U);
}else if (count > 1) { count��; }

36 }
}

Lst. 5. A simplified reentrant lock implementation and specification.

the synchronisation classes. Therefore, this section discusses
verification of a simplified reference implementation: on the
specification level, we explicitly encode LockSet predicates,
and on the implementation level, we only verify the actual
synchronisation behaviour, and we ignore fairness control.
However, we believe that the approach as discussed here can
be generalised in the future to verify the complete reference
implementation w.r.t. the complete specification.

Concretely, here we discuss the verification of the correct-
ness of a reentrant lock implementation as shown in Lst. 5. The
fully annotated version, and the verified Semaphore along with
a simplified CountDownLatch implementation can be found
on-line [14]. This webpage also gives access to a web-based
interface for the VerCors tool.

As mentioned, our implementation is inspired by Lea’s
abstract synchronisers framework, but abstracts away every-
thing that is related to fairness control. This allows us to use
AtomicInteger as the synchronisation primitive. Also, instead
of using the LockSet predicate, the specification in Lst. 5
encodes lock reentrancy using a predicate state that specifies
the reentrancy level (denoted with lev) of the thread identifier
tid. This encodes the same behaviour for reentrant, mutually
exclusive locks as the specification in Lst. 1: the number of
times a reentrant lock occurs in the lock set of a thread tid is

//@ given group (frac �> resource) inv;
2 //@ given (int �> frac) share;

//@ given (int, int �> boolean) trans;
4 public class AtomicInteger {

6 //@ requires inv(share(v));
public AtomicInteger(int v);

8

public int get();
10

//@ given int o;
12 //@ requires trans(o, v) ∗∗ inv(share(v));

public void set(int v);
14

//@ requires trans(x, n) ∗∗ inv(share(n) � share(x));
16 //@ ensures \result ==> inv(share(x) � share(n));

//@ ensures !\result ==> inv(share(n) � share(x));
18 public boolean compareAndSet(int x, int n);

}

Lst. 6. A specification for AtomicInteger as a synchronisation primitive.

resource equivalent to the state(tid, lev) predicate.
Due to space restrictions, we cannot discuss the specification

of AtomicInteger as a synchronisation primitive in full detail;
we only summarise its most important aspects; for more
details we refer to [20]. In the case we consider here, the
AtomicInteger controls a competitive synchronisation scheme:
all threads compete to obtain access to the resource protected
by the lock. Lst. 6 presents the AtomicInteger specification
(simplified from the fully general specification for readability).
The specification is parametrised by a relation trans describing
the possible state transitions in the synchronisation protocol,
and a function share specifying which share of the resource
invariant (possibly 0) is transferred between the synchroniser
and the thread2. The contracts of compareAndSet exchange
the difference between the permissions assigned for expected
value and new value. Subtraction of two fractions is a cut-off
subtraction operator: pp� qq is 0 if q ¡ p, pp� qq otherwise.

The value of the atomic integer sync in Lst. 5 encapsulates
the state of the lock: when positive, it denotes the thread
that holds the lock; when zero (constant U) the lock is free.
When the sync object is constructed, the resource invariant
is transferred into this object. By successfully calling lock,
a thread obtains the resource invariant, and it transfers this
back to the synchroniser by calling unlock. The predicate state
expresses that if a thread holds the lock, then it has full
permission to update the reentrancy level (line 3) stored in
the field count. The trans relation is instantiated to express
that if the lock is free, it can be acquired, and if the lock is
held, it has to be released before another thread can acquire it.
The share function ensures correct permission transfer: in the
lock method, if the call to compareAndSet(U, tid) is successful,
thread tid obtains a full share of the resource invariant. When
releasing the lock, by calling sync.set(U) in unlock(), the thread
has to give up its share of the resource invariant.

Finally, it is easy to see that this implementation correctly
handles the lock reentrancy level, stored in count. If a thread

2The tool checks some additional constraints on these arguments, to ensure
the specification does not create new resources.

calls lock() while holding the lock (tid == cur), it simply
updates the reentrancy level. Any thread acquiring a lock for
the first time stores its thread identifier in sync by successfully
calling the atomic compareAndSet operation (line 23), fol-
lowed by assigning 1 to count. The unlock() operation ensures
that the lock only becomes available when count == 1, setting
it to U first. Otherwise, count is only decreased by 1.

The verification of the class SimpleReentrantLock w.r.t. its
specification is done fully automatically by our tool set, after
providing a few additional proof hints in terms of intermediate
state annotations.

V. CONCLUSIONS

Based on examples of the family of Java locks, the
semaphore, and the count-down latch from the Java API, we
present a generalised approach for handling synchronisation
primitives in permission-based Separation Logic for concur-
rent Java. We lift all mechanisms associated with synchroni-
sation handling, and the corresponding permission transfer, to
the specification layer of the logic. This way we provide a
modular verification mechanism that is applicable to arbitrary
concurrent Java programs, and we enable the verification of
the synchronisation routine implementations themselves. We
also discuss the verification of a reference implementation
of a reentrant lock, focusing on the exclusive access (with
reentrancy) aspects of the implementation only. Finally, we
have also verified reference implementations of Semaphore
and CountDownLatch [14].

The work presented here extends our earlier formalisation
of reentrant locks [11]. Several other built-in formalisations
of locks and synchronisation primitives exist. The Chalice
system [2] formalises simple non-reentrant locks built into the
Chalice language. The work of Gotsman et al. [21] is similar
to our earlier formalisation, and we believe that our high-level
approach could also be easily applied there to treat a wider
range of synchronisation primitives. Similarly, the work of
Hobor and Gherghina on formalising barriers in Separation
Logic [22] follows very similar principles to ours and we
believe that their formalisation could be adapted to fit our
specification framework too. Finally, the VeriFast tool [3]
adopts an approach similar to ours – simple non-reentrant
locking routines are also specified on the API level, and so-
called higher-order abstract predicates are functionally similar
to our class level specification parameters.

For future work, following what we discussed in Sect. III-D,
we will improve our ideas for a more flexible permission
splitting and (re-)distribution mechanism. We also plan to
adapt other permissions systems to our work, e.g., “fraction-
less” permissions [23], or tree permissions [24]. Then, we will
investigate how to verify an implementation of a coupled read-
write lock, where possibly two cooperating instances of an
AtomicInteger are to be used for synchronisation. Finally, we
will keep on improving our tool to enable verification of more
realistic case studies and attempt to verify some of the Java
implementations for concurrent data structures.

Acknowledgements: The work presented in this paper is
supported by ERC grant 258405 for the VerCors project.

REFERENCES

[1] P. W. O’Hearn, “Resources, concurrency and local reasoning,” Theoret-
ical Computer Science, vol. 375, no. 1–3, pp. 271–307, 2007.

[2] K. Leino, P. Müller, and J. Smans, “Verification of concurrent programs
with Chalice,” in Lecture notes of FOSAD, ser. LNCS, vol. 5705.
Springer, 2009.

[3] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens, “VeriFast: A powerful, sound, predictable, fast verifier for C
and Java,” in NASA Formal Methods, ser. LNCS, vol. 6617. Springer,
2011, pp. 41–55.

[4] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, “VCC: A practical system for
verifying concurrent C,” in Theorem Proving in Higher Order Logics
(TPHOLs), ser. LNCS, vol. 5674. Springer, 2009, pp. 23–42.

[5] J. Boyland, “Checking interference with fractional permissions,” in
Static Analysis Symposium, ser. LNCS, R. Cousot, Ed., vol. 2694.
Springer, 2003, pp. 55–72.

[6] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, “Permission ac-
counting in separation logic,” in Principles of Programming Languages,
J. Palsberg and M. Abadi, Eds. ACM, 2005, pp. 259–270.

[7] M. J. Parkinson and A. J. Summers, “The relationship between separa-
tion logic and implicit dynamic frames,” Logical Methods in Computer
Science, vol. 8, no. 3:01, pp. 1–54, 2012.

[8] J. Reynolds, “Separation logic: A logic for shared mutable data struc-
tures,” in 17th IEEE Symposium on Logic in Computer Science (LICS
2002). IEEE Computer Society, 2002, pp. 55–74.

[9] A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski, “The
VerCors project: Setting up basecamp,” in Programming Languages
meets Program Verification (PLPV 2012). ACM, 2012, pp. 71–82.

[10] C. Haack and C. Hurlin, “Separation logic contracts for a Java-like
language with fork/join,” in Algebraic Methodology and Software Tech-
nology, ser. LNCS, J. Meseguer and G. Rosu, Eds., vol. 5140. Springer,
2008, pp. 199–215.

[11] C. Haack, M. Huisman, and C. Hurlin, “Reasoning about Java’s reen-
trant locks,” in 6th Asian Conference on Programming languages and
Systems, ser. LNCS, G. Ramalingam, Ed., vol. 5356. Springer, 2008,
pp. 171–187.

[12] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of Java code for
empirical studies,” in Asia Pacific Software Engineering Conference,
2010.

[13] S. Blom, M. Huisman, and J. Kiniry, “How do developers use APIs? A
case study in concurrency,” in International Conference on Engineering
of Complex Computer Systems (ICECCS 2013). IEEE Computer
Society Conference Publishing Services (CPS), 2013, pp. 212–221.

[14] Verified synchronizer specifications. [Online]. Available: http://fmt.ewi.
utwente.nl/redmine/projects/vercors-verifier/wiki/synchronizers

[15] C. Haack, M. Huisman, C. Hurlin, and A. Amighi, “Permission-based
separation logic for Java,” submitted.

[16] M. Parkinson and G. Bierman, “Separation logic, abstraction and inher-
itance,” in Principles of programming languages (POPL ’08). ACM,
2008, pp. 75–86.

[17] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino,
and E. Poll, “An overview of JML tools and applications,” STTT, vol. 7,
no. 3, pp. 212–232, 2005.

[18] D. Lea, “A Java fork/join framework,” in Proceedings of the ACM 2000
conference on Java Grande, JAVA ’00. ACM, 2000, pp. 36–43.

[19] ——, “The java.util.concurrent synchronizer framework,” Science of
Computer Programming, vol. 58, no. 3, pp. 293–309, Dec. 2005.

[20] A. Amighi, S. Blom, and M. Huisman, “Resource protection using atom-
ics: Patterns and verifications,” http://eprints.eemcs.utwente.nl/23306/,
CTIT, University of Twente, Technical Report TR-CTIT-13-10, 2013.

[21] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv, “Local
reasoning for storable locks and threads,” in 5th Asian Conference on
Programming languages and Systems, ser. LNCS, vol. 4807. Springer,
2007, pp. 19–37.

[22] A. Hobor and C. Gherghina, “Barriers in concurrent separation logic,”
in 20th European Symposium on Programming (ESOP), ser. LNCS,
G. Barthe, Ed., vol. 6602. Springer, 2011, pp. 276–296.

[23] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers, “Abstract
read permissions: Fractional permissions without the fractions,” in
Verification, Model Checking, and Abstract Interpretation, ser. LNCS,
R. Giacobazzi, J. Berdine, and I. Mastroeni, Eds., vol. 7737. Springer,
2013, pp. 315–334.

[24] R. Dockins, A. Hobor, and A. W. Appel, “A fresh look at separation al-
gebras and share accounting,” in 7th Asian Symposium on Programming
Languages and Systems, ser. LNCS, Z. Hu, Ed., vol. 5904. Springer,
2009, pp. 161–177.

