VHDL for Simulation and Synthesis

Sabih H. Gerez
University of Twente
Faculty of Electrical Engineering, Mathematics and Comp8teence (EWI-CAES)
s.h.gerez@utwente.nl

Version 5.0 (September 2, 2016)

This document is meant to be an introduction to VHDL both as a simulation lang@rayan input
language for automatic logic synthesis. It is based on material originallyapdfor theASIC Design
Laboratorytaught at the University of Twente in the years 1993-200he text has undergone a major
revision in order to be suitable for use in the elective coMisBl System Desigaround 2000 and once
more for adaptation to the courSgstem-on-Chip Design 200

Suggestions to improve the text are always welcome.

Before presenting the syntax of the language, first some generairoackl information on top-down
design and the design trajectory is presented. The document then cetiiu@ short explanation of
the simulation principles that the language assumes. The last part of theelutcdeals with synthesis
issues.

Design and coding rules, indicated by the keywords “D/C Rule” and tydasa framed box, are
included in this text. Consider them to be mandatory and respect them in gsignd.

Contents

1 VHDL History 2
2 The ASIC/FPGA Design Flow 3
3 The VHDL Approach to Design 6

*Version history: Version 1 was released in 2003, Versions 2 and 3 i, 2@0sion 4 in 2010.

1In the course of those years, | have received feedback from penspns involved in teaching the laboratory course. The
list of people that | would like to acknowledge includes Hans Snijders,nJ@Vesselink, Javier Olivan, Frank te Beest, Erik
Roos and many others.

2For more information on past and current courses, lse://wwwhome.cs.utwente.nl/"gerezsh/


http://wwwhome.cs.utwente.nl/~gerezsh/

2 VHDL for Simulation and Synthesis

4 VHDL Libraries, Packages, and Entities 7

5 Architectures, Processes, Signals, and Variables 9

6 Data Types and Functions for VHDL Synthesis 13
6.1 DABIYPES « « « o o o e e 31
6.2 FUNCLIONS . . . . . . . e 41
6.3 Example . . . . 15
6.4 Multidimensional Data SIUCIUIES . . . . .« v v v v e e 15

7 The Testbench Concept, Structural Descriptions, and Configutions\ 16

8 The Operation of the VHDL Simulator 20

9 Towards Designing IP Blocks: Parameterizable Components and Bt Interface 21

10 Data Path and Controller Separation 24

11 VHDL Synthesis Basics 28

12 VHDL Synthesis Through Exampleé 30
12.1 General Remarks on Synthesizable VHDL . . . . . . . .. ..o .. 32
12.2 Combinational Logicatthe BitLevel . . . . . . . . . .. .. ... .. 32
12.3 Sequential Logic: A Finite State Machine . . . . . . . ... ... ... ... ... 35
12.4 Assignment of Multibit Signals . . . . . . . ... ... 35
12.5 Resource Sharing . . . . . . e 36

1 VHDL History

The essence dabp-down desigtis that one starts with the specifications of a system and goes through
a process of step-by-step refinement that culminates in a completed dédmmal language can be
quite helpful in that process. It allows to define and document all interreediésign steps plus the final
design, leaving no room for misinterpretation. It is possible to use a familigramming language for
that purpose, which is sometimes actually done, but the formal specificdtiamdware usually works
better with a so-calletlardware description languag@&iDL).

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 3

Many HDLs have been developed in the past, each with its specific stremgihseaknesses. Since
these were not standardized and since the average design was letexabiap is the case nowadays,
the development and use of HDLs initially remained an academic issue. ThiSasithas changed
in the 1980s, however. With the support of the U.S. Defense Departmedrte then developed
an HDL for use in all military projects. This language was caN4dDL, which stands for “VHSIC
Hardware Description Language” (VHSIC in turn stands for “Very Hgjeed Integrated Circuit”).
The language quickly also became popular for non-military applications.adyréor decades, there
are just two widely-used HDLs, the second one ba&iadlog. They can more or less be used to describe
the same things and are supported by the major vendors of computer-agigd thols. Both VHDL
and Verilog have been accepted as a standard biEBE, the Institute of Electrical and Electronics
Engineers. VHDL has actually been standardized multiple times; the most impstazacdards date
from 1987, 1993 and 2008. The differences between the standardstarelevant in the context of the
current document which adheres to the 1993 standard.

While VHDL was the outcome of work by a large group of programming-lagguaxperts, Verilog
was much more an ad-hoc language created for commercial product whigd out to receive wide
acceptance. As such, it has several weaknesses such as toleratalg hat were nowhere declared.
For this reason, VHDL was the language of choice for the System-oni@¥smn course.

Before presenting VHDL in later sections, this document pays attention tohipedesign flow, the
sequence of design steps, in the next one. Knowledge of the flow sinaldd it easier to understand
how design can be supported by a language like VHDL.

2 The ASIC/FPGA Design Flow

One way to look at the type of electronic systems that are consideredith¢évesee them as a mere
collection of large numbers cZMOS transistorghat are interconnected in a specific way. However,
the knowledge of transistors alone is not sufficient to build these systarsight in the hierarchical
structuring of these systems is necessary for the design of both analalipétal systems.

In the digital domain, one can interconnect transistors to obtain elementsy glach as a 2-input
NAND and a D-flipflop. These gates can be combined for building more conupliés such as adders,
multipliers and registers. These units, on their turn, can be parts of garses/ultiple processors may
be required to obtain an entire data processing system on a single chifargéethe blocks become,
the higher the level of abstraction. For each level of abstraction spde#ign knowledge is required.

Atthe highest levels of abstraction, one is hardly aware that hardwiae@ng designed. Only functional
relations matter. Designers want to experiment with executable specificatiblasecan idea of the
complexity of the design, the bottlenecks, etc. At this stage simulations basedy@meral-purpose
language such as C is often used, although VHDL and specific systehudésagiption languages may
be used as well.

In a next stage, properties of hardware, mainly the possibility to perfatoulations in parallel have to
be dealt with. One should decide about the hardware units to be usedeamapiping of computations
on the hardware. Two issues have to be settled: on which unit will somelatadcutake place and
when. These are the problemsasfsignmenandscheduling They can either be solved manually or
usingarchitectural synthesiglso callechigh-level synthes)stoolsﬁ,

3The elective coursknplementation of Digital Signal Processidgdicates significant attention to architectural synthesis.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



4 VHDL for Simulation and Synthesis

Primary inputs Primary outputs
Combinational

logic

Next state Current state

A 4

memory

Figure 1: Hardware model at the RT level, corresponding to a Mealy machine.

At the register-transfer (RT) level, the timing of a design is specified ateb@ution of clock cycles:

one knows what has to happen from the moment that a register outputchelnges until new values
become available to update the registers in the next clock cycle. If ona skesgyn as atate machine

in which the registers hold the system state, hardware at the RT level thigeywodel of Figure/1. The
figure depicts a so-called Mealy-type finite state machine. Combinational logiputes the next state
and outputs from the current state and current inputs.

At this stagdlogic synthesisan be performed to design the combinational logic that will implement
the next-state function. Logic synthesis is the process of optimizing Boolgarssions and finding
the best mapping on the gates available in the chosen technology. If thedeguription for logic
synthesis is given in VHDL, the process is calMidDL synthesisLogic synthesis is common practice
nowadays and will be covered in detail in later on in this document. A convepieperty of VHDL
synthesis is that the VHDL code that can be processed by the synthdsjss@oprinciple independent
of the target implementation, whether it beapplication-specific integrated circufASIC) or afield-
programmable gate arrafFPGA). Both type of implementations differ at the level of basic building
blocks, the so-calledtandard cellsAll available cells are part of Bbrary. The VHDL synthesis tools
do not need to know all details of library cells. What matters is the functionaity. -input NAND,
positive edge-triggered D-flipflop) and the delays associated to thegatipn of the signals through
the gates.

After logic synthesis, the design will consist of an interconnection of libcatls, the so-calledetlist
The netlist needs to be processeddagkendools that are specific for the target implementation.

In the case of an ASIC, the backend tools will generate the layout of ttire ehip by placing and
routing the cells (decide on where to put each cell and determine how the wiresdretingecells run).
The result is a specification of all masks that are needed in the IC prodycboess. As you probably
know, the fabrication of an IC is a complex process in which masks aretosselectively etch on
silicon, deposit dopants, grow oxide layers, etc.

An FPGA is an integrated circuit itself and is, therefore, produced in time sgay. Its main character-
istic, however, is that its functionality is electrically programmable. Without gaitg the details of
the different FPGA architectures, it is sufficient to state here that thetatomemories (permanent or
volatile) that determine the functionality of small logic units (combinational gatesagf 4 inputs, a
single-bit flipflop that may be bypassed, etc.) as well as the way the unitg@reonnected. Changing

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 5

the contents of these memories amountetmnfiguringthe FPGA to become a new system.

Backend tools for FPGAs also need to perform placement and routingppased to ASICs where
additional space for wiring can be created by pulling cells apart, the widpgaty in an FPGA is fixed
in advance. The routing task is therefore more difficult. The result mediby the backend tools is a
specification of the memory contents for the FPGA device. In a prototypivigpement, the backend
tools will transmit the memory patterns directly to an FPGA mounted on a boardlsaictne design
can be verified in a practical setting.

Clearly, FPGAs are an ideal platform fprototypingpurposes. They are significantly cheaper than
ASICs for situations in which the system specifications are subject to eha@gce large series of
a chip are needed, it becomes profitable to design ASICs. In ASICs thensdiea required for the
same functionality is far less, the power consumption is lower and higheatiqgefrequencies may be
possible.

In the analog domain, fewer levels of abstraction exist. One can e.g. distingurrent mirrors, ampli-
fiers, etc. that can be used to build a digital-to-analog (D/A) converteebiand combine these cells
to obtain a multibit D/A converter. In general, analog circuits are harderdigdehan digital circuits.
As all voltage and current values matter, parasitic capacitors and redistee to be carefully taken
into account during design. Whereas automatic synthesis can deal wiatiasior even millions of
transistors for digital circuits, the opportunities for automatic synthesis n&kog circuits are far more
limited.

For this reason, analog circuits will in general reqdir-customlayout. This means that the designer
can fully control the shapes of the mask patterns. Composing a circuit fynpacing and routing
cells from a library is calledemi-custondesign. Note that the design of the library cells themselves, is
a full-custom activity.

One can look at top-down design as a process in which gradually mommareddetail is added to a
specification. The introduction of more detail also involves the risk of thedatrtion of errors. This

is not only true when a human person is in charge of the design, but alsie atltomatic synthesis
tools are used. Unfortunately, the synthesis tools themselves, which cam&iderably complex, can
contain bugs. For these reasons, verification of intermediate desigis fiagenulation is extremely
important.

An alternative to simulation isormal verification Simulation has the strong disadvantage that any
nontrivial circuit has too many different input patterns and too many iatestates to be exhaustively
verified. The goal of formal verification is to reason about circuits in a nma#ttieal way andorove
that a detailed design behaves fully according to specification. Thegigcesconsider all possible
input combinations is e.g. avoided in a similar way that a mathematical proof doesed to substitute

all possible values for variables in an equation. Few commercial prodarctsrial verification exist,
while the topic continues to receive attention from academic researchetsi@ls are not used in this
course.

Given the importance of simulation in the design process and the many levelstodaions that
exist, VHDL emerges as a powerful language because it is meant in thpléice exactly to support
simulations at many levels of abstraction, from the bit level where eachatepaire carrying binary
signals is distinguished, to the system level at which data types may be usackthat directly related
to hardware equivalents. Even more levels can be covered with VHDISAMallows the description
of circuits containing analog parts (AMS stands for “analog and mixedagign

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



6 VHDL for Simulation and Synthesis

3 The VHDL Approach to Design

A number of concepts that were presented during the explanation of digndéow in the previous
section, are clearly recognizable in VHDL. The most important of thestharillowing:

e Behavior versus structureA behavioral description of a hardware building block, regardless
of whether the block covers the overall design or only a part, strictly mects the relation
between the input and output signals. It does not say anything abalivikien of the block into
subblocks. If such a division exists, then we have a structural désecripyou should note that a
structural description not only specifies the subblocks that make up tbk, lbiot also the exact
interconnection between the various blocks.

e Hierarchy and abstractionThe subblocks making up a block that has a structural description,
can on their turn have their own structural description. This can geeoarsivelyuntil we
finally come to theslementaryor atomicbuilding blocks of the design. In this lab course, for
example, these blocks are the elements from the cell library. Under diffeireumstances the
individual transistors might be the elementary building blocks. The reaudivision of the
building blocks results in &ierarchical description of the design. A concept that is related to
hierarchy isabstraction At a given level in the hierarchy, not all details of the underlying levels
are important. By eliminating those details, abstraction enables us to refer talthéations at
a specific level in a meaningful way. It might be useful, for example, todesga calculation
at a certain abstraction level in integers, while at a lower level the sameat@oumight be
described in terms of the bits in the binary representation of those numbers.

e Top-down design.This design methodology starts with a behavioral description of the overall
system to be designed. The system is then subdivided into a number dbackgob This is
calleddecompositionlt results in a structural description at the highest level while the sukéloc
initially get a behavioral description. These are on their turn divided intedateected blocks
with a behavioral description each. In this way, a completely structuratigésn is ultimately
obtained. The behavior of the blocks at higher abstraction levels folmit®m-upfrom the
behavior of the elementary building blocks and the structure.

These concepts are illustrated in Figure 2. In Figure 2(a) the full circiststiown with its input and
output signals A through D. The first step in a top-down design procéssligide X into its subblocks

Y and Z as given in Figure 2(b). Note that the signals on the outside of thaitcare not affected in
any way, even though twinternal signals E and F have been added. In Figure 2(c) Z is split up further
into Z1 and Z2. The recursive division of the design can be reflectedl@camposition treas shown

in Figure 2(d).

The advantage of using VHDL or another hardware description largaagtop- down design method-
ology is that each decomposition step can be verified immediately. This is daimbhating the de-
scription before and after decomposition using the same input signals. gpvisazh is used as much
as possible during this course.

It should be noted that, while simulation is a common and useful tool to verifignkesit does not
provide any guarantee of correctness because the number of passittdnations of input patterns
for circuits is hardly manageable (except for small and trivial circuitg).aRternative forwverification
through simulatioris formal verification as mentioned in Section 2. Until now, it was assumed that a
decomposition step would be performed directly by the designer. It carbalsone, however, using
CAD tools. This is callecautomatic synthesidf the tools do not produce errors, then verification of

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 7

B B,
' 1
Io v
BN El, F
A__. X A___. .
—>
aly v |z 4P
(@ (b)
B,
' E c X
Ho»- >
Z1
A
e F lG Y 4
11N b
Y || z2 Hi» 21 79
(¢ (d)

Figure 2: A block with a purely behavioral description (a), its division into two sublddbl, a further
subdivision (c), and the decomposition tree (d).

the decomposition is not needed. This is caldedrectness by constructiorOn the other hand, the
complexity of automatic synthesis tools is so high that some verification of its réssti desired to
obtain confidence in the quality of the design.

4 VHDL Libraries, Packages, and Entities

This section presents a first set of important VHDL constructions. Trepresented in the context of
a simple circuit callediso8 based on 8-bit serial-in serial-out communication.

Note: VHDL is not case sensitive (except in character and string aus$t@nly lower-case letters are
used in this text.

As mentioned in Section| 3, it is important to define the signals through whichdavheg unit com-
municates with the outside world during the design process. The actuahtohtae unit, which can
consist of behavior or structure, is largely independent from thoselsigin VHDL, the specification
of communication takes place through the declaration adraity. Figure 3 presents the declaration of
the entitysiso8 .

All information that is presented in VHDL to a CAD system is supposed to bedtoralibrary. All
libraries have a name that serves as a reference to the library and itetsofitee concept of libraries
enables designers to organize their design data, to make well-considereftie data of others, and to
store designs and components for later use. The actual design thagsvoeked on is normally stored
in the librarywork . The designer can also indicate in his VHDL code that he wants to use data fr
other libraries. Thesiso8 circuit uses the type definitiortd _logic andstd _logic _vector
which are defined in thpackagestd _logic 1164 of the libraryieee .

In general, a package contains definitions of data types, proceduaefnctions that have been taken

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



8 VHDL for Simulation and Synthesis

library ieee;
useieee.stdogic_1164.all;

entity siso8is .
port (datain: in stdlogic_vector(7downto 0);
clk: in std.logic;
resetin stdlogic;

req:out std.logic;
dataout: out std logic_vector(7downto 0);
_ ready:out stctloglc%;
end siso8;

Figure 3: The entity declaration for thei so8 circuit.

together for specific reasons. The packatge _logic _1164 defines a nine-valued data type called
std _logic which has been standardized by the IEEE, and functions based on taisyga. In
addition to the “normal” value®’ and’l’ (for “strong” binary signals), the values that are possible
for a signal of this type includ&’ (for a “tristate” or high-impedant signal)X’ for an unknown
signal andU’ for an uninitialized signal (the remaining values are not relevant for theoses of this
document). The packagegd _logic _1164 also defines the data typéd _logic _vector thatis
meant for multi-bit signals each of the typt _logic

Multiple assignments on the same signal (multiple “drivers” on the same wir@)arpermitted in
VHDL since the value of a signal is not well defined at the moment when twaooe different values
are placed on a signal carrier. This restriction is not valid for so-caéledlveddata types such as
std _logic . Aresolved data type hasrasolution functiorthat maps two or more different values of
a certain type on a single value of the same type. Suppose that a bus sigmatiisby two sources,
one with value€Z’ and one with valuél’ . The resolution function will combine these two values
into the valuel’ for the bus. The combination ¢’ and’0’ , which amounts to a short circuit,
however, will result in valuex’ .

In its simplest form the body of an entity declaration consists of the keywort , followed by a
specification in parentheses of the signals that are used for the commumiedtiadhe outside world.
Input signals are indicated by the keywdrd and output signals by the keywoadit . In addition,
two-way communication can be indicated through the keyvimodt

D/C Rule 1 Two-way communication should not be used in any design.

The serial-in serial-out devicgso8 has an 8-bit data input callethta _in and an 8-bit data output
calleddata _out . Their data type istd _logic _vector . It has two single-bit inputs of the type
std _logic : reset is necessary to initialize the internal memory elements to a defined \dkue;

is the clock signal on the rising edge of which the internal memory elementgeteir values. The
device also has two single-bit outputeeq is a request signal indicating that new data should be
provided to thedata _in input whileready signals that thelata _out output is valid and can be
read.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 9

architecture copyof siso8is

begin
-- the next process is sequential and only sensitive to clk eset r
seq:procesgclk, reset)

be?m
if (reset="1"
then

dataout <= (others=>"0’);
ready<="0’;

elsif rising_edge(clk)

then

dataout <= datain;
ready<="1’;
end if;
end processseq;

-- the system is intended to receive new data at each clock cyclé
-- (after reset)
req<="1,

end copy;

D

Figure 4. Architecture description for the entii so8 that simply copies the input to the output.

5 Architectures, Processes, Signals, and Variables

The interface of theiso8 circuit has been specified by the entity declaration, but nothing has get be
said about its content. This is done througlaashitecture bodySeveral architectures can be associated
to a single entity, each with its own name. A single entity can have one or moreitethar structural
descriptions, so that descriptions at different levels of abstractiobeavailable simultaneously (see
also Section 3).

The siso8 circuit will actually be used to implement a wide range of designs. The design w
architecturecopy as given in Figure 4, is a possible behavioral description. This desigresés new
data at each clock cycle and stores this data immediately at its output registéHDOL, any text
following two dashes until the end of the line is considered todrament

D/C Rule 2 Be generous in inserting comments to make your code more readatiéntcode
to emphasize its structure.

A more complex architecture with namged implements areatest common dividéGCD) circuit. It
is presented in Figure 5. This description is base&odlid’s algorithm It states that the GCD of two
numbers can be found by repetitively subtracting the smaller number frofartigr, and continuing
this until two equal numbers are left that are equal to the GCD (checkofansglf that this algorithm
always gives the correct GCD).

Behavior is specified in VHDL by means ofpaocess , of which an architecture can possess several.
A process itself is @equentiacomputation. This means that the statements in the body of a process
are carried out in the order in which they appear in the code pahalel nature of hardware expresses
itself through the presence of various processes in a single hardesception. The description of a
process is quite comparable to that in a traditional programming languagesuhDeclarations of
variables and constants are followed by the body of a process betwekeyvordsbegin andend.

This consists of assignments, if statements, while statements and more.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



10 VHDL for Simulation and Synthesis

library ieee;
useieee.numericstd. all;

arch|tecture gcdof siso8is
?lsters
S|gna numi, num2: unsigned@wnto 0);
signal odd, reqi: std_logic;
- wires
signal numlnext, num2next: unsigned(downto 0);
signal odd.next, regi_next, readynext: stdlogic;

begin
seq :procesgclk, reset)- process is sequential

|? (reset ='1)
num1< Eothers => ’0’;;
num2<= others=>"0");
odd<
reqi <— '1’ -- the system is ready to receive data after reset
ready<= =0

elsif r|S|ngedge(cIk)

then

if ((reqi ="1") and (odd ='0"))

num1< unsigned(datan);
odd<="1’;

ready <="0";
elsif ((reqi = '1) and (odd ='1")
then

num2<:oyn5|gned(datm);

odd <= .

reqi <='0’;

ready< 0
else

numl<= numlnext;
num2 <= numz2next;
reqi <= reqi_next;
ready<= readynext
end if;-- ((reqi='1") and (odd ='0")
end if; -- (reset="1")
end processeq
nextval: procesgnuml, num2)- combinational process

be?
i (num1> numz2)

numlnext<- numl - num2;
num2next<=numz2;
readynext<="'0’;
regi_next<="0"
elsif (numl< num2)
then
numlnext<=numl,
num2next<= num2 - numi;
readynext<="'0’;
reg.i_next<="0"
else
numlnext<=numl,
num2next<=numz2,
readynext<="1;
regi_next<="1"
end If;
end processnextval
dataout<= stciloglc vector(numl):- output can be any of num1 or num2
req<=reqi; -- req wires to req
endgcd;

Figure 5: Architecture description for the entisi s08 that computes the greatest common divider of
two subsequent inputs.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 11

The architecture of Figure 5 consists of two processes: a process sdjethat describes the memory
elements and a procesgxt _val that corresponds to combinational logic for computing the new
values of the memory elements.

VHDL distinguishes betweesignalsandvariables(variables do not yet occur in this example). Signals
transfer data between different processes. Those that are visibletlie outside world are declared
after the keyworgbort in an entity. Local signals also exist; these can be stated within an architecture
between the keywords andbegin . A variable, on the other hand, is private to a process and cannot
be accessed by any other process. Variables in a process keepatheg from one process invocation

to the next.

An assignment to a signal is indicated by the symbol The value change resulting from the assign-
ment can go into effect either immediately or after a certain amount of time (se&edsion 8). This
last situation is expressed by the keywaifter that is followed by an expression that must have a
result of typetime and the value of which corresponds with the desired delay. Example:

C <= a or b after 55ps;

Such a statement could be used to model an OR-gate. An assignment tdoéeviarindicated by the
symbol:= . The related change always takes place immediately.

Note that the use of the keywosafter typically belongs to VHDL as a simulation language. The
keyword is ignored by logic synthesis tools. Their goal is to take into ad¢berdelay of the standard-
cell library cells on which they map a design and to find a solution circuit thatsmeser constraints
on delay. It is not their intention to generate hardware that is exclusivedyntiier delaying signals.

The signal names in parentheses that follow the keywoosdess , form thesensitivity list Each value
change in any of the signals in the sensitivity list causes the process ttivagext In the examples of
Figure 4 and 5, the sequential process is only sensitive to the clock setdsignals. The process first
checks the value of the reset signal. Only when the reset is not activedks whether the clock had
a rising edge and then updates the memory elements. This expresses egdfetty that the memory
elements are supposed to be implementepdsitive edge-triggered flipflops with asynchronous resets

D/C Rule 3 All registers in your designs should be updated on the rising clock edfesesats
should be asynchronous.

Note that a conditional statement in VHDL is built using the keywdfrdsthen , else , andend if
Theelse branch is optional. The keywoslsif  is available for testing for conditions in decreasing
order of priority. An example can be found in the proceegt _val . One can uselsif  multiple
times in anif statement. Thease statement is available for testing on multiple conditions of equal
priority. Examples will follow later on in this text.

The second process is a combinational process that computes the nesvofailie memory elements.
The signals occurring in a combinational process can be partitioned in flontisets of input and
output signals. Having one signal to be both input and output has thedahgreating an unwanted
feedback and possibly a memory element. In the example, the inputs of pnecgs val arenuml
andnum2. The outputs ar@uml next , num2.next , ready _next andreq _i _next . Note that
all four signals contain the new values of signals stored in registers. i&mivig the hardware that is
designed, this, for example, means thainl refers to the outputs of the flipflops holding vaimem1
whereasiuml next refers to the inputs of these flipflops.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



12 VHDL for Simulation and Synthesis

D/C Rule 4 Use separate VHDL processes to describe combinational and seduegita

All input signals of a combinational processustoccur in its sensitivity list. Omitting a signal may
result in unexpected behavior and different behavior after synthesis

D/C Rule 5 Be keen on adding all input signals of a combinational process to its setysiisy.

The VHDL code of the two architectures that are presented hesgntiesizablésee Sections 11 and

12). This means that it makes use of that subset of the full VHDL syntaxcrabe automatically
mapped onto hardware. Looking into more detail to¢bpy architecture of Figurel4, one sees two
memory elementsdata _out andready . They are updated at each rising clock edge and should
preserve their content until next rising edge. The valudaih _out after reset is not the result of

any “computation”; for this reason thready signal has reset valu®’ and becomes permanently

"1’ afterwards. Signateq , on the other hand can be permanently high as the system is supposed
to process all inputs directly after reset. Note that the assignmeatjtooccurs outside any process.
Such an assignment is calleccancurrent assignmerand is equivalent to the process with just the
assignment in its body that is sensitive to all signals in the right-hand side as#ignment.

In the architecturgycd of Figure[ 5, any signal that occurs at the left-hand side of an assigrimen
processseq is a memory element. The signaq _i has been introduced becausg is an output
port of siso8 . The semantics of VHDL do not allow that the value of an output port is tets
within the entity. Hence the introduction of an intermediate signal. The finalrasgigtreq <=

req _i connects the internal signal to the output. The architecture has two integistiersnum1 and
numz2. It first takes care of copying input data sequentially into these regiStees Euclid’s algorithm

is executed. When doing arithmetic with bit vectors of the tgfuk _logic _vector , one needs to
agree on how numbers are encoded in bits. Uiegned data type used in the code tells e.g. that the
bit pattern should be interpreted as a positive number. The next sect@mrgore information on data

types.

So, processes in synthesizable VHDL are either sequential or combialation

e A sequential process has only the clock and reset signals in its sensititityTlie process
consists of anf statement checking the reset and then one checking for the rising etige of
clock. The latter one has redse branch. The same signal may be present in both the left-hand
and right-hand side of an assignment. When used in the left-hand sideytbhsponding register
input is meant. When used in the right-hand side, the register output. Atithg cleck edge the
register input is copied to the register output.

e A combinational process is sensitivedb its inputs. All signals in the process except for those
occurring in the left-hand side of an assignment are considered ingudse &t the left-hand side
are the outputs of the process. The sets of input and outputs signald bleadisjoint as there
may otherwise be a feedback path through the logic that is not interruptesjisyers which is
against the principles of synchronous design.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 13

6 Data Types and Functions for VHDL Synthesis

VHDL has a few built-in data types (such edeger andcharacter ) and it also has a powerful
mechanism for defining new data types. The standardizedstgpdogic is an example of a data type
that is not built in. It becomes available by declaring the package thatdsfifstd _logic 1164

in the libraryieee ), before using it. In this section, additional information will be given regay the
data types standardized by the IEEE for synthesis.

6.1 Datatypes

In all examples given above, most signals were either of the sygelogic or std _logic _-
vector . These types are defined in the packatge _logic _1164 of the libraryieee . Without
any further measures, these data types can only be used in exprésaidviag logic functions such as
not andxor . If one wants to use them as arguments for arithmetic functions, other detagkipuld
be used as explained further on.

A data type that is built into VHDL, isnteger . After synthesis, signals of this type will be 32 bits
wide (for most tools). VHDL allows, however, to constrain the range ofjets. If one e.g. knows that
some signak will never be assigned a value greater than 10 and lower than 0, onesckamalit as:
signal x: integer range 0 to 10 . This mechanism will result in hardware that uses 4
bits instead of 32 after synthesis. The use of the data tyigeed andunsigned that are explained
below, are to be preferred above integers as they force the desigmebtiter aware of the number of
bits used.

A bit vector of the typestd _logic _vector can, of course, represent a number. As you undoubtedly
know, there are many different ways to encode a number as a bit veajofflain” binary, Grey-coded
binary, 2's complement signed, 1's complement signed, fixed point, floating, etc.). The IEEE
standard for VHDL synthesis defines two types that are both arrag&doflogic . These are the
typesunsigned andsigned . Bit vectors of the first type should be interpretecoasitive integers
whereas those of the second type require an interpretation accordirtggaéssaomplemengncoding.
They are defined in the packagemeric _std thatis stored in the librarigee . This package should
always be declared when signals or variables of typgigned or signed are used (see later on for
an example).

The hardware counterpart of a signal of tygté _logic is awire. The counterpart oftd _logic _-
vector is a bundle of wires identified with a numeric index. The three array data tygesd on
std _logic ,viz.std _logic _vector ,unsigned andsigned all correspond to a set of wires (a
bus) in hardware. VHDL knows that the three types are all arrays o$dhee type. Although type
checking prevents that signals or variables of different types cantlyitee assigned to each other, a
“casting” mechanism is available. Suppose, e.g. #hlaas typestd _logic _vector andb has type
unsigned and the same width, then the following assignments are legal:

a <= std _logic _vector(b); and
b <= unsigned(a);

“Casting” amounts taeinterpretationof the same pattern. In VHDL, the types match correctly while
in hardware nothing happens: the bundle of wires stays the same; onlyahgr@tation of the signals
that they carry, changes.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



14 VHDL for Simulation and Synthesis

6.2 Functions

VHDL has the feature found in many object-oriented languages that &darwith some name can be
made to behave differently depending on the data types of its argumentg. ddstallecoverloading
existing functions as well as infix operators, suchaas and+, can be made applicable to newly
defined data types.

The packagstd _logic _1164 of the libraryieee defines the functionand, or , not , nand, nor

andxor that are infix operators for two operands of the tgj _logic  or two operands of the type

std _logic _vector (havingthe same length!). The resulting value has the same data type as the two
operands. Example: ¥, y andz are two signals of the typgtd _logic _vector with length 10,z

<= x nand y; will compute the bitwise NAND ok andy and assign it t@.

The packagenumeric _std located in theleee library contains many useful functions related to
the use of the data typesteger , unsigned andsigned . Everything mentioned below for
unsigned has a counterpart faigned . A selection of these will be mentioned here:

e to _integer takes arunsigned as its operand and returns the corresponding integer value.
Example: ifx is of the typeunsigned and has valu&l010" ,to _integer(x) will evaluate
to 10.

e to _unsigned is the reverse function and takes two integer operands, the first beiogéhte
be converted to a vector and the second the length of the vector (the nohfiis). Example: if
x is of the typenteger and has value 1@9 _unsigned(x, 5) will evaluate t0'01010" .

e The infix operators+ (addition), - (subtraction), and (multiplication) are defined for two
operands of typeinsigned . The result size for addition and subtraction is the maximum of
the sizes of its operands. For multiplication, the result size is the sum of thsedgiite operands.
Either of the operands can also be of the tigeger

e The following relational operators are defined for two operands of tyjsggned : =, /=, >=,
<=, > and<. All return the typeboolean and can therefore be used in e.g. the condition of an
if statement.

e The infix operators (division),mod(modulo) andem (remainder) are usually supported. How-
ever, they will generate expensive hardware, unless the secorehdgdeas a constant value that
is a power of 2.

e Of course, all arithmetic operators just mentioned are also applicable to teéntgger
However, the functions are not part of the two packages mentioneddwtrare built into VHDL
itself.

Just to be clear, all functions described above are fully specified inatleages mentioned. As long
as the libraries and packages are properly mentioned before the entdyatien, one will be able to
simulate VHDL code that uses the functions because the functions themkalxgeebeen precompiled
and stored in the appropriate libraries. On the other hand, these funat®special functions that are
recognized by a synthesis tool. It does not need to synthesize theadsddanction bodies, but will
directly generate hardware for each function.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 15

library ieee;
useieee.stdlogic_1164.all;
useieee.numericstd.all;

entity my_counteris )
port (clock, resetin std.logic;
count:out std logic_vector(3downto 0));
end my_counter;

architecture behavioralof my_counteris
b signallocal_.count: unsigned(8ownto 0);
egin .
sequentialprocess(clock)

be_?m_ .
if rising_edge(clock)
then

if reset="1’
then .
local count<=to_unsigned(5, 43;
-- alternative: locakount j= "0101";
ﬁllsﬁ local_count>= to_unsigned(10, 4)
en
local count<= to_unsigned(0, 4);
else
local.count<=localcount + 1;
end if;
end if; _
end processsequential;

count<= std logic_vector(localcount);
end behavioral;

Figure 6: The synthesizable VHDL description of an “exotic” counter.

6.3 Example

In this section an example will be discussed in which some of the data typesiaecttbhs presented
above are used. Two different descriptions of the same hardwareenltdsented: the first uses the
data typeunsigned for all internal calculations, the second is based on the dataitypger

The hardware is an “exotic” type of counter that should start to couritamp 5 after a reset signal
and should continue counting until 10. Then, as long as no reset siggiakis, the counter should
repeatedly count from O to 10. The data type of the output signal shauddb_logic _vector
because it is a primary output. The two versions of the counter are tagheshown in Figures 6 and
7. Both descriptions should lead to the same hardware when input to a syritteés The use of the
first style is recommended.

6.4 Multidimensional Data Structures

In VHDL, any data structure that is an array, must first be declarechewalata type. For example, the
data typestd _logic _vector that has been used many times, is declared to be an array of the type
std _logic inthe packagstd _logic _1164.

The same mechanism can be used to create multidimensional data structuoederlto be able to
use two-dimensional data structures, for example, one can first defie &ype that is an array of a
one-dimensional data type. One can then declare and use new signat&@abtes of this type. This is
illustrated in Figure B that shows a simple circuit that can receive a multibit daih and store it in a
shift register. The new two-dimensional data type is cathesnory here. It can store 10 data words of

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



16 VHDL for Simulation and Synthesis

library ieee;
useieee.stdogic_1164.all;
useieee.numericstd.all;

entity my_counteris )
port (clock, resetin std.logic;
count:out std logic_vector(3downto 0));
end my_counter;

architecture behavioralof my_counteris
b signallocal.count: integerange O to 10;
egin )
sequentialprocess(clock)

be_?m .
if rising_edge(clock)
then

if reset="1’
then

local.count<=5;
elsif local.count>= 10
then

local.count<=0;
else

local.count<= localL.count + 1,
end if;

end if; )
end processsequential;

count<= std logic_vector(taunsigned(locatount,4));
endbehavioral;

Figure 7: An alternative description of the counter of Figure 6.

8 hits.

A VHDL construct that has not been presented yet, but is very usdfah dealing with arrays is the
for loop. Itis used twice in the example of Figure 8. Note that the loop cowoténter has to be
declared. By the way, there will not be any hardware in the actual réalizhat holds the counter; the
meaning of théor loop for synthesis is a repetition in space rather than in time.

As opposed to all other examples in this document, the design of Figure &syeshronous reset
which means that the contents of the memory can only be reset on the risie@feithg clock and no
reset is possible in the absence of a clock. Student designs shouldserdgynchronous resets. Note
that the process has the clock as the only signal in its sensitivity list.

7 The Testbench Concept, Structural Descriptions, and Configuratios

As already mentioned several times, VHDL modeling (or hardware modelingnergl) has at least
two usessimulationfor the purpose of verification argynthesigor the automatic transformation of a
relatively abstract description into a collection of gates from a library.€ffiee model of the hardware
that one wants to build is called tldesign under verificatio(DUV).

A VHDL simulator has various features to control the simulation. A user caoatelthe time stretch

that the simulation should cover, the sequence of test signaisnauli that should be provided to the
DUV, etc. In spite of these facilities, it is a better idea to control the simulation ah ras possible

from VHDL itself. The advantage of this is that it requires only minimal knogkdf the simulator

and that one becomes independent of the simulator.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 17

library ieee;
useieee.stdogic_1164.all;
useieee.numericstd.all;

entity shift.in is ) .
port (clock, readmode, resetin std.logic;
datain: in stcLIogi|c,yector (7downto 0);
_dataout: out stdlogic_vector (7downto 0));
end shift.in;

architecture behavioralof shiftinis
type memoryis array (1 to 10) of unsigned (®lownto 0);
signallocalLmemory: memory;
begin
shift: process(clock)
b variable counter: integerange 1 to 10;
egin
if rising_edge(clock)
then

if (reset="1")
then

for counterin 1to 10loo )
localLmemory(counterkx= to_unsigned(0, 8);

end loop,
else
if (readmode ='1")
then )
for counterin 2to 10100
Ic&claLmemory(counte&: locaLmemory(counter - 1);
end loop;
localLmemory(1)<= unsigned(datin);
end if;
end if;
end if;

end processshift;
dataout <= std.logic_vector(localmemory(10));
end behavioral,

Figure 8: A synthesizable multibit shift register usinggnchronouseset.

The entirety of DUV and models that drive its inputs and process its outpuadlésl @atestbenchlt is
recommended to build a testbench that at least consists of the following models:

e A “test-vector controller” (TVC) entity that has I/O ports that are exactimptementary to those
of the DUV. So, the entity has outputs for each input of the DUV and cawigeappropriate
signals in this way.

e Atop-level entity without any inputs or outputs. This top level will hav@raicturalarchitecture
that consists of the DUV and the test-vector controller.

More complex testbenches may have more than one entity to generate inpilies BIJV or process
its outputs.

The idea of a testbench is illustrated in Figute 9 that depicts the two entities mehg&boee for the
case of thesiso8 circuit.

Its VHDL description is then given in Figure 10. Before commenting on the VidbBde of the test-
bench, the concept afstantiationwill be introduced. When describing a hardware unit in VHDL
by means of an entity declaration and an architecture, one establishesd kémaplate for that unit.
Instantiation is the incorporation of this particular unit in a larger hardwaite Tihe template, with its

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



18 VHDL for Simulation and Synthesis

tb_siso8

tvc_siso8

data_in U )
req
clk

q siso8
reset

data_out U yeady

Figure 9: The testbench for DUY¥i so08.

library ieee;
useieee.stdlogic_1164.all;

entity tb_siso8is
endtb_siso8;

architecture structureof th_siso8is _
-- declare components to be instantiated
componentsisof )
port (datain: in std.logic_vector(7downto 0);
clk: in std.logic;
resetin stdlogic;

reqg:out stdlogic;
dataout: out std logic_vector(7downto 0);
ready:out stcLIoglc();;

end component

componenttvc_siso8 )
port (datain: out std.logic_vector(7downto 0);
clk: out std.logic;
reset:out std logic;

req:in std.logic;
dataout: in std.logic_vector(7downto 0);
ready:in stdlogic);

end componen{

-- declare local signals
signal datain, dataout: stdlogic_vector(7downto 0);
b signal clk, reset, req, ready: stdgic;
egin
-- instantiate and interconnect components
duv: siso8 ] ]
port map (datain => datain, clk => clk, reset = reset,
_ req => req, dataout => dataout, ready = ready);
tvc: tvcsiso8 ]
port map (datain => datain, clk => clk, reset = reset,
req => req, dataout => dataout, ready = ready);
end structure;

Figure 10: Entity and architecture for a testbench of thieso8 circuit.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 19

formal parameters, is then used to create a piece of hardware \ahtussd parameters are provided by
the instantiating environment. The instantiated piece of hardware is caliedtanceof the template.

The structure architecture of the testbench first declares the components that it negdisezin
instantiates themComponentandsignalsare declared in the declaration part of the description (before
the keywordbegin ). Note that component declarations strongly resemble entity declarations. |
the body of a structural architecture, the part of the code that comesttadt&eywordbegin , the
components that have been declared in this way, are instantiated one otirmese The declared
signals serve to connect the instances from the body. During instantiationstance is connected
either with an internal signal or with one of the input or output signals. EastAnce is given a name

in the body. This instance name is the label that precedes the componentTia@riastance name is
referred to from the “configuration” of the hardware (see below).

During instantiation, the keyworg®ort map precede aassociation listvith signals; in which formal
signals are explicitly linked with the actual signals. The ordering of signal®earbitrary (it does not
need to follow the ordering of the component declaration).

The architecture of Figure 10 isparely structural description: it solely contains instantiations of sub-
blocks but no processes, so no behavioral code. Although it is alltavaik structural and behavioral
descriptions in one architecture in VHDL, it is strongly recommended not &odo

D/C Rule 6 Do not mix structural and behavioral descriptions in one VHDL architextu

The entitytvc _siso8 (not shown in this document) will typically take care of clocks and resets as
well as the regular data processing. Itis a good habit to read an infaLgtdaam for the DUV from a file
and write the output data stream to a file (or compare the outputs with a redevatput stream stored

in afile). In this way, one can experiment with different I/O streams witheeting to recompile the
models. One can also stop the simulator by means of a VH&Hdert statement (such a statement
instructs the simulator to interrupt simulation and print an error message).

While it may appear at first sight that a description such as in Figure X8@iosrall information needed
for a structural description, that is not the case. The component dtoleas may establish a link
with the entities, but an entity generally has more than one architecture. Tiotusal description
must indicate which of the architectures needs to be instantiated for thespuopsimulation. This
specification is achieved by the declaration afamfiguration For thesiso8 testbench Figure 11
shows the two configurations to be used for the two architectures prdséite outerfor statement
indicates that the configuration is meant for the architectrieesture . of the entitytb _siso8 . The
otherfor statements establish a link between an instance name and an entity-architectoiration
by supplying the architecture name between parentheses after the entitfthameeare two instance
names in this examplaluv andtvc ). If all instances of a type have the same architecture, then this
is indicated by the keywordll . Note that the librarywork is explicitly referred to. All entities
must be present in this library in compiled format. Note also that a configura¢iciaration in VHDL
can be omitted if only a single architecture has been compiled of each instamtidiyd This is not
recommended, though.

D/C Rule 7 Define a configuration for each entity that you want to simulate.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



20 VHDL for Simulation and Synthesis

configuration conf tb_siso8copy of tb_siso8is
for structure ] .
for duv: siso8use entitywork.siso8(copy);
end for; _ ) ) )
for tvc: tvc_siso8use entitywork.tvc_siso8(behavior);
end for;
end for;
end conf_tb_siso8copy;

configuration conf tb_siso8gcd of tb_siso8is
for structure ] .
for duv: siso8use entitywork.siso8(gcd);
end for; . ] ) ]
for tvc: tvc_siso8use entitywork.tvc_siso8(behavior);
end for;
end for;
end confth_siso8gcd;

Figure 11: The configurations that fully specify simulation models forghe 08 circuit.

VHDL's configuration mechanism especially shows its power in the confextestbench. The differ-
ent DUVs that a designer creates throughout the design procedd bebave the same when simulated
in the same testbench. One does not need to modify the testbench modets] tmsavrites a separate
configuration for each DUV version that one wants to simulate. There nmay lee multiple versions
of the TVC to simulate different operation modes of a DUV (e.g. one that @eifiain operation and
one that verifies test modes such as the scan chain, see Section 9). &a@etmfiguration can be
composed of entity-architecture combinations or other configurations.

8 The Operation of the VHDL Simulator

Before performing VHDL simulations in practice, it is useful to have a brieklat how the VHDL
simulator works. The presentation is confined to the most important aspeststh®ugh much more
can be said about the structure of the VHDL simulator and about simulationidees in generﬁ.

Part of the information below has already been discussed earlier in thé iextpeated and expanded
on here in the hope that further insight arises into the operation of the simulato

The simulator regards a circuit as a collectiors@fnalsand processes Signals can change in value
over time under the impact of processes. A signal change is caltadsaction

Although hardware is parallel by nature, it is generally simulated on a s@guenachine. In one
way or the other, processes that are active simultaneously, as welhassdiigat can change in value
simultaneously, must be dealt with in such a way that the differences besiealation and the real
world are as small as possible.

Section 5 already stated that processes must have a “sensitivity list”, rgethiintheir bodies are
evaluated once each time when one of the signals in the list changes in valogheAcategory of
processes contawait statements ando sensitivity list (the combination of wait statements and a
sensitivity list is not allowed). A process with wait statements is immediately redtatien its entire
body has been executed, but the evaluation is stopped when a wait stateemmountered (improperly
written code, e.g. with a wait statement in a branch offarstatement that is never selected, will lead

‘See e.g. Gerez, S.H\Jgorithms for VLSI Design Automatipdohn Wiley and Sons, Chichester, (1999).

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 21

to a process that runs forever). When a process is inactive, the simdatthe possibility to evaluate
another process. A process that has neither a sensitivity list nor ataiitreent is hardly meaningful:
once activated it no longer becomes inactive and fully occupies the simWiitr statements are not
synthesizable; they are mainly used in system-level hardware models trehtdees.

What the simulator must do at a given moment is indicated through a list of attiahs sorted by
time. This is theavent list “Event” is the designation given to a signal change or a process timtiva
at a specific time. For example, if the process that is active at mamerit encounters the statement
a <= '1" after 10 ns , then transactiona <= '1’ is placed on the event list at moment

to + 10 ns.

A transaction never takes effect immediately, not even if the code doespeotify any delay (for
example, through a signal assignment without the keyvedter ). In that case, the transaction is
placed on the event list at moment ¢ty + A. A is equal to zero (or better: infinitesimally small), but
it allows processes that take place simultaneously to be ordered in time. Tloissiblp because the
following applies:0 < A < 2A... The notion of an infinitesimally small delay in simulation is called
adelta delay

The simulation starts with the construction of the event list. All processes in i@l \Mdescription
are placed in the right position in the list. (Most processes start at time agpdying the rule that a
minimal time of A must occur between two activations.) During simulation, the event list is gsede
in the order of increasing time. New events that result from this are addéed ievent list at the right
position. The simulation is ended when the event list becomes empty, when tHatemis forced to
be terminated by the initiative of the user or by an error.

Using an event list saves computation time. Processes are evaluated enlyadessary. This method
is called theevent-driversimulation technique. It is used in one way or other by practically all digital
simulators.

9 Towards Designing IP Blocks: Parameterizable Components and
Test Interface

Designingsystems on chi{50Cs) is only feasible by the availability of so-call@blocks IP stands for
intellectual propertyand refers to the result of a design activity which has not necessarilyiataed
but consists of a collection of, for example, VHDL files. These files rgmesome economic value.
Hence the name “intellectual property”. In order to face the ever groaangplexity in IC design, it is
becoming more and more common practice that different parties concenirtite design of standard
components with a well-defined interface such as a microprocessor, a [@ive&t memory access)
unit, a USB (universal serial bus) interface, etc. The SoC desigrethen a relatively easy task to
integrate the different components.

A desirable property of IP blocks is parameterizability. Examples of parashate the widths of data
and address buses, the size of available memory, etc. In this way, the sanpenent can be reused
in different contexts without the need to rewrite the VHDL code (supposiagthe block has been
designed in VHDL). The parameters should be given a value at the mofr@arhponent instantiation.

An important issue in IC design testability As a consequence of the delicate manufacturing process
which is e.g. sensitive to dust particles, alignment of masks, etc., ICs thatlean produced, are not
guaranteed to function. Each IC needs to be tested before being shipbedcustomer. Testing an IC
becomes significantly easier if testing is taken into account during the deisiba tC; this is called

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



22 VHDL for Simulation and Synthesis

library ieee;
useieee.stdiogic_1164.all;

entity sisagenis
generic(word._length: natural);
port (datain: in std.logic_vector(wordlength-1downto 0);
clk: in stdlogic;
resetin stdlogic;

req:out stdlogic;
dataout: out std logic_vector(wordlength-1downto 0);
ready:out std logic;

-- scan chain interface
scanin, scanshift: in stdlogic;
_scanout: out std logic);
endsisagen;

Figure 12: The SISO circuit with a generic word length and test interface

design for testabilit DFT). Different DFT strategies exist. If one agrees on one of thesalf IP
blocks, it becomes easier to combine them at the level of the SoC.

Figure 12 presents a new entity for the SISO exampileo _gen. With respect to the entitgiso8

(see Figure 3), it can be seen that the declaration not only contains H@lsigdicated by the keyword
port butalso parameters indicated by the keywgederic . The only declared parameter is actually
word _length : itindicates the number of bits in the input and output watats _in anddata _out .
The generic parameter shows up in the port declaration and can alsedo@nysvhere in an architecture
declaration associated with the entifigo _gen.

The entity has provisions to includesgan chain Although the topic is outside the scope of this
document, the scan-chain principle will be shortly explained here. A skaim és a DFT strategy.
Changing the value a control signal, callszhn _shift  in this example, fromi0’ to’1l’ , puts all
flipflops in the design (or a subset of them) iskft register In this mode, at each new rising edge of
the clock, the flipflops copy the value of their predecessors in the chiierréoan the intended value
for normal (functional) operation. The input and output of this shifigtey are accessible from outside
the block: they are called hesean _in andscan _out respectively.

The scan chain makes it possible to bring the hardware into a defined stefehesshift mode. In this
way, one can easily providetast patternat the inputs of all combinational logic in the design. Once
the test pattern has been loaded, one executes one clock cycle in nordea(mekingscan _shift

'0’ ). Thiscapturesthe response of the combinational logic into the flipflops. This responsbecan
shifted out of the circuit while a new test pattern gets loaded. Faulty ICdhmanbe detected by
comparing the measured response with the expected one.

Generic parameters can receive a value when a component is instantestdlictural architecture. An
example is shown in Figure 13. The testbench consists of two components bdilthave a generic
parameteword _length . The parameter receives a value usinggheeric map construct which

has a similar syntax as tlport map construct that it precedes. In this example, the testbench itself
has a generievord _length  which it passes down to its subblocks. Note also thattéisévector
controller componentivc _siso _gen has two more generics for the input and output files. These
generics are not mapped at the moment of instantiation, which is alloweddsedafault values have
been provided for them.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis

23

library ieee;
useieee.stdogic_1164.all;

entity tb_sisagenis
generiqword._length: natural := 8);
endtb_sisagen;

architecture structureof tb_sisagenis
-- declare components to be instantiated
componentsisagen
generic(word_length: natural);
port (datain: in stdlogic_vector(wordlength-1downto 0);
clk: in stdlogic;
resetin stdlogic;

reqg:out stdlogic;
dataout: out std logic_vector(wordlength-1downto 0);
ready:out std logic;

scanin, scanshift: in std.logic;
scanout; out std logic);
end component

componenttvc_sisagen
generic(word length: natural; .
in_file_name: string := "sis@en.in”;
out file_name: string := "sis@en.out”);
port (datain: out std logic_vector(wordlength-1downto 0);
clk: out std.logic;
reset:out std logic;

reqg:in stdlogic;
dataout: in std logic_vector(wordlength-1downto 0);
ready:in stdlogic;

scanin, scanshift: out std.logic;
scanout: in std logic);
end component

-- declare local signals )
signal datain, dataout: stdlogic_vector(wordlength-1downto 0);
signal clk, reset, req, ready: stidgic; .
5 signal scanin, scanshift, scanout: stdlogic;
egin
-- instantiate and interconnect components
-- note that the generic worngth is passed to the subblocks
duv: sisagen
generic maga(wprcLlen th => word_length)
port map (datain => datain, clk => clk, reset = reset,
req => req, dataout => dataout, ready = ready,
scanin => scanin, scanshift => scanshift,
_ scanout => scanout);
tvc: tvc_sisagen
generic map(word._length = word_length)
port map (datain => datain, clk => clk, reset = reset,
req => req, dataput => dataout, ready = ready,
scanin => scanin, scanshift => scanshift,
scanout => scanout);
end structure;

(© Sabih H. Gerez, University of Twente, The Netherlands

Figure 13: The testbench for the entisy so_gen illustrating thegeneri ¢ map construct.

Septembe B, 20



24 VHDL for Simulation and Synthesis

entity th_sisagentopis
endtb_sisagentop;

architecture tog of th_sisagentopis
componenttb_sisagen
generlc(wor(ilength natural := 8);
end component
begln
: tb_sisagen;
en top;

Figure 14: The shell entity b_si so_gen_t op.

cofnfiguration conftb_sisagengcdof th_sisagentopis
or top
for tg: th_sisagenuse entitywork.th S|sagen(structure)
generic map(word_length => 16);
for structure
for duv: sisagenuse entitywork.sisagen(gcd);
end for;
for tvc: tvc_sisagenuse entitywork.tvcsisagen(fileio)
generic map(word.length => 16,
in_file_name = gcd16 in”,
outfile_name = "gcd16. out”);
end for;
end for;
end for;
end for;
end confth_sisagengcd;

Figure 15: The configuration that fully specifies the simulation model foistheo_gen circuit with a
gcd architecture for the hardware and a file-1/0-based architecture for thevestor controller.

A useful feature of VHDL is that generic maps (and also port maps) ocalmly occur in structural
architecture declarationbut as well inconfiguration declarationsin order to be able to make use of
this feature, a “shell” entityp _siso _gen_top has been created. It is described in Figure 14. Its only
function is encapsulate the testbench such that the top-level generie easigned a value.

Figure 15 illustrates the mapping of generics in a configuration declarati@cdnfiguration is meant
for a gcd architecture forsiso _gen (not shown in this document, but very similar to the one of
Figurel 5) and a test-vector controller that performs a functional simulagsadon inputs read from
file and outputs written to file. As can be seen in the figure, generic mappndsecspecified at various
levels. The word length is given at the testbench level, while the file nameg foearGCD simulation
are specified one hierarchical level lower.

10 Data Path and Controller Separation

The separation of hardware inbombinationaland (synchronousjequentialogic is clear: combina-
tional logic does not have any internal memory and synchronous sgjuegic basically changes
value depending on a clock signal. In many cases, it is convenient tcasepardware in another way
into the following parts: @ata pathand acontroller. In the data path, the main data processing is done.
The data path e.g. contains arithmetic units, registers, memories, buses, mendsipég.Control sig-

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 25

CE VY U

greater | equal

data_out

Figure 16: An example data path for thed so_gen system.

nals such aselectsignals for multiplexersgnablesignals for registers, influence the functioning of the
data path. They are generated by the controller. On the other hand téheadla may generattatus
signals that e.g. result from a comparison that act as inputs for the dentro

The separation between data path and controller is not always shaguldess for a memory may be
generated in the controller but may also be computed in the data path (thinkerigating an index
to access array elements).

In the designs presented until now, data paths and controllers arepiicitBxrepresented. When one
assigns different values to the same data signal inttbe andelse branches of aif statement,
for example, one describes a multiplexer (in the data path) where the co(glitidriheif statement
represent the select signals (the computation of the conditions belongsreathreof the controller).
Below, the description of a data-path-controller system will be presented.

Simplified schematics of an example data path suitable for the implementatiorsi§dhegen system
are given in Figure 16. The data path consists of two arithmetic units thatepmrsignedoperands.
An adder/subtractounit has two input registers {(aft one and aight one) each with aenablesignal
and a control input signal to choose between addition and subtracticcomparatorunit also has
two input registers. It generates two status outpgteater becomesl’ when the left operand
is greater than the right onegual becomesl’ when both operands are equal. The third unit in
the data path is a memory (or more preciselyegister filg with four locations (the address ranges
from O to 3). The memory has a two-bit address to indicate the write locatioa &md-bit address to
indicate the read location the contents of which are output. The memory outglsbisonnected to
the system outpudata _out . The memory input (which is possibly written to some location) comes
from a multiplexer that takes its value from three sources: the memory outgugdtter/subtractor
output or the system inpualiata _in . The fourth value of the two-bit control signal for this multiplexer
indicates that writing the memory is disabled. The four input registers of thatitometic units are
connected to two-way multiplexers to take data either from the adder/subtoatpait or the memory
output. The code for the data path is spread across three figurese Eigjghows the entity declaration;
Figurel 18 gives an architecture with a behavioral description; fooreasf space, the description of
the combinational logic in this architecture is given in Figure 19.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



26 VHDL for Simulation and Synthesis

library ieee;
useieee.stdogic_1164.all;
useieee.numericstd.all;

entity cmpadddf) is
generic(word_length: natural);
port (datain: in std.logic_vector(wordlength-1downto 0);
clk: in std logic;
resetin stdlogic;

dataout: out std logic_vector(wordlength-1downto 0);

-- adder left/right register control
addl_sel, addr_sel, addl_en, addr_en, subin stdlogic;

-- comparator left/right register control ]
cmpl_sel, cmpr_sel, cmpl_en, cmpr_en:in stdlogic;

-- memory control )
rd_addr, wraddr:in std.logic_vector(1downto 0);
wr_selen:in stdlogic_vector(1downto 0);

-- comparator status

equal:out std logic;

greaterout std logic);
end cmpadddp;

Figure 17: The entity declaration for the data path of Figure 16.

The data path that has just been presented, can be used to implemers siyasithms by combining
it with an appropriate controller. A controller that implements Euclid’s GCD dtlgor is given by the
finite-state machine (FSM) depicted in Figure 20. The controller has notd#nized. It implements
the following behavior:

e Input data is first copied to memory locations 0 and 1 respectively. Thisresgtwo states.
e Then the two input registers of the comparator are loaded. This requivestdves.

e Depending on the result of the comparison, the computation is either readguintraction has
to be performed.

e The operands of the subtraction are loaded in such a way that the |efinois always greater
than the right one. This requires two states.

e The result of the subtraction is written into memory in such a way that the laofelse two
operands is overwritten. This needs one state.

There are some subtleties involved in the timing of the controller and data patha lesign-style
decision to clock the flipflops in both the data path and the controller on the &dipgof the data path.
If the control signals for the data path are derived fromdieent stateof the controller, the data path
will lag behind one clock cycle with respect to the controller: one clock asigeeded to enter the
current state and one more for the data path to react. This means that twoyites are necessary to
process state transitions involving status signals: as it takes one clocayalstate transition to be
effective in the data path, the response to a status signal will take onecgidekmore.

The alternative chosen here derives the control signals for the ddtarpen the next statein the
controller. This makes that a state transition in the controller is simultaneous wigfféuot that the

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 27

architecture behaviorabf cmp.adddpis
-- type declaration for memo?/ .
type memoryis array (0 to 3) of signed(wordlength-1downto 0);
-- memory declaration
signalmem: memory;
--~ other memory elements _
signaladdl, addr, cmpl, cmp.r: signed(wordlength-1downto 0);
-~ wires
b signal add.out, memout: signed(wordength-1downto 0O);
egin
seq:procesgclk, reset)
variable counter: integerange 0 to 3;

be_?m
if (reset="1")
then

for counterin 0to 3 loop
mem(counterk = (others=>"0");
end loop
addl <= (others=>"0");
addr <= (others=>"0’
cmpl <= %others =0 ;;
cmpr <= (others=>"0’);
elsif rising_edge(clk)
then

-- memory write
casewr_selenis o
when”00” => null; -- write is disabled

when”01” => mem(tainteger(unsigned(waddr))) <= addout;
when”10” => mem(tainteger(unsigned(waddr))) <= memout;
when”11” => mem(tainteger(unsigned(waddr))) <= signed(datan);
when others=> null; -- not relevant for synthesis

end case

-- register write

if (addl_en="1")

then
if (addl_sel ="1")
then

add| <= addout;
else
add! <= memout;
end if;
end if; _
-- other registers left out!
end if;
end processseq;
-- combinational processes left out
end behavioral;

Figure 18: The architecture declaration for the data path of Figure 16.

state transition should have on the data path. In this approach, the cortamilezact to status signals
without delay, i.e. within one clock cycle.

The VHDL description of the controller entity is given in Figurel 21. Note thatéoordance with
the concept of separating data path and controllersig® _gen control signalgeq andready are
generated in the controller.

The architecture for this entity implementing the GCD algorithm is shown in Figurelt?Bas the
typical structure of the VHDL description of an FSM:

e First a newenumeration data typis used to declare the states. Note that states have a symbolic
encoding. No choice is made on how to encode the state in a binary pattesns Téft to the
synthesis tool.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



28 VHDL for Simulation and Synthesis

-- adder/subtractor
ad(isub:rprocesiadd!, add.r, sub)
variable addr_in: signed(wordlength-1downto 0); )
b variable carry: integerangeOto 1;-- easy to add to "signed” operands
egin . .
-- for substract, invert bits of 'add and add a carry
if (sub="1)
then
addr_in := not(addxr);
carry := 1,
else
addr_in := addr;
carry :=0;
end if; .
addout <= addl + add.r_in + carry;
end processadd sub;

-- comparator

equal<="1" when(cmpl = cmp.r) else’0’;
greater<="1" when (cmp.l > cmpr) else’0’;
-- memory read

mem.out <= mem(tainteger(unsigned(réddr)));

-- main output

dataout <= std logic_vector(memout);

Figure 19: Description of the combinational logic belonging to the code of Figure 18.

e There is then a sequential process to describe all memory elements includsey htblding
current _state

e There is a combinational process for the computation ohthe state

e Finally, there is a combinational process to calculate the outputs. As motivatee, abe outputs
are derived from then next state. The outputs therefore also depémal (status) inputs making
this FSM a so-callet¥lealy machine (inMoore machines the output only depends on the current
state).

Note that one can implement a large range of algorithms on the same data patclyisg an ap-
propriate controller architecture. One can make the system even moréeflbyiktoring the control
patterns in a memory rather than hard-coding them in an FSM. The pattered stéhe memory may

be called thdirmwareor even thesoftwaredepending on the actual approach chosen. Such a controller
in combination with the data path may already be called a sipoleessor

11 VHDL Synthesis Basics

It has been mentioned already that VHDL was primarily designed for gespofsimulationin the
1980s. In the 1990s tools became available that could synthesize wekdlstibsets of VHDL. Syn-
thesis means here that a VHDL description provided by the user is takee apdtificationof the
hardware and mapped to either an IC or an FPGA design that shows thdehenéor as the specifi-
cation.

One can say that the synthesis tools perfaiticon compilation. In a way similar to software com-
pilation where the specification of some computation in a high-level languadeasuC++ or Java is
automatically translated into machine instructions, a silicon compiler translates-g&eh@specifica-
tion of hardware behavior into a set of mask patterns on chip that realizeeslired behavior (or into
a configuration pattern of an FPGA).

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 29

reset

Lo it

load_cmp_|
load_cmp_r
greater reater
& equal equal & equal
load_add | O finished load_add_| 1
load_add_r 1 load_add_r O
store_sub 0 store_sub_1

.

F

Figure 20: The FSM computing Euclid’s GCD algorithm on the data path of Figure 16.

With some simplification, the VHDL synthesis process can be seen as consiétfingt deriving
Boolean equations from the VHDL code and then optimizing these equatichstisat they can be
realized with the standard cells from a given library (see Section 2). dmeaining part of this text
presents typical examples of VHDL code that can be synthesized. 820dits intricacy, some addi-
tional attention is paid on how to specify arithmetic circuits in synthesizable VHDL.

As mentioned in Sectidn 1, VHDL itself has been standardized several timetheSis standards also
exist. They deal with two issues: data types to be used in synthesis (sEEn&cand the allowed
language subset (see Section 12). In this subset, each languaggactdras an unambiguous hardware

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



30 VHDL for Simulation and Synthesis

library ieee;
useieee.stdlogic_1164.all;

entity cmp.add.ctrl is .
port (clk, resetin stdlogic;

-- main outputs .
req, readyout std logic;

-- status inputs from data path
equal, greatetin stdlogic;

-- control outputs to data path

-- adder left/right register control
addl_sel, addr_sel, addl_en, addr_en, subout std logic;

-- comparator left/right register control )
cmp.l_sel, cmpr_sel, cmpl_en, cmpr_en:out std logic;

-- memory control ]
rd_addr, wraddr:out std.logic_vector(1downto 0);
wr_selen:out std logic_vector(1downto 0));

end cmp.add.ctrl;

Figure 21: The controller entity declaration.

counterpart. In practice, various synthesis tools support almost the\ddBle language subset.

One of the main lessons of this text is that VHDL can be the core of an ICrdesgject. One starts
with a formal VHDL description of the behavior of the circuit to be desigriedan be verified through
simulation. This “executable specification” can then be refined using adep-design approach until
a VHDL description is obtained that can be synthesized, while at the same tim&tsimus used
to continually verify the correctness of the evolving description. After \lFiynthesis, the resulting
netlist of standard cells can again be described in VHDL. It will, of coursea structural description
where instances of standard cells are interconnected. Behaviocaiptiess of the individual standard
cells themselves are given in the library. This final VHDL description of tesigh can again be
simulated using the original testbench. There are several reasorigtdating the final description.
First of all, the final description will contain timing information based on a realmtdeling of delays.
It may turn out that the circuit does not work properly due to timing probléfhgy may be solved by
a revision of the design. A second reason for post-synthesis simulatiat thésynthesis tools cannot
always be trusted; due to the complexity of the algorithms, bugs may exist ioftiase. It may also
be that the user has used non-synthesizable language constructemodehooked warnings issued
by the synthesis tool.

12 VHDL Synthesis Through Examples

As was mentioned before, only a subset of VHDL can be synthesizearbgnercially available synthe-
sis tools. Itis not the intention here to exactly describe the subset asdibfitiee synthesis standards.
Instead, a subset that is sufficient to complete the design exercisese wifobmally defined here.

This section will first give some characteristics of the VHDL subset to leel @nd then explain the
subset by means of some examples.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 31

architecture gcdof cmp.add.ctrl is
-- enumeration type for states: "state”
type stateis (start,
readl, read2, loadmp.l, loadcmpr,
finished,
load addl_0, loadaddr_1, storesuh0,
) load.addl_1, loadaddr_0, storesuh 1);
signal currentstate, nexistate: state;
begin
seq:procesgclk, reset)
begin
if reset="1
then
currentstate<= start;
req<="1,
ready<="0’;
elsif rising_edge(clk)
then

currentstate<= nextstate; o
![fh (nextstate = read19r (nextstate = finished)
en
req<="1,
else
req<="0"
end If;
if nextstate = finished
then
ready<="1’;
else
ready<="0’;
end if;
end if;
end processseq;
ge\/\@state:proces$currentstate, equal, greater)
egin
casecurrentstateis
when start => next.state<= readl,;
whenreadl = nextstate<=read2;
whenload.cmp.r =>
if equal ="’
then
nextstate<= finished;
elsif greater ='1’
then
nextstate<= load.addl_O;
else
nextstate<=loadaddl_1;
end if;
-- other states left out!
end case
end procesmew state;
outputs:procesgnext state)
begin .
casenext stateis
whenreadl = . )
-- copy from datain to memory address O; rest is don't care
addl_sel<="-"; add_|_en<="-"; add_r_sel<="-"; add_r.en<="-’;

sub<="-%
cmpl_sel<="-; cmp_l_en<="-"; cmp_r_sel<="-"; cmp_ren<="-,
rd_addr<="--"; wr _addr<="00"; wr_selen<="11";
-- other states left out!
end case
end processoutputs;

endgcd;

Figure 22: A controller architecture implementing the GCD algorithm.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



32 VHDL for Simulation and Synthesis

12.1 General Remarks on Synthesizable VHDL

These are the main properties of the synthesizable subset of VHDL.:

e Only a single architecture for each entity to be synthesized is allowed. Ademrchitecture
presented to the system will result in the first one to be ignored. Configasado not make
sense because no confusion between multiple architectures is possible.

e The architecture of an entity can either be a behavioral one or a stluongacomposed of
instantiations of other entities. So, hierarchical descriptions can be Weltiple entities per
file are allowed.

e Behavioral descriptions of an entity will have one or more processes arthé@ecture body. Itis
a good custom to separate combinational and sequential logic into sepaisges. Examples
are given later on.

e Synthesizable VHDL should not contain references to absolute time suckassignments with
theafter keyword. If they do, they are ignored. Signals can be delayed, Bytoyrpassing
them through (a chain of) clocked registers.

e Although the synthesizer can deal with many data types, it is strongly recodem¢a exclu-
sively use thestd _logic andstd _logic _vector data types for the I/O signals of the top-
level entities. These are namely the data types used in the VHDL descriptitressynthesized
circuits. Sticking to them facilitates the reuse of testbenches.

D/C Rule 8 Only usest d_| ogi c or std_| ogi c_vect or data types for the top-level input
and output signals of your design.

12.2 Combinational Logic at the Bit Level

In Table/ 1 an example of a function with 3 inputs and 2 outputs is ﬁv@on’t care outputs are
indicated by a ‘D’. The synthesizable VHDL equivalent of such a fumcisoshown in Figure 23. It is
the synthesizable VHDL equivalent of the truth table given in Table 1. Adeaseen from the VHDL
description, the code has a one-to-one correspondence to the truth Taklexample teaches a few
points that are valid for VHDL synthesis in general:

e Processes that represent combinational logic, have a sensitivity listibiald contairall inputs
of the hardware unit.

e The data typestd _logic andstd _logic _vector that are used widely for simulation, are
also synthesizable. All value combinations with and’'l’ for the input signals should be
specified in the VHDL description. Specifying the behavior for input digakues other thait’
and’l’ does not make sense for synthesis, but is necessary for the simulatiendescription
prior to synthesis: hence, tlghers clause in theease statement of Figurte 23. This clause is
ignored by synthesis tools. The valde for don’t care signals can be used for output values to
allow the logic synthesis algorithms to minimize the hardware. Other data typesathbeawsed
for signals in VHDL synthesis will be discussed later.

5 The example has been taken from: R.K. Brayton, G.D. Hachtel, CcMien, and A.L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesiduwer Academic Publishers, Boston, 1984.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 33

Input | Output
12273 Yy1y2
000 11
001 10
010 01
011 01
100 10
101 1D
110 11
111 D1

Table 1: An example of a Boolean function with 3 inputs and 2 outputs.

library ieee;
useieee.stdogic_1164.all;

entity examplelis
port (x: in stdlogic_vector (1to 3);
y: out std.logic_vector (1to 2));
end examplel;

architecture tabularof examplelis

begin
react:process(x)
begin'
casex is )

-- Note: you can't use don't cares for the input patterns
-- When using this style of description.
when”000” =>y <="11";
when’001" =>y <="10"
when’010" =>y <="01";

when”011" =>y <="01",
when”100” => y <="10"
when”101" =>y <="1-";
when”110" =>y <="11%
when”111"=>y <="-1"
when others=>y <="--";
end case
end processeact;
endtabular;

Figure 23: Truth-table style specification of combinational logic.

¢ Full specification of all input value combinationsimportant According to VHDL semantics,
signals that are not assigned during a process invocation maintain thessvafor synthesis
this would mean the insertion dditchesto keep the old signal value for the unspecified input
combinations. This would make the hardware unit sequential instead of catialpial.

D/C Rule 9 Always check the warnings issued by the synthesis tool and be espeeéilpk
inserted “latches”. Latch insertion should not happen. Fix your VHDLIsthat synthesis does
not insert any latch.

Truth tables are not the only possibility to describe synthesizable VHDL &bitHevel. The signal
y1 in Table/ 1 can e.g. be described as given in Figure 24. An important reimdo& made about

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



34 VHDL for Simulation and Synthesis

library ieee;
useieee.stdogic_1164.all;

entity exampleds
port (x: in std.lo QiIC _vector (1to 3);
y1: out stdlogic);
end example2;

architecture behavioralof exampleds
begin
react process(x)

|? ((x(l) ="1") and (x(3) ='0")) or (x(2) ='0")

elsif (i(l) ='1") and (x(2) ='1") and (x(3) ='1")

y1 <=’
else
yl <=0’
end if;
end processeact;
end behavioral;

Figure 24: An alternative style for synthesizable VHDL at the bit-level.

library ieee;
useieee. stdloglc 1164.all;

entity condxor is
port (a, b:in stdlogic_vector(1ldownto 0);
c: in stdlogic;
result:out std logic_vector(11downto 0));
end condxor;

architecture behavioralbf condxor is
begin
react:process(a, b, c)
be in
c="1
then
result<= axor b;
else
result<= (not a) xor b;
end if;
end rocesseact;
end behavioral;

Figure 25: The synthesizable description at the word level of a hardware unit.

this example is that theoolean data type of VHDL should not be confused with the data type
std _logic . The conditional expression of tlife statement should evaluatetioolean . Although
the packagetd _logic _1164 provides for the use of the operators suclaad andor with values

of the typestd _logic , one cannot replace the first conditional expression(kyl) and not

X(3)) or not x(2) . The results returned by the operatargl, etc. are themselves of the type
std _logic and not of the typboolean . Note: VHDL has the possibility adperator overloadings

is e.g. the case in C++; this allows the use of the operaitwisetc. for data types other théwolean .

An example of a synthesizable combinational logic at the word level is giv&igire 25. The code
describes a hardware unit that computesekeusive orof two 12-bit signals after inverting the first

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 35

signal a, b: stdlogic_vector éldownto 0);
signal c: stdlogic_vector (3downto 0);

-- Concatenation:
c<=aé&hb;

casecis

when”0000" =>y <="1";z <="0’;

-- other possibilites should follow here ...
end case

-- Splitting:
a<=c (2downto 1);

-- Range assignment:

¢ (2downto 1) <= a;

Figure 26: Different possibilities for assigning multiple-bit signals.

signal depending on a control signal.

12.3 Sequential Logic: A Finite State Machine

As opposed to combinational logic, hardware units with sequential logicdmavsernal state and the
output values of the unit not only depend on the actual input valuesrbiiteostate as well. Any piece
of sequential hardware that can be physically built, has a finite numbeatefsga finite number of
logic gate outputs) and can therefore be calldthiée state machin¢FSM). The term FSM is often
used for hardware in which the number of states is small such as in the exainfjideire 20.

The discussion of VHDL synthesis for FSMs is limited to hardware in whichstatestored in flipflops
that are connected to a single clock. An example of synthesizable VHDé fooédn FSM has already
been given in Figure 22.

Important note:Only positive-edge-triggered synchronous sequential hardwareawittsynchronous
reset is considered here. This means that all sequential processgmithasizable VHDL description
should only be sensitive to the clock and reset. Such processes atigvely activated at each clock
edge, but solely specify behavior for the rising clock edge (and faiethet). This means that any action
should terminate within a single clock period. Iterative constructs that use/lgilg statements with
the goal of performing actions that span multiple clock periods are not dibstgoaith the specification
style. The correct way of dealing with such actions is to introduce apiatepstate variables that
store the state until the next activation of the process in the next clockdpgge e.g. the counter
example of Section 6.3 where a state variable is incremented in each protresSom). lteration is
implicit through of the periodic nature of the clock signal rather than expliciigh the use of iterative
language constructs.

12.4 Assignment of Multibit Signals

Another issue that may be useful in the design of hardware and hagnioégn discussed here is the
interconnection of multibit signals with unequal length. Different possibilitiesv@d by VHDL are
shown in Figure 26. Two signals can be juxtaposed to form a wider signaidans of the signal-

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



36 VHDL for Simulation and Synthesis

Figure 28: A 1-to-1 realization of the code of Figure 27.

concatenation operato&”. This is not only useful for composing buses. It can also be conuénie
in order to have compact and readable code as the wider signal careauged in a singlease
statement; multiple nesteéfl or case statements would otherwise be necessary to describe the same.

One can also select a range of bits of a multibit signal both to be used attthedefight hand side of
an assignment.

12.5 Resource Sharing

Consider the fragment of code as shown in Figure 27. A literal interpratafithis code would be that
one computes the additioas + b andc + d and then passes one of the two results to output signal
y. This implies two adders and one multiplexer as shown in the block diagram ufeF2§.

This is an expensive solution for the intended behavior: two additionseafermed and one result is
discarded. As the hardware costs of a multiplexer are lower than the damtsaglder, it is wiser to
multiplex the inputs and perform one addition rather than perform two additindsmultiplex their
outputs. So, one would prefer the hardware of Figure 29 above thefdtigure 28. One says that the
adderresourceis sharedbetween the two branches of tifie statement.

The optimization that was presented, is relatively simple. One would expedhthaynthesis tool
should be able to perform it. Many synthesis tools actually have this possililityvever, as such
an optimization modifies the hardware structure implied by the code, it is seen@sian that the
tool user can control. It is recommended not to depend on the peculiaritiée dool but rather
explicitly code the intended hardware structure in VHDL. The code cporeding to Figure 29 is
given in Figure 30. It is supposed that the code is part of the body wigdescombinational VHDL
process. As the wirdd andt2 are internal, they are codedeariablesrather tharsignals One could

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



VHDL for Simulation and Synthesis 37

Figure 29: A cheaper realization of the design of Figure 28.

if cond =1’
then

tl:=a;

t2 :=b;
else

tl:=c;

t2:=d;
end if;
y <=tl+1t2;

Figure 30: The description of the hardware of Figure|29 in VHDL.

also opt to use two combinational processes for the hardware of Fi§umn2 combinational block of
whichtl andt2 are the outputs and another one of which they are the inputs.tThandt2 should
be declared as signals at the level of the VHDL architecture that contaadhprocesses.

(© Sabih H. Gerez, University of Twente, The Netherlands Septembe B, 20



	VHDL History
	The ASIC/FPGA Design Flow
	The VHDL Approach to Design
	VHDL Libraries, Packages, and Entities
	Architectures, Processes, Signals, and Variables
	Data Types and Functions for VHDL Synthesis
	Data types
	Functions
	Example
	Multidimensional Data Structures

	The Testbench Concept, Structural Descriptions, and Configurations
	The Operation of the VHDL Simulator
	 Towards Designing IP Blocks: Parameterizable Components and Test Interface
	Data Path and Controller Separation
	VHDL Synthesis Basics
	VHDL Synthesis Through Examples
	General Remarks on Synthesizable VHDL
	Combinational Logic at the Bit Level
	Sequential Logic: A Finite State Machine
	Assignment of Multibit Signals
	Resource Sharing


