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Abstract. We extend permission-based separation logic with a history-
based mechanism to simplify the verification of functional properties in
concurrent programs. This allows one to specify the local behaviour of
a method intuitively in terms of actions added to a local history; local
histories can be combined into global histories, and by resolving the
global histories, the reachable state properties can be determined.

1 Introduction

This paper is about verifying functional properties of concurrent programs. Al-
though crucially important, these properties are notoriously difficult to verify. A
functional property describes what the program is actually expected to do; thus
it needs to be manually specified. Moreover, a practical verification technique
should be modular, which requires specifying the behaviour of every component
(method/thread). Sadly, this causes problems in a concurrent program, because
any external thread can change the behaviour of the thread that we describe.

Example 1. We illustrate this problem on a version of the well-known Owicki-
Gries example [16], listed below: two threads are running in parallel, each of them
incrementing the value of a shared location x by 1. Access to x is protected by
the lock lx. If the value of x initially was 0, we would like to prove that at the
end, after both threads have finished their updates, the value of x equals 2.

void main(){
x=0;
incr() || incr();
print(x);
}

void incr(){
lx.lock()
x=x+1;
lx.unlock();
}

Ideally, we want to specify the code thinking only locally. Thus, a postcon-
dition Q of the method incr() would describe that the value of x is increased
by 1, i.e., Q : x == \old(x ) + 1 . Unfortunately, this is not possible, because the
expression Q is not stable, i.e., it can be invalidated by other parallal threads.

It seems that the lock lx controls where and when we can express something
about the value of x. We could try to express the behaviour of x via an invariant
associated to the lock (as proposed in [16]). However, specifying such an invariant
is not easy, because it must be preserved by the behaviour of all threads.
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Our Approach In this paper we propose an alternative approach for reasoning
about behaviour of concurrent programs, based on using histories. A history is
a process algebra term used to trace the behaviour of a chosen set of shared
locations L. When the client has some initial knowledge about the values of the
locations in L, it initialises an empty global history over L. The global history can
be split into local histories and each split can be distributed to a different thread.
One can specify the local thread behaviour in terms of abstract actions that are
recorded in the local history. When threads join, local histories are merged into
a global history, from where the possible new values of the locations in L can be
derived. Therefore, a local history remembers what a single thread has done, and
allows us to postpone the reasoning about the current state until no thread uses
the history. The approach is based on a variant of permission-based separation
logic [4, 1]. As a novelty, we extend the definition of the separating conjunction
(*) to allow splitting and merging histories.

Every action from the history is an instance of a predefined specification
action, which has a contract only and no body. For example, to specify the incr
method, we first specify an action a, describing the update of the location x
(see the code below). The behaviour of the method incr is then specified as an
extension of a local history over L with the action a(1 ). This local history is used
only by the current thread, which makes history-based specifications stable.

//@ requires true;
//@ ensures x == \old(x)+k;
action a(int k);

//@requires HL;
//@ensures HL· a(1),
void incr(){...};

We reason about the main() method as follows. Initially, the only knowledge
is x == 0. After execution of both parallel threads, a history HL = a(1) ‖ a(1)
is obtained. We can then calculate all traces in HL and conclude that the value
of x is 2. Note that each trace is a sequence of actions, each with a pre- and
postcondition; thus this boils down to reasoning about a sequential program.

Using histories allows modular and intuitive specifications that are not more
complicated than sequential specifications. Reasoning about the history H in-
volves calculating thread interleavings. However, we do not consider this as a
weakness because: i) the history abstracts away all unnecessary details and makes
the abstraction simpler than the original program; ii) the history mechanism is
integrated in a standard modular program logic, such that histories can be em-
ployed to reason only about parts of the program where modular reasoning is
troublesome; and iii) we allow the global history to be reinitialised (to be emp-
tied), and moreover, to be destroyed. Thus, the management of histories allows
keeping the abstract parts small, which makes reasoning more manageable.

Contributions We propose a novel approach to specify and verify behaviour of
coarse-grained concurrent programs that allows intuitive modular specifications.
We provide a formalisation of the approach on an object-oriented language with
dynamic thread creation, and integrate it in our VerCors tool set [2]. The tech-
nique has also been experimentally added on top of the VeriFast logic [18].
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2 Background

Permission-based separation logic Our approach is based on permission-
based separation logic (PBSL) [17, 15, 1], a logic for reasoning about multi-
threaded programs. In PBSL every access to a shared location is associated
with a fractional permission π ∈ (0, 1]. To change a location x, a thread must
hold a write permission to x, i.e., π = 1; to read a location, any read permission
i.e., π > 0, is sufficient. For every newly initialised shared location with a value
v, the current thread obtains a write permission, represented by the predicate
PointsTo(x, 1, v). Permissions may be split into fractions and distributed among
threads: PointsTo(x, π1+π2, v)*-*PointsTo(x, π1, v)*PointsTo(x, π2, v) (the op-
erator *-* is read “splitting” (from left to right) and “merging” (from right to
left)). Soundness of the logic ensures that a verified program is data-race free,
because the sum of all threads’ permissions for a given location never exceeds 1.

Locks To reason about locks, we use the protocol described by Haack et al. [1].
Following the work in [16, 15], for each lock they associate a resource invariant
inv , i.e., a predicate that describes the locations that the lock protects. A newly
created lock is still fresh and not ready to be acquired. The thread must first
execute a (specification-only) commit command that transfers the permissions
from the thread to the lock and changes the lock’s state to initialised. Any thread
then may acquire the initialised lock and obtain the resource invariant. Upon
release of the lock, the thread returns the resource invariant back to the lock.

The µCRL language To model histories, we use µCRL [9]. µCRL is powerful
and sufficiently expressive for our needs because it allows process algebra terms
parametrised by data. Basic primitives in the language are actions from the set
A, each of them representing an indivisible process behaviour. There are two
special actions: the deadlock action δ and the silent action τ (an action with no
behaviour). Processes {p1, p2, ...} are defined by combining actions and recursion
variables, which may also be parametrised. With ε we denote the empty process.

To compose actions, we have the following basic operators: the sequencing
composition (·); the alternative composition (+); the parallel composition (‖);
the abstraction operator (τA′(p)), which renames all occurrences of actions from
the set A′ by τ ; the encapsulation operator (∂A′(p)), which disables unwanted
actions by replacing all occurrences of actions in A′ by δ; the sum operator∑
d:D P (d), which represents a possibly infinite choice over data of type D; and

the conditional operator p / b . q, which describes the behaviour of p if b is true
and the behaviour of q otherwise.

Parallel composition is defined as all possible interleavings between two pro-
cesses: p1 ‖ p2 = (p1 T p2) + (p2 T p1) + (p1 | p2). The left merge (T) operator
defines a parallel composition of two processes where the initial step is always
the first action of the left-hand operator, while with the communication merge
(|) operator, the first step is a communication between the first actions of each
process: a · p1 | b · p2 = a | b · (p1 ‖ p2). The result of a communication between
two actions is defined by a function γ : A×A 7→ A, i.e., a | b = γ(a, b).
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class Counter {
2 int x;

//@pred inv = Perm(x,1,v);
4 Lock lx = new Lock/∗@<inv>@∗/();

6 //@accessible {x};
//@assignable {x};

8 //@requires k>0;
//@ensures x=\old(x)+k;

10 //@action inc(int k);

12 //@requires Hist(L,π,R,H) ∗ x ∈ L
//@ensures Hist(L,π,R,H·inc(1))

14 void incr(){
lx.lock();

16 /∗Hist(L,π,R,H)∗Perm(x,1,v)}∗/
//@ action inc(1){

18 /∗Hist(L,π, R, H)∗APerm(x,1,v)∗/
x = x+1;

20 /∗Hist(L,π,R,H)∗APerm(x,1,v+1)}∗/
//@ }

22 /∗Hist(L,π,R,H·inc(1))∗Perm(x,1,v+1)}∗/
lx.unlock();

24 /∗Hist(L.π,R,H·inc(1))∗/
}

26 }

class Client{
28 Thread t1; Thread t2;

30 void main(){
Counter c = new Counter();

32 /∗PointsTo(c.x,1,0)}∗/
t1 = new Thread(c);

34 t2 = new Thread(c);
/∗PointsTo(c.x,1,0)}∗/

36 //@ crHist({c.x}, c.x==0);
/∗Perm(c.x,1,0)∗Hist({c.x},1,c.x==0,ε)}∗/

38 //@ c.lock.commit();
/∗{Hist({c.x},1,c.x==0,ε)}∗/

40 t1.fork(); // t1 calls c.incr();
/∗Hist({c.x},1/2,c.x==0,ε)}∗/

42 t2.fork(); // t2 calls c.incr();
/∗Hist({c.x},1/4,c.x==0,ε)}∗/

44 t1.join();
/∗Hist({c.x},1/2,c.x==0, c.inc(1))}∗/

46 t2.join();
/∗Hist(c.x,1,c.x==0, c.inc(1)‖c.inc(1))}∗/

48 //@ reinit({c.x}, c.x==2);
/∗Hist({c.x},1,c.x==2,ε)∗/

50 }
}

Lst. 1. The Counter example

3 Modular History-Based Reasoning

In this section we discuss informally our approach, illustrating it on a Java-like
variant of the Owicki-Gries example, see Lst. 1.

The classical approach is to associate the lock lx with a resource invariant
inv = PointsTo(x, 1, v) [15, 1]. However, the PointsTo predicate stores both ac-
cess permission to x and the information about the value of x. Therefore, in the
incr method, after releasing the lock, all information about the value of x is
lost, and describing the method’s behaviour in the postcondition is problematic.
Therefore, our approach aims to separate permissions to locations from their val-
ues (the functional properties). While a resource invariant stores permissions to
locations, the values of these locations are treated separately by using a history.

A history refers to a set of locations L (we call it a history over L) and is used
to record all updates made to any of the locations in L. The same location can not
appear in more than one existing history simultaneously. A history is represented
by a predicate Hist(L, 1, R,H), which contains the complete knowledge about
the values of the locations in L. The predicate R captures the knowledge about
these values in the initial state, i.e., the state when no action has been recorded
in the history. Further, H is a µCRL process [9] that represents the history of
updates over locations in L. The second parameter in the Hist predicate is used
to make it a splittable predicate: a predicate Hist(L, π,R,H), where π < 1
contains only partial knowledge about the behaviour of L.

Creating a history A history over L is created by the specification command
crhist(L,R), where R is a predicate over locations in L that holds in the current
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state. This command requires a full PointsTo(l, 1, v) predicate for each loca-
tion l ∈ L, converts it to a new Perm(l, 1, v) predicate, and produces a history
predicate Hist(L, 1, R, ε). The Perm(l, 1, v) predicate has essentially the same
meaning as PointsTo(l, 1, v); however, it indicates that there also exists a his-
tory that refers to l, and any change of l must be recorded in this history. In
this way we prevent existence of more than one history over the same location.

In Lst. 1, the resource invariant is defined using the Perm (instead of PointsTo)
predicate (line 3). Thus, the lock stores the permission to x only, while indepen-
dently there exists a history that records all updates to x. The client creates a
history over a single location x in line 36. After the permissions are transferred
to the lock (line 38), the client still keeps the full Hist predicate. This guarantees
that the value of x is stable even without holding any access permission to x.

Splitting and merging histories The history may be redistributed among
parallel threads by splitting the predicate Hist(L, π,R,H) into two predicates
Hist(L, π1, R,H1) and Hist(L, π2, R,H2), where H = H1 ‖ H2 and π = π1 +π2.
The basic idea is to split H such that H1 = H and H2 = ε. However, if we later
merge the two histories, we should know at which point H was split. Concretely,
if we split H, and then one thread does an action a, and the other thread an
action b, after merging the histories, the result should be a history H · (a ‖ b).

To ensure proper synchronisation of histories, we add synchronisation barri-
ers. That is, given two history predicates with histories H1 and H2, and actions
s1 and s2 such that γ(s1, s2) = τ , we allow one to extend the histories to H1 · s1

and H2 · s2. We call s1 and s2 synchronisation actions (we usually denote them
with s and s). When threads join (a thread can join at most once in the program),
all partial histories over the same set of locations L are merged.

In Lst. 1 the Hist predicate is split when the client forks each thread (lines
40 and 42). Thus both threads can record their changes in parallel in their
own partial history. Note that in this example there is no need of adding a
synchronisation barrier, because we split the history when it is still empty. We
illustrate synchronisation barriers later in Example 2.

Recording actions We extend the specification language with actions. An
action is defined by a name and parameters, and is equipped with a specification:
a pre- and postcondition; an accessible clause which defines the footprint of the
action, i.e., a set of locations that are allowed to be accessed within the action;
and an assignable clause, which specifies the locations allowed to be updated.

Lst. 1 shows a definition of an action inc (lines 6 - 10), which represents an
increment of the location x by k. Note that the action contract is written in a pure
JML language [13], without the need to explicitly specify permissions, as they
are treated separately. In particular, action contracts are used to reason about
traces of histories, which (as discussed above) are actually sequential programs.

We can associate a program segment sc with a predefined action, by using
the specification command action a(v){sc}, see lines 17 - 21 in Lst. 1. We call
sc an action segment. In the prestate of the action segment, a history predicate
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Hist(L, π,R,H) is required, which captures the behaviour of a’s footprint loca-
tions, i.e., ∀l ∈ footprint(a).l ∈ L. At the end of the action segment, the action
is recorded in the history, see line 22 in Lst. 1. For this, it is necessary that the
action segment implements the specification of the action a.

Restrictions within an action An action must be observed by the environmental
threads as if it is atomic. Thus, it is essential that within the action segment the
footprint locations of the action are stable, i.e., they can not be modified by any
other thread. To ensure this, we impose several restrictions on what is allowed in
the action segment (a formal definition is given in Sec. 4). In the prestate of the
action a, we require that the current thread has a positive permission to every
footprint location of a, which must not be released within the action segment.
Concretely, within an action segment, we allow only a specific subcategory of
commands. This excludes lock-related operations (acquiring, releasing or com-
mitting a lock), forking or joining threads. Nested actions are also forbidden in
order to prevent a thread to record the same action twice.

In this way, two actions may interleave only if they refer to disjoint sets of
locations, or if their common locations are only readable by both threads. It
might be possible to lift some of these restrictions later; however, this would
probably add extra complexity to the verification approach, while we have not
yet encountered examples where these restrictions become problematic.

Updates within an action If a history H over l exists, the access permission
to l is provided by the Perm(l, π, v) predicate (instead of PointsTo(l, π, v)).
Every update to l must then be part of an action that will be recorded in H.
Thus, the Perm(l, π, v) predicate is“valid” only within an action segment with a
footprint that refers to l. To this end, within the action segment, the Perm(l, π, v)
predicates are exchanged for predicates APerm(l, π, v). Thus, our logic allows a
thread to access a shared location when it holds an appropriate fraction of either
the PointsTo or the APerm predicate (see lines 17 - 21 in Lst. 1).

Reinitialisation and destroying When a thread has the full Hist(L, 1, R,H)

predicate, it has complete knowledge of the values of the locations in L, and the
locations are then stable. The Hist predicate remembers a predicate R that was
true in the previous initial state σ of the history, while the history H stores the
abstract behaviour of the locations in L after the state σ. Thus, it is possible to
reinitialise the Hist predicate, i.e., reset the history to H = ε and update the R
to a new predicate R′ that holds over the current state. Thus, reasoning about
the continuation of the program will be done with an initial empty history.

The specification command reinit(L,R′) converts the Hist(L, 1, R,H) pred-
icate to a new Hist(L, 1, R′, ε). Reinitialisation is successful when the new prop-
erty R′ can be proven to hold after the execution of any trace w from the set
of traces in H, i.e., ∀w ∈ Traces(w).{R}w{R′}. As stated above, each trace is a
sequence of specified actions and thus, can be seen as a sequential program.

In Lst. 1, the history is reinitialised at line 48. The new specified predicate
over the location x is: x == 2. Notice that at this point, the client does not hold
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class ComplexCounter {
2

int data; int x; int y;
4

//@pred invx=Perm(x,1,v)∗Perm(data,1/2,u);
6 //@pred invy=Perm(y,1,v)∗Perm(data,1/2,u);

8 Lock lockx=new Lock/∗@<invx>@∗/();
Lock locky=new Lock/∗@<invy>@∗/();

10

/∗@ accessible {x, data};
12 @ assignable {x};

@ ensures x = \old(x) +data;
14 @ action addx();

16 @ accessible {y, data};
@ assignable {y};

18 @ ensures y = \old(y) +data;
@ action addy();

20

@ accessible {data};
22 @ assignable {data};

@ requires k>0;
24 @ ensures data = \old(data) +k;

@ action inc(int k);
26

@ accessible {data};
28 @ assignable {data};

@ ensures data = \old(data)+n;
30 @ proc p(int n) = inc(1).p(n−1)/ n>0 .ε;

@∗/

32 //@ requires Hist(L, π,R,H) ∗ data,x ∈ L
//@ ensures Hist(L, π,R,H·addx())

34 void addX(){
lockx.lock();

36 //@ action addx(){
x=x+data;

38 //@ }
lockx.unlock();

40 }
//@ requires Hist(L, π,R,H) ∗ data,y ∈ L

42 //@ ensures Hist(L, π,R,H·addy())
void addY(){

44 locky.lock();
//@ action addy(){

46 y=y+data;
//@ }

48 locky.unlock();
}

50 //@ requires Hist(L, π,R,H) ∗ data ∈ L
//@ ensures Hist(L, π,R,H·p(n))

52 void incr(int n){
if (n>0){

54 lockx.lock(); locky.lock();
//@ action inc(1){

56 data++;
//@ }

58 lockx.unlock(); locky.unlock();
incr(n−1);

60 }
}

62 }

Lst. 2. Complex Counter example

any permission to access x. However, holding the full Hist predicate is enough
to reason about the current value of x.

Finally, the history may be destroyed using the dsthist(L) specification com-
mand. The Hist(L, 1, R, ε) predicate and the Perm(l, 1, v) predicates for all l ∈ L
are exchanged for the corresponding PointsTo(l, 1, v) predicates. Thus, this will
allow the client to create a history predicate over a different set of locations.

Example 2. We illustrate our approach on a more involved example, with re-
cursive method calls and a location protected by two different locks. The class
ComplexCounter (Lst. 2) contains three fields: data, x and y. A lock lockx pro-
tects write access to x and read access to data, while locky protects write access
to y and read access to data. Both locks together protect write access to data.

Methods addX () and addY () increase respectively x and y by data, while
the recursive method incr(n) increments data by n. The synchronised code in
methods addX (), addY () and incr(n) is associated with a proper action. We
also specify a recursive process p, line 30. The contract of the incr(n) method
shows that the contribution of the current thread is not an atomic action, but a
process that can be interleaved with other actions. The contract of the process
must correspond to the contracts of the actions it is composed of.

Lst. 3 presents a Client class that creates a ComplexCounter object c and
shares it with two other parallel threads, t1 an t2. The client thread updates
c.data (lines 15, 21), while the threads t1 and t2 update the locations c.x and



8

class Client{
2 ThreadX tx; ThreadY ty;

void main(){
4 ComplexCounter c=new ComplexCounter();

tx = new ThreadX(c); ty = new ThreadY(c);
6 /∗ PointsTo(c.data,1,0)∗PointsTo(c.x,1,0)∗PointsTo(c.y,1,0) ∗/

//@ crHist(L, R); //create history
8 /∗ Perm(c.data,1,0)∗Perm(c.x,1,0)∗Perm(c.y,1,0)}∗Hist(L,1,R,ε) ∗/

//@ c.lockx.commit();
10 //@ c.locky.commit();

/∗Hist(L,1,R,ε)}∗/ //split history
12 /∗Hist(L,1/2,R,ε) ∗ Hist(L,1/2,R,ε)∗/

tx.fork(); // tx calls c.addx();
14 /∗Hist(L,1/2,R,ε)∗/

c.incr(10);
16 /∗Hist(L,1/2,R,p(10))∗/ //split history

/∗Hist(L,1/4,R,p(10)) ∗ Hist(L,1/4,R,p(10))∗/ //sync. barrier
18 /∗Hist(L,1/4,R,p(10)·s)) ∗ Hist(L,1/4,R,p(10)·s))∗/ //sync. barrier

ty.fork(); // ty calls c.addy();
20 /∗Hist(L,1/4,R,p(10)·s))∗/

c.incr(10);
22 /∗Hist(L,1/4,R,p(10)·s· p(10))∗/

tx.join(); ty.join(); //merge
24 /∗Hist(L,1,R,p(10)·s· p(10) || addx() || s·add(y))} ∗/

//@ reinit(L, 10<=c.x+c.y<=40);
26 /∗Hist(L,1,10<=c.x+c.y<=40,ε)∗/
}

28 } // L={c.data,c.x,c.y} R=c.data==0 ∧ c.x==0 ∧c.y==0

Lst. 3. Complex Counter example - the Client class

c.y (lines 13, 19). We want to prove that in the Client , at the end after both
threads have terminated, the statement 10 ≤ c.x+ c.y ≤ 40 holds.

The final values of c.x and c.y depend on the moment when c.data has been
updated. Thus, the history should trace the updates of all locations, c.x, c.y and
c.data. Each thread instantiates actions that refer to different sets of locations,
but all actions are recorded in the same history. When the threads terminate, the
client has the complete knowledge of all values, in the form of a process algebra
term H = p(10) · s · p(10) ‖ addx() ‖ s · add(y) (line 24). By reasoning about the
history H (see Sec. 4), we can prove that the property R′ = 10 ≤ c.x+ c.y ≤ 40
holds in the current state, and reinitialise the history to Hist(L, 1, R′, ε).

When reasoning about the process H, its definition is expanded by applying
the axioms of process algebra and unfolding it until the result is a guarded
process. Then, all parallel compositions are replaced by defined processes. To
perform this, the user has to specify all parallel compositions that might occur
(for more details we refer to [3]).

Complex data structures Our technique is also suitable to reason about more
complex coarse-grained data structures (e.g. lists, sets). Shortly, method con-
tracts of the data structure can be expressed in terms of histories over a ghost
field that represents the structure, while a class invariant [21] can ensure that
the ghost field corresponds to the actual structure. For an example of reasoning
about a concurrent Set data structure we refer to [3].
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n ∈ int b ∈ bool o, t ∈ ObjId π ∈ (0, 1] i ∈ RdVar j ∈ RdWrVar
x ∈ Var = RdVar ∪ RdWrVar a(v) ∈ UAct s ∈ SAct (synchr. action)
qt ∈ {∃, ∀} ⊕ ∈ {∗,∧,∨} op ∈ {==, !,∧,∨,⇒,+,−, ...}

(class) cl ::= class C 〈pred inv〉 {fd md pd} | thread CT{run}
(field) fd ::= Tf

(method) md ::= requires F ensures F T m(V i){c}
(type) T, V,W ::= void | int | bool | perm | process | pred | C 〈pred〉 | CT
(value) v, w, u ::= null | n | b | o | i | π | op(v) | H(v) π ::= 1 | split(π)

(action) act ::= accessible L requires F ensures F action a(T i);

(process) proc ::= accessible L requires F ensures F process p(T i) = H;
H ::= ε | δ | τ | s | a(v) | H1 / op(i) . H2 |

∑
d∈D p(d)

| H ·H | H +H | H ‖ H
(predicate) pd ::= pred P = F
(formula) F,G ::= e | e.P | F ⊕ F | PointsTo(e.f, π, e)

| Perm(e.f, π, e) | Hist(L, π,R,H) | APerm(e.f, π, e)
| (qt T x)F | e.fresh() | e.initialized() | Join(e)

(expression) e ::= j | v | op(e)
(command) c ::= v | j = return(v); c | T j; c | T i = j; c | hc; c
(head comm.) hc ::= j = v; | j = op(v); | j = v.f ; | j = new C 〈v〉 ; | j = v.m(v);

| v.f = v; | if v then c else c;
| v.lock(); | v.commit(); | v.unlock(); | v.fork(); | v.join();
| crhist(L,R) | action v.a(v){sc} | reinit(L,R) | dsthist(L)
sc ::= j = v | j = v.f | j = new C 〈v〉 | v.f = v | T j; sc | T i = j; sc
| if v then sc′ else sc′′ | sc′; sc′′ | j = v.m(v)

Fig. 1. Language syntax

4 Formalisation

We formalise our approach on a Java-like language. Java uses fork(start) and
join primitives to allow modeling various scenarios that are not supported by the
simpler parallel operator ‖. Our system is based on the Haack’s formalisation of
a logic/PBSL [1] to reason about Java-like programs.

Language syntax Figure 1 combines the syntax of our programming and spec-
ification language. Apart from the special actions (δ, τ), we allow: synchronisa-
tion actions s ∈ SAct and update actions a(v) ∈ UAct. The definition of classes,
fields, methods etc. are standard. We often use l to denote a location (instead
of writing v.f), and L for set of locations. Thread classes are a special type of
classes with a single run method. In addition to the usual definition, values can
also be fractional permissions. These are represented symbolically: 1 denotes a
write permission, while split(π) denotes a fraction π

2 . The language also defines
actions (act), which only have a specification; and processes (proc), which have
a specification and a body, defined as a proper process expression.

To reason about histories, we use the predicates Hist and APerm, and the spec-
ification commands: crhist(L,R), dsthist(L), reinit(L,R) and action v.a(v){sc},
where sc is a special subcategory of commands allowed within an action segment.
This subcategory includes only calls to methods whose body has the form sc.
Commands t.fork() and t.join() are used to start or join a thread t respectively.
After forking a thread object t, the receiver obtains the Join(t) predicate, which
is a required condition for joining the thread t. This ensures that a single thread
is started and joined only once in the program.
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To reason about locks, we use the predicates e.fresh() and e.initialized() and
the v.commit() command (as discussed in Sec. 2). Every object may be used
as a lock. Locations protected by the lock are specified by a predicate inv , with
a default definition inv = true. Each client object may optionally pass a new
definition for inv as a class parameter when creating the lock object.

Semantics of histories A histories H is a µCRL proces algebra term. The set
of actions is: A = UAct ∪ SAct ∪ {τ, δ}, while the communication function is:

γ(a, b) =

{
τ if a, b ∈ SAct define a synchronisation barrier

⊥ otherwise

The semantics of H is defined in terms of its traces. We use the standard single
step semantics H

a→ H ′ for H moving in one step to H ′, extended to:

H
ε⇒ H H

a⇒ H ′ ⇔ H
τ→
∗ a→ τ→

∗
H ′, for a 6= τ H

aw⇒ H ′ ⇔ H
a⇒ w⇒ H ′

The global completed trace semantics of a term H is defined as:

Traces(H) = {w | ∂SAct(τFAct(H))
w⇒ ε},

where FAct is the set of finished actions: FAct = {a ∈ SAct | ∀b ∈ A.γ(a, b) =⊥}.

Operational semantics We model the state as: σ = Heap × ThreadPool ×
LockTable× InitHeap×HistMap. The first three components are standard, while
all history-related specification commands operate only over the last two.

– h ∈ Heap = ObjId ⇀ Type×(FieldId ⇀ Value) represents the shared memory,
where each object identifier is mapped to its type and its store, i.e., the values
of the object’s fields: We use Loc = ObjId× FieldId.

– tp ∈ ThreadPool = ThrId ⇀ Stack(Frame)×Cmd defines all threads operating
on the heap. The local memory of each thread is a stack of frames, each
representing the local memory of one method call: f ∈ Frame = Var ⇀ Val.

– lt ∈ LockTable = ObjId ⇀ free ] ThrId defines the status of all locks. Locks
can be free, or acquired by a thread:

– hi ∈ InitHeap = Loc ⇀ Val (initial heap), maps every location for which a
history exists to its value in the initial state of the history.

– hm ∈ HistMap = Set(Loc) ⇀ Action stores the existing histories: it maps a
set of locations L to a sequence of actions over L. An action is represented
by a tuple act = ActId × Val, composed of the action identifier and action
parameters. Two histories always refer to disjoint sets of locations: ∀L1, L2 ∈
dom(hm). L1∩L2 = ∅. This is ensured by the logic because creating a history
over l consumes the full PointsTo predicate.

Fig. 2 shows the operational semantics for the commands in our language. For
a thread pool tp = {t1, ...tn}, where ti = (si, ci), we write (t1, s1, c1). ... .(tn, sn, cn).
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[Dcl] (h, tp.(t, f · s, T j; c), lt, hi, hm)  (h, tp.(t, f [j 7→ defaultVal(T)] · s, c), lt, hi, hm)
[FinDcl] (h, tp.(t, s, T i = j; c), lt, hi, hm)  (h, tp.(t, s, c[s(j)/i]), lt, hi, hm)
[VarSet] (h, tp.(t, f · s, j = v; c), lt, hi, hm)  (h, tp.(t, f [j 7→ v] · s, c), lt, hi, hm)

[Op] (h, tp.(t, f · s, j = op(v); c), lt, hi, hm)  (h, tp.(t, f [j 7→ [[op]]hs (v)] · s, c), lt, hi, hm)
[If ] (h, tp.(t, s, if(b){c1}else{c2}; c), lt, hi, hm)  (h, tp.(t, s, c′; c), lt, hi, hm),where

b⇒ c′ = c1;¬b⇒ c′ = c2
[Return] (h, tp.(t, f · s, j = return(v); c), lt, hi, hm)  (h, tp.(t, s, j = v; c), lt, hi, hm)
[Call] (h, tp.(t, s, o.m(v); c), lt, hi, hm)  (h, tp.(t, ∅ · s, cm[o/x0, v/x]), lt, hi, hm),

where body(o.m) = cm(x0, x);
[New ] (h, tp.(t, f · s, j = new C 〈v〉 ; c), lt, hi, hm)  (h′tp.(t, f [j 7→ o] · s, c), lt[o 7→ free], hi, hm),

where h′ = h[o 7→ initStore)], o /∈ dom(h)
[Get] (h, tp.(t, f · s, j = o.f ; c), lt, hi, hm)  (h, tp.(t, f [j 7→ hi(o.f)] · s, c), lt, hi, hm)
[Set] (h, tp.(t, s, o.f = v; c), lt, hi, hm)  (h[o.f 7→ v], tp.(t, s, c), lt, hi, hm)
[Lock ] (h, tp.(t, s, o.lock(); c), lt, hi, hm)  (h, tp.(t, s, c), lt[o 7→ p], hi, hm)
[Unlock ] (h, tp.(t, s, o.unlock(); c), lt, hi, hm)  (h, tp.(t, s, c), lt[o 7→ free], hi, hm)
[Fork ] (h, tp.(t, s, j = o.fork(); c), lt, hi, hm)  (h, tp(t, s, j = null; c).(o, ∅, cr[o/x0]), lt, hi, hm)

where o /∈ (dom(tp) ∪ {t}), body(o.run) = cr(x0);
[Join] (h, tp.(t, s, o.join(); c).(o, s′, v), lt, hi, hm)  (h, tp.(t, s, c), lt, hi, hm)
[Create] (h, tp.(t, s, crhist(L,R); c), lt, hi, hm)  (h, tp.(t, s, c), lt, hi[l 7→ h(l)]∀l∈L, hm[L 7→ nil])
[Destr ] (h, tp.(t, s, dsthist(L); c), lt, hi, hm)  (h, tp.(t, s, c), lt, hi[l 7→⊥]∀l∈L, hm[L 7→⊥])
[Reinit] (h, tp.(t, s, reinit(L,R); c), lt, hi, hm)  (h, tp.(t, s, c), lt, hi[l 7→ h(l)]∀l∈L, hm[L 7→ nil])

[Action]
(h, tp.(t, s, sc), lt, hi, hm) ? (h′, tp′.(t, s′, null), lt′, h′

i, hm
′)

(h, tp.(t, s, action o.a(v){sc}; c), lt, hi, hm) ? (h′, tp′.(t, s′, c), lt′, h′
i, hm

′′)
where hm′′ = hm′[L 7→ A++hm′(L)] A = (o.a, v)

Fig. 2. Operational semantics, σ  σ′.

A stack with a top frame f is denoted as f ·s. With [[e]]hs we denote the semantics
of an expression e, given a heap h and a stack s. With nil we denote an empty
sequence, while A++S appends the element A to a sequence S. The function
defaultVal maps types to their default value, initStore maps objects to their ini-
tial stores. With body(o.m) = cm(x0, x) we define that cm is the body of the
method m, where x0 is the method receiver, and x are the method parameters.

The crhist(L,R) command copies the value of each l ∈ L from the Heap to
the InitHeap, and extends the domain of HistMap with the set L, while dsthist(L)
is the opposite: it removes the related entries from HistMap and InitHeap. The
command action o.a(v){sc} extends the related history with a new action A =
(o.a, v). Finally, with the reinit(L,R) command, the related history sequence in
HistMap is emptied, and the values of l ∈ L are copied from Heap to InitHeap.
There is no rule for the command v.commit(); operationally this is a no-op.

Resources Our reasoning system is based on the concept of resources [1]. This
means that we do not reason directly over the global state, but over a partial
abstraction of the state, i.e., a resource. Intuitively, a resource describes how the
thread that we reason about views the program state.

A resource R is a tuple (h, hi,P,Ph,J ,L,F , I,H,A), where each compo-
nent abstracts part of the state: i) h represents the (partial) heap, containing
only locations for which R has a positive permission; ii) hi is the (partial) ini-
tial heap, contains only locations for which R has a positive history fraction;
iii) P ∈ Loc 7→ [0, 1] is a permission table that defines the permission that
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R; s |= Perm(e.f, π, e′) ⇐⇒ [[e]]hs = o,P(o, f) ≥ π, h(o.f) = [[e′]]hs ,
(o, f) ∈ dom(hi), ∃L ∈ dom(H). (o, f) ∈ L

R; s |= PointsTo(e.f, π, e′) ⇐⇒ [[e]]hs = o, P (o, f) ≥ π, h(o.f) = [[e′]]hs ,
hi(o, f) =⊥, ∀L ∈ dom(H). (o, f) /∈ L

R; s |= F*G ⇐⇒ ∃R1,R2.R = R1*R2,R1; s |= F ∧R2; s |= G

R; s |= Hist(L, π,R,H) ⇐⇒ ∀(e.f) ∈ L [[e]]hs = o,Ph(o, f) ≥ π, hi(o.f) = v,
R[v/e.f ]∀(e.f)∈L = true, filter(H(o, f)) ∈ CTG(H)

R; s |= APerm(e.f, π, e′) ⇐⇒ R; s |= Perm(e.f, π, e′) ∧ o.f ∈ A, [[e]]hs = o

R; s |= e ⇐⇒ [[e]]hs = true

R; s |= e.P ⇐⇒ R; ∅ |= F pred body(o.P ) = F o = [[e]]hs
R; s |= F ∧G ⇐⇒ R; s |= F ∧R; s |= G
R; s |= F ∨G ⇐⇒ R; s |= F ∨R; s |= G
R; s |= ∀TxF ⇐⇒ ∀Γ ′ ⊇ Γ, R′ ≥ R, Γ ′ ` v : T ⇒ Γ ` R′; s |= F [v/x]
R; s |= ∃TxF ⇐⇒ ∃v.Γ ` v : T ∧ Γ ` R; s |= F [v/x]

R; s |= e.fresh() ⇐⇒ [[e]]hs ∈ F
R; s |= e.initialized() ⇐⇒ [[e]]hs ∈ I

Fig. 3. Semantics of formulas R = (h, hi,P,Ph,J ,L,F , I,H,A)

R has for a given location; iv) Ph ∈ Loc 7→ [0, 1] is a history fraction table
that for a location l defines the fraction owned by R for the history predi-
cate referring to l; v) J ⊆ ObjId keeps the set of threads that can be joined;
vi) L ∈ ObjId 7→ Set(ObjId) abstracts the lock table, mapping each thread to the
set of locks that it holds; vii) F ⊆ ObjId keeps a set of fresh locks; viii) I ⊆ ObjId
keeps a set of initialised locks; ix) H: Set(Loc) 7→ Action× bool abstracts the
history map, marking every action with a boolean flag to indicate whether it is
owned by R; and x) A ⊆ Loc stores locations referred by an action in progress.

Resources owned by different threads should be compatible, written R1#R2.
For example, R1#R2 ensures that the sum of permissions to the same location
in R1 and R2 does not exceed 1, or the same action from the history map is not
owned by both R1 and R2. When threads join, their associated resources are
joined into a resource R1*R2. For the definition of both # and * we refer to [3].

Semantics of formulas Fig. 3 presents the semantics of formulas. With R; s |=
F we denote that the formula F is valid with respect to a resource R and a stack
s. The predicate Hist(L, π,R,H) is valid when: the resource R contains at least
a fraction π of the related history; R holds over the values from the initial heap,
and filter(H(o, f)) belongs to Traces(H). The function filter(H(o, f)) returns
the subsequence of the sequence H(o, f) with only those actions owned by R,
i.e., the actions marked with the flag true. The predicate APerm(e.f, π, e′) states
that R contains at least permission π for the location e.f , and that there exists
an action in progress that refers to e.f .

Proof rules Fig. 4 presents the most relevant proof rules. We use ~iFi to abbre-
viate a separation conjunction over all formulas Fi. Rules [ReadH ] and [WriteH ]
state that accessing a location is allowed if an action is in progress, while [Read ]
and [Write] can only be used when there is no history maintained for the ac-
cessed location. The [Action] rule describes that if the action implementation
satisfies the action’s contract, the action will be recorded in the history. The
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[Read] {PointsTo(v.f, π, w)} j = v.f {PointsTo(v.f, π, w)*j == w}

[Write] {PointsTo(v.f, 1, )} v.f = w {PointsTo(v.f, 1, w)}

[ReadH ] {APerm(v.f, π, w)} j = v.f {APerm(v.f, π, w)*j == w}

[WriteH ] {APerm(v.f, 1, )} v.f = w {APerm(v.f, 1, w)}

[Create] {~∀v.f∈LPointsTo(v.f, 1, w)*R}crhist(L,R){~∀v.f∈LPerm(v.f, 1, w)*Hist(L, 1, R, ε)}

[Destr ] {~∀v.f∈LPerm(v.f, 1, w)*Hist(L, 1, R, ε)}dsthist(L){~∀v.f∈LPointsTo(v.f, 1, w)}

[Action]

act ::= requires F ensures F ′accessible La a(i); La ∈ L; σ = w/i
{~∀l∈LaAPerm(l, πl, u)*F [σ]}c{~∀l∈LaAPerm(l, πl, v)*F

′[σ]}
{~∀l∈LaPerm(l, πl, u)*Hist(L, π,R,H)*F [σ]}

action v.a(w){sc};
{~∀l∈LaPerm(l, πl, v)*Hist(L, π,R,H · v.a(w))*F ′[σ]}

[Reinit]
∀w ∈ Traces(H).{R}w{R′}

{Hist(L, 1, R,H)} reinit(L,R′) {Hist(L, 1, R′, ε)}

[SplitMergeHist]
H = H1 ‖ H2, π = π1 + π2

Hist(L, π,R,H)*-*Hist(L, π1, R,H1)*Hist(L, π2, R,H2)

[Sync]
γ(s, s) = τ

Hist(L, π1, R,H1)*Hist(L, π2, R,H2)-*Hist(L, π1, R,H1 · s)*Hist(L, π2, R,H2 · s)

Fig. 4. Selected set of proof rules

premise in the [Reinit ] rule requires that the Hoare triple {R}w{R′} holds for
every trace w ∈ Traces(H), where w is a sequential program. [SplitMergeHist ]
and [Sync] define how history predicates can be exchanged for each other.

Soundness We define correctness of our system (see [3] for the proof sketch):

Theorem 1. Let {F}c{G} be derivable, and let σ  ? σ′ If R is a resource that
abstracts the program state σ and R, s |= F , then for any R′ such that abstracts
σ′, R′, s′ |= G.

Tool support We have integrated our technique in VerCors [2], a tool for ver-
ifiying concurrent programs written in languages such as Java and C annotated
with separation logic-based specifications. To verify programs with histories, the
tool checks: i) whether each action segment satisfies the contract of the action;
ii) whether every trace of a history H satisfies its contract (see the [Reinit] rule,
Fig. 4). For this step we use a linearisation-based technique [8] that requires
unfolding H only until it is in a guarded form from which (with the help of user
specification) the contract of H can be proved. We give more detail in [3].

5 Conclusions and Related Work

This paper extends permission-based separation logic with histories, i.e., a mech-
anism that allows one to reason about functional behaviour of coarse-grained
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concurrent programs, while providing simple and intuitive method specifications.
We have added support for the approach to the VerCors tool set [2].

Related work Jacobs and Piessens extend the Owicki-Gries technique to allow
modular reasoning about functional properties [11]. Their logic allows one to
augment the client program with auxiliary code that is passed as an argument to
methods. Additionally, a concrete invariant property should be specified that re-
mains stable under the updates of all threads; however, defining such an invariant
is often difficult. Another similar approach are Concurrent Abstract Predicates
(CAP) [6], which extend separation logic with shared regions. A specification of
a shared region describes possible interference, in terms of actions and permis-
sions to actions. These permissions are given to client threads to allow them to
execute the predefined actions according to a hardcoded usage protocol. A more
advanced logic is the extension of this work to iCAP (Impredicative CAP) [19],
where a CAP may be parametrised by a protocol defined by the client. Compared
to these approaches, we believe that histories allow more natural specifications,
where there is no need of specifying complex invariants or protocols.

Strongly related to our work is the recently proposed prototype logic of Ley-
Wild and Nanevski [14], the Subjective Concurrent Separation Logic (SCSL).
They extend PBSL with the subjective separating conjunction operator, ~, which
splits and merges a heap such that the contents of a given location may also be
split: l 7→ a⊕b is equivalent to l 7→ a~ l 7→ b. The user specifies a partial commu-
tative monoid (PCM), (U,⊕,0), with a commutative and associative operator
⊕ that combines the effect of two threads. To solve the Owicki-Gries example, a
PCM (N,+, 0) is chosen: local contributions are combined with the + operator.
However, if we extend this example with a third parallel thread that for exam-
ple multiplies the shared variable by 2, we expect that the choice of the PCM
will become troublesome. With our approach, in a way we use a PCM where
contributions of threads are expressed via histories, and these threads effects are
combined by the process algebra operator ‖. This makes our approach easily ap-
plicable to various examples (including the one described above). Moreover, our
method is also suited to reason about programs with dynamic thread creation.

Closely related to our approach is the work on linearisability [20], where lin-
earisation points roughly correspond to our action specifications. Using lineari-
sation points allows one to specify a concurrent method in the form of sequential
code, which is inlined in the client’s code (replacing the call to the concurrent
method). In a similar spirit, Elmas et al. [7] abstract away from reasoning about
fine-grained thread interleavings, by transforming a fine-grained program into a
corresponding coarse-grained program. The idea behind the code transformation
is that consecutive actions are merged to increase atomicity up to the desired
level. Recently, a more powerful form of linearisation has been proposed, where
multiple synchronisation commands can be abstracted into one single linearisa-
tion action [10]. It might be worth investigating if these ideas carry over to our
approach, by adding different synchronisation actions to the histories.

Recently, some promising parameterisable logics have been introduced [5, 12]
to reason about multithreaded programs. The concepts that they introduce are
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very close to our proof logic. Reusing such a framework will simplify the formal-
isation and justify soundness of our system, as well as show that the concept
of histories is applicable in other variations of separation logic. However, to the
best of our knowledge, in their current form, these frameworks are not directly
applicable to our language as they do not support dynamic thread creation.
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