
VERCORS: a Layered Approach to Practical
Verification of Concurrent Software

Afshin Amighi Stefan Blom Marieke Huisman
Formal Methods and Tools

University of Twente
Enschede, The Netherlands

Email: {a.amighi, s.blom, m.huisman}@utwente.nl

Abstract—This paper discusses how several concurrent pro-
gram verification techniques can be combined in a layered ap-
proach, where each layer is especially suited to verify one aspect
of concurrent programs, thus making verification of concurrent
programs practical. At the bottom layer, we use a combination
of implicit dynamic frames and CSL-style resource invariants,
to reason about data race freedom of programs. We illustrate
this on the verification of a lock-free queue implementation. On
top of this, layer 2 enables reasoning about resource invariants
that express a relationship between thread-local and shared
variables. This is illustrated by the verification of a reentrant
lock implementation, where thread-locality is used to specify for
a thread which locks it holds, while there is a global notion
of ownership, expressing for a lock by which thread it is held.
Finally, the top layer adds a notion of histories to reason about
functional properties. We illustrate how this is used to prove
that the lock-free queue preserves the order of elements, without
having to reverify the aspects related to data race freedom.

I. INTRODUCTION

Over the last years, the ever-growing demands on software
performance has led to a significant increase in the use of
concurrency. As a side-effect of this development, we also
see a growing need for techniques to reason about concurrent
software. Software applications are omnipresent, and their
failure can have significant economic, societal, and even life-
threatening consequences. Naturally, also sequential software
should be without failures, however the major complexity of
concurrent software makes that the absence of failures only
can be guaranteed by using tool-supported formal techniques.

In earlier work, we have introduced the VERCORS tool
set [1], which is an annotation based program verifier. VER-
CORS encodes concurrent Java programs into the intermediate
language of Viper [2]) and then uses the Silicon tool to
generate proof obligations, which are discharged using Z3 [3].

This paper discusses how VERCORS supports a layered
approach to verification, combining different logic-based ver-
ification techniques. Each layer captures a different category
of properties. In the lowest layer, we care only about data
race freedom; in the middle layer we verify resource invariants
that relate thread-local variables to globally shared variables,
while in the top layer we verify arbitrary functional correctness
properties. Strictly speaking, this separation in layers is not
necessary, but it helps to keep the specification and verification
tractable and to make mechanical verification feasible.

At layer 1, to reason about data race freedom of multiple
threads independently modifying a shared object, we use
a combination of Implicit Dynamic Frames (IDF) [4] and
Concurrent Separation Logic (CSL) resource invariants [5]. In
our approach, IDF is used to specify whether a thread has read
or write access to a certain location, while CSL-style resource
invariants are used to associate synchronizers to shared data
(including atomic variables acting as a synchronizer). The
combination of these two allows one to verify that a shared-
memory concurrent program is free of data races in a thread-
modular way: if a thread has write access to a location, then no
other thread can simultaneously access this location, and thus
no other thread can observe the changes made to this location;
if a thread has read access to a location, then any other thread
can also only have read access to this location, and thus the
value stored in this location cannot be changed. If shared data
is protected by a synchronizer, the synchronizer operations
ensure that either one thread has exclusive access to the data
protected by the resource invariant; or multiple threads have
shared read-only access. This approach works for lock-based
programs, as well as for programs that use atomic operations
for synchronization.

However, in more complex examples, the resource invariant
often needs to express a relationship between thread-local and
global/shared state. Therefore, in the 2nd layer, we add the
notion of thread-local state. Permissions to access this local
state can be split between the CSL invariant of the shared
object and the threads, in such a way that when a thread
holds the invariant, it can update the shared state and its own
local state, while it is able to inspect the state of all other
threads. Hence every thread can keep track of its own actions
through its own local state, while the CSL invariant expresses
consistency between the local state and the shared object.

Finally, in the top layer, we add the notion of history [6],
which allows us to verify functional properties in addition to
data race freedom. A history captures abstractly the updates to
data. Updates to histories are traced locally, and when threads
synchronize, their local histories are merged into a global
history, capturing the possible interleavings between the local
updates. Note that functional properties could be accounted for
using resource invariants and thread-locality only. However,
this would give rise to large and complex invariants, because
the invariant has to take into account how everything fits

together. Instead, layer 3 splits the reasoning about functional
properties: at the thread level each thread accounts for the
actions that it performs on a global data structure, while at
the global level the abstract global history is used to show
that all threads together have the required behavior.

This paper describes for each layer of the verification stack
how the verification is handled in VERCORS. The key idea
behind the VERCORS tool set is that it works as a transforming
compiler, reducing complex verification problems into a verifi-
cation problem for basic Separation Logic. As a back end, we
use the Silicon verifier [2], thus all annotated programs are
encoded into annotated Silver programs, which is the inter-
mediate language used by Silicon, and has dedicated support
to reason about access permissions. For each layer in the
verification stack, we describe how the encoding into Silicon
is defined. Because of our layered approach to verification, the
transformation is easily manageable, and can be guaranteed to
be correct.

We illustrate the usability of our layered approach by
presenting a non-trivial verification example for each layer.
At the lowest layer, we verify data race freedom of a lock-
free queue implementation, derived from the standard Java API
lock-free queue. At the middle layer, we show how a relation
between thread-local and shared variables is used to verify
an implementation of reentrant locks, again derived from the
Java API implementation, ensuring that two threads never can
simultaneously hold the lock. At the top layer, we use histories
to prove that the lock-free queue implementation preserves the
order of elements stored in the queue.

It should be noted that this approach differs from recent
proposals for a large range of powerful and expressive logics to
reason about concurrent software, such as CAP [7], iCAP [8]
and CaReSL [9], in that we do not aim at a highly expressive
logic, but instead focus on an easily manageable approach to
the verification of concurrent software, by breaking down the
verification problem into smaller, more manageable problems.
Moreover, the focus of our work is on efficient tool support,
reusing currently available technologies, while the focus of
these logics is expressiveness, and the ability to capture all
concurrent programming patterns.

To summarize, the main contributions of this paper are:
• a layer-based approach to the verification of concurrent soft-

ware, identifying different kinds of verification problems,
which all need their own level of annotations;

• for each verification layer, a discussion how the verification
problem is encoded into a simpler verification problem in
basic Separation Logic; and

• example verifications at each layer of the verification stack.
The paper is structured as follows: Section II briefly intro-

duces CSL, IDF, and the VERCORS specification language.
Section III discusses how the combination of IDF and CSL-
style resource invariants allows to verify data race freedom.
Section IV then discusses how the relation between global
properties and thread-local state can be maintained as part of
the resource invariant, while Section V discusses the verifi-
cation of functional properties. Finally, Sections VI and VII

discuss related work and conclusions.

II. BACKGROUND

A. Concurrent Separation Logic (CSL)

Concurrent Separation Logic (CSL) [5] is used to reason
about concurrent programs. It employs the points-to predicate,
along with the separating conjunction operator of Separation
Logic [10]. The points-to predicate specifies the contents of a
specific location of the heap, and the separating conjunction
operator φ*ψ expresses that formulas φ and ψ hold for
disjoint parts of the heap.

CSL’s parallel composition rule expresses that each thread
can be verified in isolation, provided they affect disjoint parts
of the heap. Data that is shared by different threads can be
specified using a resource invariant. Access to the data speci-
fied by the resource invariant can only be obtained (1) by using
an exclusive synchronizer, e.g., a lock, or (2) by executing the
body of an atomic operation, e.g., a compare-and-set operation;
provided that the thread leaving the synchronizer or the atomic
operation can re-establish the resource invariant.

Decorating the heap with permissions [11] allows one to
reason about multiple threads that concurrently read the same
location [12]. In Permission-based Separation Logic (PBSL)
an amount of permission π ∈ (0, 1] may be specified for
locations: full permission π = 1 denotes a write permission;
any fraction π ∈ (0, 1) is interpreted as a read permission.
Threads can split and combine permissions. Soundness of the
logic guarantees that the sum of the permissions on a location
never exceeds the full permission 1, the only operations that
can transfer permissions are ordered in the happens-before
relation, and as a result, any verified concurrent program is
free of data races.

B. Implicit Dynamic Frames (IDF)

IDF [4] is another program logic that extends Hoare Logic
with the ability to reason about access to the heap by means
of access permissions to heap locations, similar to PBSL.
However, IDF and PBSL differ in how value-specifications
are handled: in IDF, one uses side-effect-free expressions in
the underlying programming language, while in PBSL, one
first relates the program variables to logical variables and then
states properties about these logical variables.

To encode the behavior of language constructs that are
not part of IDF, we will use two of its proof commands.
The exhale command first asserts that a formula is true and
then drops the resources specified by the formula. The inhale
command assumes the given formula and adds the resources
specified by the formula.

C. VERCORS Specification Language

The VERCORS specification language uses a JML-like syn-
tax [13], combined with PBSL and IDF ingredients: resource
invariants are essentially defined in PBSL, while our encoding
target language Silicon uses IDF exclusively. In VERCORS,
predicates have type resource, the separating conjunction
is written ∗∗, a full permission is written Perm(x,1), and a

fractional permission is written Perm(x,p) where p ∈ (0, 1).
If the value of p is not known or unimportant, then one may
write Perm(x,read) or Value(x).

Some resource formulas, known as groups, can be split
into multiple parts that may be shared. To denote such a
share of a group, we use the notation [<fraction>]<group>.
The VERCORS specification language also supports ghost
variables and specification commands, such as assert. When
evaluating expressions, it may be necessary to inject ghost
code just before evaluating a subexpression. This is what
the with{ G } annotation does, where G can be arbitrary
ghost code, including proof hints. Similarly, the annotation
then{ G } inserts ghost code immediately after the evaluation
of a sub-expression. Moreover, in case of a method call, the
with block may be used to pass ghost in-parameters to the
method, using assignments, and the then block may be used
to inspect the value of ghost out-parameters.

III. LAYER 1: PERMISSIONS AND RESOURCE INVARIANTS

At the bottom layer of the VERCORS verification stack, a
combination of IDF and CSL is used to reason about data race
freedom. As explained, resource invariants capture access to
the shared state. There are two ways to access shared state: by
using locks (and other synchronizers), and by using atomics.
Here we focus on atomic operations, and their encoding into
Silicon, however reasoning about shared state protected by a
lock is done in a similar way.

We illustrate our approach by discussing the verification
of a lock-free queue, derived from ConcurrentLinkedQueue in
the Java API. This example was also specified and verified by
Jacobs et al. in richer logics [14], [15], but our version is a
third shorter in length.

A. Reasoning about Atomic Blocks

In the VERCORS tool, internally an atomic operation on
object o with body S is modeled as atomic(o){S}. The
resources associated to object o are specified by defining an
appropriate resource invariant csl invariant, which has to be
established when the object is initialized, thus making it an
implicit postcondition of all constructors of the class that
defines the resource invariant.

To reason about atomic operations, CSL uses the rule
[ATOMIC] [16], which expresses the following: any thread
executing an atomic operation with a body S, obtains the
shared state specified by the resource invariant csl invariant;
then, while executing S it is allowed to violate csl invariant,
but after the execution of S, csl invariant has to be re-
established and released to the shared state.
{o.csl invariant()*P} S {o.csl invariant()*Q}

[ATOMIC]
{P} atomic(o){S} {Q}

B. Encoding of Atomic Blocks

In Java, we do not directly write atomic statements. In-
stead, the java.util.concurrent.atomic package provides several
classes, whose methods perform the atomic operations get, set,
and compareAndSet for all Java types. Thus, the encoding of

resource csl invariant() = Value(begin) ∗∗
2 RPerm(head) ∗∗ ([read]reachable(begin,head.val)) ∗∗

RPerm(tail) ∗∗ ([read]reachable(begin,tail.val)) ∗∗
4 Perm(last,1) ∗∗ ([read]reachable(begin,last)) ∗∗

chain(head.val,last) ∗∗ RPointsTo(last.next,null);

Fig. 1. CSL resource invariant of the lock-free queue.

atomic methods from Java into Silicon is done in two steps:
first the atomic method call is transformed into a VERCORS
atomic instruction, and in the next step, the use of the proof
rule [ATOMIC] is encoded into Silicon.

Java’s atomic operations are encoded as VERCORS atomic
instructions, using several additional ghost variables to store
the results of argument evaluation. For example, if var is an
AtomicInteger then res=var.compareAndSet(expect,replace) is
internally transformed into:

int obj=var; int x=expect; int v=replace;
2 atomic(this){

if (obj.val==x) { obj.val=v; res=true; }
4 else { res=false; }
}

Note that var, expect and replace are evaluated outside of the
atomic block. The call to compareAndSet might be annotated
with ghost annotations with{ G1 } then{ G2 }, to maintain
the resource invariant, or to provide proof hints to prove
correctness of the atomic body. In that case, these ghost
instructions are evaluated inside the atomic block, after lines
2 and 4, respectively.

Finally, the encoding of the [ATOMIC] proof rule in Silicon
is simple; each occurrence of the statement atomic(o){S} is
replaced by the sequence:

inhale o.csl invariant();
S;
exhale o.csl invariant();

This transformation, first, uses the instruction inhale to add
the resources and knowledge of the resource invariant. Then,
using the added resources the body of the atomic block S is
verified, and finally, exhale checks that the resource invariant
holds and then removes it.

C. Verification of a Non-blocking Queue

We demonstrate the usability of our approach by ver-
ifying data race freedom of the essential methods of
ConcurrentLinkedQueue from the java.util.concurrent library,
which implements a lock-free queue as proposed by Michael
and Scott [17]. First, we briefly explain the data structure, and
then we describe how the class is specified and verified.

1) Implementation: The queue consists of (1) two atomic
references: head and tail, and (2) a chain of nodes, where each
node contains a value field and an atomic reference field to
the next node. The head points to a sentinel node, i.e., its
value does not contribute to the queue. The last node of the
queue can be identified by its null-valued next field. A queue
is empty when both the head and the tail point to the sentinel
node with a null-valued next field.

2) Specification: The main part of the specification is the
resource invariant, which characterizes a valid queue structure.

/∗@ requires Value(head) ∗∗ Value(tail);
2 ensures Value(head) ∗∗ Value(tail)

∗∗ (\result != null ==> Perm(\result.val,1)); @∗/
4 Integer try deq(){

Node n1,n2; boolean tmp; Integer res=null;
6 n1=head.get();

n2=n1.next.get()/∗@ with {
8 lemma readable or last(this.begin,n1); }@∗/;

if (n2!=null) {
10 tmp=head.compareAndSet(n1,n2)/∗@ with {

if (head.val==n1) { unfold chain(head.val,last);}}@∗/;
12 if(tmp){ res=new Integer(n2.val); }

}
14 return res; }

Fig. 2. Dequeue attempt.

The specification additionally uses two ghost fields with type
Node: (1) begin, which represents the original head of the
queue, i.e., the head of the queue when the data structure is
initialized, and (2) last, which points to the last node of the
queue.

The resource invariant uses several auxiliary predicates.
First, RPerm and RPointsTo, which combine permission to
read an AtomicNode with Perm and PointsTo on the embedded
field, respectively. Next, the reachable(n,m) predicate captures
that there is a path from n to m, and chain(n,m) specifies
full ownership of the data element in the nodes of the queue
located between n and m. The resource invariant (see Fig. 1)
states that begin can be read and is immutable. The fields
head.val, tail.val, and last are writable and reachable from
begin. The elements between head and last are fully owned
and the last.next is writable and null.

3) Verification: The essential part in the verification of the
lock-free queue is proving that all atomic operations preserve
the resource invariant. In addition to our encoding, this uses
the following lemmas (which all have inductive proofs):
(i) The reachable predicate is transitive.
(ii) Given a node from which both the last node and some

other node are reachable, either the other node is the last
node, or the next node of the other node is also reachable.

(iii) Appending one node to a permission chain yields a
permission chain.

Fig. 2 shows a fully specified implementation of the method
try deq, which attempts to dequeue a node of the queue. First,
it copies the current head of the queue to n1. Next, it copies the
next of n1 to n2, which is allowed because due to lemma (ii)
we have either write or read. If n2 is not null then the queue
was not empty and compareAndSet is used to change the head
to the next node. Upon success the element is returned as an
Integer. In all other cases null is returned to signal failure. A
full specification of the queue and online version of the tool
is available at [18].

IV. LAYER 2: RELATING THREAD-LOCAL AND GLOBAL
VARIABLES

To understand why in layer 2 we add the notion of thread-
local state, it is important to realize that the queue specification
above does not allow threads to express any property about the

elements in the queue, even though the specification of the
queue describes the queue’s behavior in terms of all elements
the queue has held and still holds. This list, however, is only
available for reasoning during atomic operations, because the
access permissions on the list are maintained in the invariant.
Hence, it is not possible for threads to reason about the
elements of the queue outside of atomic regions, and worse,
because a thread does not have any permission on these
variables outside of atomic regions, it is forced to forget
all knowledge about them: after all, any other thread might
modify them.

The simplest way to avoid this loss of information is
to add thread-local state and to keep this thread-local state
synchronised with the global state. The concept of thread-
local state is old; it is already used in the classical example of
Owicki-Gries [19] where two threads independently atomically
increment a variable by one. To prove that the end result
increases the initial value by two, two thread-local ghost
variables are used that account for the behavior of each thread.
These ghost variables are then used to state a resource invariant
that precisely captures the value of the shared variable.

In our approach, this combination of thread-local and global
state is achieved as follows. Full permission on the shared
variable is kept in the invariant, thus it may be modified during
atomic operations. For thread-local state, half the permission
is held by the invariant, thus it may be read to specify the
relation with the shared state. In addition, each thread holds
the other half permission on its own thread-local state, which
means that it can read its thread-local state at any time during
execution, and moreover, it has the ability to change its own
thread-local state when it holds the resource invariant, i.e.,
during atomic operations.

A. Encoding

The concept of a thread-local variable is present in many
programming languages. Typically, thread-locality is not a
primitive of the language, but it is added by means of a
library. For the moment, we use a manual encoding of thread-
locality on top of layer 1. Our encoding assumes that an
application has access to a fixed number of unique objects
(or integers) identifying each of the threads, which allows
to encode thread-local variables as an array, where each
array element corresponds to the thread-local variable for the
corresponding array index.

Additionally, a special treatment is required for reasoning
about the current thread id. We have a specification construct
\current thread, which yields the id of the current thread.
Thus, as its semantics depends on the thread in which it
is evaluated, \current thread cannot be used in invariants.
In fact, it may not be used in any predicate, unless the
specification modifier thread local is used for the predicate.
Moreover, any predicate that invokes a thread local predicate
has to be marked thread local itself.

We encode \current thread by adding it as an argument
to all methods, constructors, and thread local predicates and
all their invocations. This allows us to detect illegal use

of \current thread, i.e., in a non-thread local predicate,
because every illegal use would result in a local variable that
was not declared. Moreover, we check that csl invariant is not
declared thread local.

B. Specification and Verification of a Reentrant Lock.

To illustrate the kind of verifications that can be done at
layer 2, we discuss the specification and verification of the im-
plementation of a reentrant lock. The specification is adapted
from [12], [20], while the implementation is a simplified
version of OpenJDK6 java.concurrent.locks.ReentrantLock.

The major challenge in specification and verification is the
reentrant lock behavior. In separation logic, the specification
of the behavior of non-reentrant locks is simple: when ob-
taining the lock, the resource invariant attached to the lock,
i.e., access to the shared data protected by the lock, is also
obtained and upon unlocking the invariant must be released.
Assuming that double locking leads to an unchecked error
or a deadlock, this behavior can be specified with straight-
forward contracts. However, for reentrant locks more care is
required: the resource invariant is only obtained upon locking
for the first time and it must be yielded when unlocking for
the last time only. This means that when obtaining the lock,
the invariant can only be obtained if there is proof that the
lock is obtained for the first time.

1) Implementation: We follow the ReentrantLock imple-
mentation in OpenJDK6 by having two fields: an atomic
integer count and an integer owner. The latter variable is
set to the thread id of the current owner of the lock, or −1
otherwise. If a thread already is the owner then a (re)lock is
done by atomically increasing count. Otherwise, the lock must
be obtained by changing count from 0 to 1 using compare-
and-set. To release the lock, the count is decreased, where the
owner must be cleared before the final decrease to 0.

2) Specification: The specification of a reentrant lock (see
Listing 3) uses the predicate lockset(S), where S is a multi-
set of locks. The predicate lockset(S) holds for a thread if the
multiplicity of any lock in the lock set is the number of times
the thread holds that lock. Hence, obtaining a lock adds the
lock to the lock set, while releasing a lock means removing it
from the lock set. Moreover, when a lock does not occur in
the lock set before locking, the resource invariant is obtained,
and when it is no longer present after unlocking, it has to be
yielded. In our previous work [12], the lockset(S) was added
to the specification language as a primitive. In this paper, we
will define it in terms of the current thread and an invariant.

3) Invariant: To define the invariant for a lock (see Fig. 4),
we use several ghost variables. Without loss of generality,
we assume a fixed number of threads (T), which is also a
ghost variable. We use a ghost array held with T entries that
functions as the thread-local count for each thread. And we use
a ghost variable holder that tracks the owner of the lock. Note
that we cannot use the implementation field owner because it
cannot change at the same time as the implementation field
count changes. Ghost fields can change at the same time and
thus preserve an invariant.

interface Lock {
2 //@ resource lock invariant();

/∗@
4 given bag<Lock> S;

requires lockset(S);
6 ensures lockset(S+seq<int>{this});

ensures !(this \memberof S) ==> lock invariant(); @∗/
8 void lock();
}

Fig. 3. Interface Lock.

resource csl invariant()= Value(T) ∗∗ T > 0 ∗∗
2 Value(held) ∗∗ Value(subject) ∗∗

APerm(count,1/2) ∗∗ APerm(owner,1/2) ∗∗
4 (count.val == 0 ==> subject.inv() ∗∗

APerm(count,1/2) ∗∗ APerm(owner,1/2)) ∗∗
6 Perm(holder,1) ∗∗ −1 <= holder < T ∗∗

(holder == −1) == (count.val == 0) ∗∗
8 (\forall∗ int i; 0 <= i < T ;

Perm(held[i],1/2) ∗∗ (i!=holder ==> held[i]==0)
10 ∗∗ held[i] >= 0 ∗∗ (held[i]==0 ==> owner.val!=i)

);
12 resource lockset part()=

Perm(held[\current thread],1/2) ∗∗
14 (held[\current thread] > 0 ==>

APointsTo(count,1/2,held[\current thread]) ∗∗
16 APointsTo(owner,1/2,\current thread));

Fig. 4. The definition of the lock invariant in the Lock class.

Permission for the various fields of a lock are divided be-
tween the invariant and the lockset part predicate that will be
used in the lockset definition. The invariant holds permission
1
2 on each element of the held array and the count and owner
atomic fields. The other 1

2 for held elements is held in the
corresponding lockset, while the other 1

2 for the atomic fields
is kept in the lockset for the owning thread and in the invariant
if the lock is free.

The lockset predicate is defined in Fig. 5. The most impor-
tant lines are the last two: for every lock, the lockset holds
the permissions defined in lockset part and the held count for
the current thread is precisely the multiplicity of the lock id
in the lockset.

The full listing of the lockset specified implementation of
our reentrant lock can be found online [18].

V. LAYER 3: FUNCTIONAL PROPERTIES USING HISTORIES

Invariants, with or without thread-locals, are adequate for
specifying and verifying data race freedom and basic func-
tional properties. The verification of more complex functional
properties, however, can get very tedious because all inter-
actions between threads have to be specified in great detail.
Therefore, this section discusses a different approach, adding
the notion of histories [6] on top of layer 2, and uses this to
prove that the order of elements is preserved in the lock-free
queue.

A. Reasoning with Histories

The key idea of history-based reasoning is that functional
verification is not performed on the program directly, but on

thread local resource lockset(bag<int> S)=
2 Value(T) ∗∗ 0 <= \current thread < T ∗∗

Value(L) ∗∗ L > 0 ∗∗ Value(locks) ∗∗
4 (\forall∗ int l ; 0 <= l < L ;

Value(locks[l]) ∗∗ Value(locks[l].subject) ∗∗
6 Value(locks[l].T) ∗∗ locks[l].T==T ∗∗

Value(locks[l].held) ∗∗ locks[l].lockset part() ∗∗
8 locks[l].held[\current thread]==(l \memberof S)

);

Fig. 5. The definition of the lockset predicate in the Thread class.

an abstract model of the program. This idea combines data
abstraction [21] with process algebra [22].

An abstract model is defined in terms of variables and
actions on those variables. Each action abstracts away from
a concrete operation that can be carried out on the program
data: an action contract specifies which concrete operations
the action corresponds to. For example, Fig. 7 specifies an
abstract model for queues: q specifies a queue state, while get
is an abstract action on the queue. Actions can be combined
into processes using standard operators, known from process
algebra, such as choice, sequential composition, and parallel
composition. To capture action repetition, the behavior of
processes also can be described using a recursive definition,
which must be paired with a contract. See for example the
definition of process get all in Fig. 7 (lines 11-14).

In the method specifications, we record the local history of
the actions performed in a thread. For example, the method
specification of method get in Fig. 8 expresses that this
method performs an abstract get action. In the method bodies,
annotations are added to mark blocks that implement actions.
For example, in the method try deq in Fig. 2 we add
{ action hist, p , P, hist.get(n2.val); hist.q=tail(hist.q); }

after the unfold at line 11, stating that we extend the history
hist, for which we own a fraction p and which is P, with an
action get. This is done by removing the head element from
hist.q.

Typically, whenever a thread is created, it starts with an
empty local history. When threads terminate and are joined,
the local history of the terminated thread is merged with
the history of the joining thread. Eventually, this results in
one global history of abstract actions over which the desired
functional property can be verified. To guide the verification,
some additional annotations for the treatment of histories may
be provided as proof hints: initialize a new, empty history over
a set of program fields, destroy a history etc., see [6] for a full
overview.

The verification of these annotations consists of two main
tasks. First, the code must be verified to ensure that it
implements a linearizable sequence of actions, as specified in
the history annotations. Second, the history specification has
to be verified to ensure that every possible trace satisfies the
behavior specified in the form of the process contracts.

This has two advantages for the verification of functional
properties. First, we can abstract from implementation details
(e.g. the linked list in the queue becomes a sequence in the

/∗@ requires Perm(q , 1) ∗∗ PointsTo(q mode , 1 , 0);
ensures Perm(q , 1) ∗∗ PointsTo(q mode , 1 , 1)
∗∗ Perm(q init , 1/2) ∗∗ q == \old(q) ∗∗ q init == \old(q)
∗∗ hist passive(1,p empty()); @∗/

void create hist();

Fig. 6. The method that encodes creating a history

history). Second, because we have already verified data race
freedom, we can verify the properties in a non-deterministic
sequential setting, which makes it less complicated.

B. Encoding

In theory, histories are defined over arbitrary sets of loca-
tions. The input language for the tool however does not use
locations as first class citizens, so it defines histories over the
fields of a History class. Actions and processes are also defined
using an appropriate ADT in the same class. The predicate
Hist that describes (part of) the recorded history has three
arguments: a reference to a history object (instead of a set of
locations), a fraction and a process expression that denotes the
history accounted for. The initial state of a history is specified
using the predicate HistInit, whose arguments are a reference to
a history and a formula. For example, starting with an empty
queue is specified as HistInit(hist,q==\seq<int>{}).

To complete the first verification task i.e., to ensure lin-
earizability, modifications of the fields of the history object
have to be grouped in action blocks, which must keep full
permission on every field written during the action for the
duration of the entire action. This is managed by having three
forms of permissions on the fields: normal (Perm), passive
(HPerm) and active (APerm). Passive permissions can only be
used to read from history fields. To write a field you need full
active permission. Permission changes, as described in [6], are
encoded by replacing every history annotation by a method call
whose contract matches the behavior of the proof rules for the
annotation. For example, Fig. 6 shows the method that encodes
the creation of a history. Note how the initial state is in an
extra ghost field (q init) in order to be able to reason about it.
The hist passive predicate encodes Hist(this,1,empty). Note
how the empty expression is replaced by an expression in the
ADT.

The verification of action blocks records the initial state
of the variables to be modified in ghost fields (for checking
the actions post-condition), exchanges full passive for full
active permission, and assumes any pre-condition of the action.
In addition, the encoding of the primitive Hist predicate is
inhaled. At the end of the action block, it asserts the post-
condition of the action and changes the permissions back.
In addition, the encoding of the Hist predicate with an extra
action appended is exhaled.

The second part of the verification is to show that every
execution trace of a history satisfies its contract. To do this,
we generate a method for every defined process, whose body
is constructed as follows: sequential composition on processes
becomes sequential composition of statements, choice on pro-
cesses becomes a non-deterministic choice, and every mention

public class History {/∗@
2 seq<int> q;

4 modifies q; ensures \old(q)==seq<int>{e}+q;
process get(int e);

6

modifies q; ensures \old(q)==es+q;
8 process get all(seq<int> es)=

|es| == 0?empty:(get(head(es))∗get all(tail(es)));
10

ensures get all(es)∗get(e)==get all(es+seq<int>{e});
12 void get lemma(seq<int> es,int e){ if (|es|>0){

get lemma(tail(es),e);
14 }}

16 modifies q; ensures \old(q)+input==output+q;
process feed(seq<int> input,seq<int> output)=

18 put all(input)||get all(output);

Fig. 7. Fragment of History Specification for Queues

of an action or a defined process becomes a method invocation.
For example, the method generated for put all is

ensures q==\old(q)+es;
void put all(seq<int> es){

if (|es|==0){
} else {

put(head(es));
put all(tail(es));
}}

Note that we call put all in the body. This is safe because
this call is guarded by a call to the action method put, which
means that by induction on the length of a trace we can assume
that this call satisfies its contract. If a process expression
contains unguarded calls, the laws of process algebra are used
to compute an equivalent guarded form.

C. Verification of a Queue History

To illustrate reasoning about complex functional properties
using histories, we prove a functional property for the lock-free
queue discussed in layer 1: if one thread is given an array with
elements that it puts into an empty queue, and a second thread
is given an array of the same length that it fills by getting
elements from the queue then, once both threads terminate, the
contents of both arrays are identical. Essentially, this captures
that the order of elements is preserved in the queue.

First, Fig. 7 shows part of the history specification. The
data managed by the history is a single field q that contains a
sequence of integers, i.e., an abstraction of the queue contents.
Next, the contract of the get action shows that it removes
the first element of q. Then, we define process get all, which
appends a whole sequence of integers to the queue. The
history specification is extended with a lemma that shows
a useful property about the get all process, namely that the
sequential composition of a get all and a get is again a get all.
Finally, we define the feed process on whose contract the
whole verification hinges; it states the behavior of putting and
getting two sequences in parallel: the old contents plus the
new elements have to be the same as the retrieved elements
plus the current state.

//@ History hist;
2 //@ boolean hist active;

/∗@ given frac p; given process P;
4 requires Value(hist) ∗∗ Hist(hist,p,P)

∗∗ p!=none ∗∗ PointsTo(hist active,p/2,true);
6 ensures Value(hist) ∗∗ Hist(hist,p,P∗hist.get(\result))

∗∗ p!=none ∗∗ PointsTo(hist active,p/2,true);
8 @∗/ public int get();

Fig. 8. History specification of the get method.

public void run(){
2 int N=output.length;

int i=0;
4 //@ vals=seq<int>{};

/∗@ loop invariant Value(queue) ∗∗ Value(queue.hist)
6 ∗∗ Value(output) ∗∗ Perm(vals,1) ∗∗ 0 <= i <= N

∗∗ i==|vals| ∗∗ N==output.length
8 ∗∗ PointsTo(queue.hist active,1/4,true)

∗∗ (\forall∗ int k; 0 <= k < N ; Perm(output[k],1))
10 ∗∗ (\forall int k; 0 <= k < i ; output[k]==vals[k])

∗∗ Hist(queue.hist,1/2,queue.hist.get all(vals)); @∗/
12 while(i<N){

output[i]=queue.get()/∗@ with {
14 p=1/2 ; P = queue.hist.get all(vals);}@∗/;

//@ vals=vals+seq<int>{output[i]};
16 i=i+1;

}
18 }

Fig. 9. Specified run method of the receiver

Fig. 9 shows the run method of the receiver, annotated with a
loop invariant that describes its behavior (the method contract
itself is not shown as it is essentially an instance of the loop
invariant). The body of the loop uses the get method specified
in Fig. 8 to fill the array. Note how the ghost field vals is used
to maintain the list of elements written into the array. Also note
that the loop invariant only refers to the output array and the
vals field: the specification does not depend on the behavior of
other threads that may operate on the queue. The comparison
of the orders of the input and the output occurs when the
two threads are joined by the thread that forked them. This
thread knows that: (i) at first q was empty, (ii) the program in
parallel put all input array elements into the queue and got all
output array elements from the queue. (iii) these arrays have
the same length. What (ii) says is that the program performed
the process feed (Fig. 7, line 16) for the contents of the two
arrays. From the contract of that process, it can be inferred
that those contents are the same and the current q is empty
too. Thus, modular verification is achieved.

Finally, we revisit the lock free queue try deq method in
Fig. 2. To add history support we do the following:
• We add a ghost field History hist; to keep the history state.
• We add a ghost variable boolean hist active=true; that

denotes if the history is active.
• We modify the definition of chain to have a third argument

that contains the contents of the chain, and we propagate
this change to all uses of chain, including the lemmas.

• We change chain(head.ref,last) in the invariant to
Perm(hist active,1/2) ∗∗ Value(hist) ∗∗
(hist active ==> HPerm(hist.q,1)∗∗chain(head.ref,last,hist.q))

i.e., we can access list active and hist, and while the history
is active we hold protected permission for hist.q, whose
value is precisely the contents of the queue.

• We insert an action block after the unfold at line 11 to keep
the queue contents and hist.q equal, as discussed above:
{ action hist, p , P, hist.get(n2.val); hist.q=tail(hist.q); }

VI. RELATED WORK

As already mentioned above, various program logics have
recently been proposed to reason about concurrent programs,
e.g., CAP [7], iCAP [8], CaReSL [9] , TaDA [23] and
IRIS [24]. These are all highly expressive logics, which are
able to reason about similar properties as discussed in this
paper, but as far as we are aware, there is no tool support for
them, while our focus is to make verification of concurrent
programs practical. The difference between CAP and our
approach is that we use a predicate as the resource invariant,
rather than an arbitrary boxed formula. As a result, we can
only use explicitly declared variables to specify a relation
between the local state and the invariant. This is less elegant,
but also prevents the problem of stability of boxed formulas
that is caused by implicitly crossing the boundary between
the shared and the local state. Essentially, iCAP enriches
CAP with impredicative protocols and CaReSL introduces
thread-locals to modularly reason about fine-grained data-
structures. However, so far there is no tool support for these
program logics. Moreover, these logics share the property that
functional verification happens in parallel with the verification
of the data race freedom. In contract, using histories the
functional verification happens separately. The logic TaDA has
one feature that our logic does not (yet) have: it allows proving
that a method behaves as if it atomically performs an action,
while we can only axiomatize this.

Closely related to our work, Jacobs and Piessens propose
a technique to verify functional properties of lock-free data-
structures involving atomic operations in VeriFast [14], which
has recently been extended with support for Rely-Guarantee
reasoning [15]. They also study the Michael-Scott queue as
an example and their work is implemented in VeriFast. As far
as data race freedom is concerned, their work and ours are
identical in concept, but quite different in the organization of
the specification language. For example, we write glue code
in with and then blocks for every atomic method invocation.
They declare several ways in which an atomic method can
operate up front. For the functional properties, their method
does not achieve the complete separation between local and
global reasoning that is enabled by histories. Also, their notion
of action is less general than ours, as theirs is limited to
a single atomic operation, while ours can combine multiple
atomic operations into a single action.

Compared to the logics mentioned above, we use a simple
form of invariant. Due to this simplicity, our invariants are
easy to verify by encoding them in existing tool supported
languages. Using thread local variables in a systematic way,
our notion is powerful enough to prove data race freedom.
Rather than designing extra features for functional verification

into the invariant mechanism, we use a separate mechanism
which offers a better separation of concerns.

The claim made about IRIS [24] that invariants and monoids
are all that one needs to reason about concurrent software is in
spirit identical to the claim we make in this paper. Invariants
in our approach are similar to IRIS’s invariants, but, while
our process algebra is a monoid, the mechanism for executing
actions has no equivalent in IRIS. Each action block consists
of a number of atomic steps that are independent of any other
step that it may be interleaved with.

Our logic also satisfies the requirements put forth by Da
Rocha Pinto et al. [25]: Our thread-local state is auxiliary state,
histories provide interference abstraction, we have resource
ownership through separation logic, and we get atomicity
through the use of atomic methods and blocks.

Our approach is also in line with the works of Jones et
al. [26], [27], which propose a limit to the expressive power
of specification formalisms in order to keep specifications
analyzable and warn of not using auxiliary variables beyond
the point where they are appropriate.

We have used thread-local specification patterns in our
earlier work on atomic operations [28], OpenCL kernel pro-
grams [29], and Parallel Loops [30]. The encodings used
to implement the latter two are similar in style to the ones
introduced in this paper: they translate the proof requirements
into a method that must be checked and modify code by
inserting exhale and inhale instructions.

Rely-Guarantee reasoning [31] is a reasoning style that is
intuitive and often elegant. We believe it is possible to encode
this style into layer 2 at the price of a large amount of
(automatically) added annotations. It is much easier to employ
rely-guarantee reasoning at layer 3: we can put the properties
on which an action relies as its pre-condition and put the
properties it guarantees as its post-condition.

VII. CONCLUSION

In this paper, we have shown how a layered combination
of CSL-based verification approaches for concurrent programs
can be used to make mechanical verification feasible and
practical. Each layer focuses on a particular class of properties,
and reuses the results of the lower layers. The layered approach
enables a compositional encoding into a simple verification
language, Silicon, with appropriate tool support. Because the
encoding focuses on a simple aspect of the verification, it is
easier to become convinced of the correctness of the encoding.
We also illustrate how verification can take advantage of
the layered approach. In particular, at layer 3, we verify
a functional property of a lock-free queue, for which we
have already shown data race freedom at the lower layer 1.
Moreover, in layer 2, we verify correctness of a standard
reentrant lock implementation with respect to its contracts
mainly specifying its reentrancy properties [20].

As future work, we consider several directions. It might be
possible to add other layers to the stack (or have a branching
structure of verification techniques) to enable verification of
other classes of properties. We also see that verification at

the moment requires a large amount of annotations, and
we plan to investigate if some of these can be generated
automatically. Finally, we need to do large verification case
studies, to show how well the mechanical verification scales.
Especially, in layer 2, we are interested in case studies with
richer concurrency protocols.

ACKNOWLEDGMENT

The work presented in this paper is supported by ERC grant
258405 for the VerCors project.

REFERENCES

[1] S. Blom and M. Huisman, “The VerCors tool for verification of con-
current programs,” in FM 2014: Formal Methods, ser. LNCS, C. Jones,
P. Pihlajasaari, and J. Sun, Eds. Springer International Publishing, 2014,
vol. 8442, pp. 127–131, doi:10.1007/978-3-319-06410-9 9.

[2] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, and
A. J. Summers, “Viper: A verification infrastructure for permission-
based reasoning,” ETH Zurich, Tech. Rep., 2014.

[3] L. de Moura and N. Bjrner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS,
C. Ramakrishnan and J. Rehof, Eds. Springer Berlin Heidelberg, 2008,
vol. 4963, pp. 337–340, doi:10.1007/978-3-540-78800-3 24.

[4] J. Smans, B. Jacobs, and F. Piessens, “Implicit dynamic frames:
Combining dynamic frames and separation logic,” in ECOOP 2009
Object-Oriented Programming, ser. LNCS, S. Drossopoulou, Ed.
Springer Berlin Heidelberg, 2009, vol. 5653, pp. 148–172, doi:10.1007/
978-3-642-03013-0 8.

[5] P. W. OHearn, “Resources, concurrency, and local reasoning,” Theoreti-
cal Computer Science, vol. 375, no. 13, pp. 271 – 307, 2007, festschrift
for John C. Reynoldss 70th birthday.

[6] S. Blom, M. Huisman, and M. Zaharieva-Stojanovski, “History-based
verification of functional behaviour of concurrent programs,” in Soft-
ware Engineering and Formal Methods, ser. LNCS, R. Calinescu and
B. Rumpe, Eds. Springer International Publishing, 2015, vol. 9276, pp.
84–98, doi:10.1007/978-3-319-22969-0 6.

[7] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis, “Concurrent abstract predicates,” in ECOOP 2010 Object-
Oriented Programming, ser. LNCS, T. DHondt, Ed. Springer
Berlin Heidelberg, 2010, vol. 6183, pp. 504–528, doi:10.1007/
978-3-642-14107-2 24.

[8] K. Svendsen and L. Birkedal, “Impredicative concurrent abstract pred-
icates,” in Programming Languages and Systems, ser. LNCS, Z. Shao,
Ed. Springer Berlin Heidelberg, 2014, vol. 8410, pp. 149–168,
doi:10.1007/978-3-642-54833-8 9.

[9] A. Turon, D. Dreyer, and L. Birkedal, “Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency,” in Proceedings
of the 18th ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP ’13. New York, NY, USA: ACM, 2013, pp.
377–390, doi:10.1145/2500365.2500600.

[10] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science, ser. LICS ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 55–74. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645683.664578

[11] J. Boyland, “Checking interference with fractional permissions,” in
Static Analysis, ser. LNCS, R. Cousot, Ed. Springer Berlin Heidelberg,
2003, vol. 2694, pp. 55–72, doi:10.1007/3-540-44898-5 4.

[12] A. Amighi, C. Haack, M. Huisman, and C. Hurlin, “Permission-based
separation logic for multi-threaded Java programs,” Logical Methods
in Computer Science, vol. 11, no. 1, pp. 1–66, February 2015, doi:
10.2168/LMCS-11(1:2)2015.

[13] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll, “An overview of JML tools and applica-
tions,” International Journal on Software Tools for Technology Transfer,
vol. 7, no. 3, pp. 212–232, 2005, doi:10.1007/s10009-004-0167-4.

[14] B. Jacobs and F. Piessens, “Modular full functional specification and
verification of lock-free data structures,” Department of Computer Sci-
ence, K.U.Leuven, CW Reports CW551, 2009.

[15] J. Smans, D. Vanoverberghe, D. Devriese, B. Jacobs, and F. Piessens,
“Shared boxes: rely-guarantee reasoning in VeriFast,” Department of
Computer Science, KU Leuven, CW Reports CW662, May 2014.

[16] V. Vafeiadis, “Concurrent separation logic and operational semantics,”
Electronic Notes in Theoretical Computer Science, vol. 276, pp. 335 –
351, 2011, twenty-seventh Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXVII).

[17] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed
Computing, ser. PODC ’96. New York, NY, USA: ACM, 1996, pp.
267–275, doi:10.1145/248052.248106.

[18] “The VerCors tool online.” [Online]. Available: http://www.utwente.nl/
vercors/

[19] S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs,” Acta Informatica, vol. 6, no. 4, pp. 319–340, 1976.

[20] A. Amighi, S. Blom, M. Huisman, W. Mostowski, and M. Zaharieva-
Stojanovski, “Formal specifications for Java’s synchronisation classes,”
in Parallel, Distributed and Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on, Feb 2014, pp. 725–733,
doi:10.1109/PDP.2014.31.

[21] C. Hoare, “Proof of correctness of data representations,” Acta Informat-
ica, vol. 1, no. 4, pp. 271–281, 1972, doi:10.1007/BF00289507.

[22] J. A. Bergstra, A. Ponse, and S. A. Smolka, Eds., Handbook of Process
Algebra. Amsterdam: Elsevier Science, 2001.

[23] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, “TaDA: A
logic for time and data abstraction,” in ECOOP 2014 Object-Oriented
Programming, ser. LNCS, R. Jones, Ed. Springer Berlin Heidelberg,
2014, vol. 8586, pp. 207–231, doi:10.1007/978-3-662-44202-9 9.

[24] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer, “Iris: Monoids and invariants as an orthogonal basis
for concurrent reasoning,” in Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ser. POPL ’15. New York, NY, USA: ACM, 2015, pp. 637–650,
doi:10.1145/2676726.2676980.

[25] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, “Steps in modular
specifications for concurrent modules (invited tutorial paper),” in MFPS
2015, ser. ENTCS, 2015, in press.

[26] C. Jones, I. Hayes, and R. Colvin, “Balancing expressiveness in formal
approaches to concurrency,” Formal Aspects of Computing, vol. 27,
no. 3, pp. 475–497, 2015, doi:10.1007/s00165-014-0310-2.

[27] C. Jones, “The role of auxiliary variables in the formal development
of concurrent programs,” in Reflections on the Work of C.A.R. Hoare,
A. Roscoe, C. B. Jones, and K. R. Wood, Eds. Springer London, 2010,
pp. 167–187, doi:10.1007/978-1-84882-912-1 8.

[28] A. Amighi, S. Blom, and M. Huisman, “Resource protection using atom-
ics,” in Programming Languages and Systems, ser. LNCS, J. Garrigue,
Ed. Springer International Publishing, 2014, vol. 8858, pp. 255–274,
doi:10.1007/978-3-319-12736-1 14.

[29] A. Amighi, S. Darabi, S. Blom, and M. Huisman, “Specification and
verification of atomic operations in GPGPU programs,” in Software En-
gineering and Formal Methods, ser. LNCS, R. Calinescu and B. Rumpe,
Eds. Springer International Publishing, 2015, vol. 9276, pp. 69–83,
doi:10.1007/978-3-319-22969-0 5.

[30] S. Blom, S. Darabi, and M. Huisman, “Verification of loop parallelisa-
tions,” in Fundamental Approaches to Software Engineering, ser. LNCS,
A. Egyed and I. Schaefer, Eds. Springer Berlin Heidelberg, 2015, vol.
9033, pp. 202–217, doi:10.1007/978-3-662-46675-9 14.

[31] C. B. Jones, “Specification and design of (parallel) programs,” in IFIP
Congress, 1983, pp. 321–332.

