
A Formal Connection between Security

Automata and JML Annotations⋆

Marieke Huisman1 and Alejandro Tamalet2

1 University of Twente, Netherlands
2 University of Nijmegen, Netherlands

Abstract. Security automata are a convenient way to describe security
policies. Their typical use is to monitor the execution of an application,
and to interrupt it as soon as the security policy is violated. However,
run-time adherence checking is not always convenient. Instead, we aim at
developing a technique to verify adherence to a security policy statically.
To do this, we consider a security automaton as specification, and we
generate JML annotations that inline the monitor – as a specification –
into the application. We describe this translation and prove preservation
of program behaviour, i.e., if monitoring does not reveal a security vio-
lation, the generated annotations are respected by the program.
The correctness proofs are formalised using the PVS theorem prover.
This reveals several subtleties to be considered in the definition of the
translation algorithm and in the program requirements.

1 Introduction

With the emergence of a new generation of trusted personal devices (mobile
phones, PDAs, etc.), the demand for techniques to guarantee application security
has become even more prominent. A common approach is to monitor executions
with a security automaton [13]. Upon entry or exit of a security-critical method,
the security automaton updates its internal state. If it reaches an “illegal” state,
the application will be stopped and a security violation will be reported. This
approach is particularly suited for properties that are expressed as sequences
of legal method calls, such as life cycle properties, or constraints that express
how often or under which conditions a method can be called. However, such a
monitoring approach is not suited for all applications, depending on their nature
and use; sometimes statical means to enforce security are necessary.

Security experts typically express security requirements by a collection of se-
curity automata or temporal logic formulae. However, many program verification
tools use a Hoare logic style for the specifications (i.e., pre- and postconditions).
Therefore, as a first step towards static verification of such security properties,
this paper proposes a translation from security properties expressed as an au-
tomaton into program annotations.

⋆ This work is partially funded by the IST FET programme of the European Commis-
sion, under the IST-2005-015905 Mobius project. Research done while the authors
where at INRIA Sophia Antipolis.

The translation in this paper is defined for Java programs. It is defined in sev-
eral steps. For each step we provide a correctness proof. (i) We translate a partial

automaton to a total automaton that contains a special trap state to model that
an error has occurred. We show that the behaviour of a program monitored with
a partial automaton is equivalent to the behaviour of the program monitored
with the total automaton. (ii) Using an extension of JML [9], we generate an-
notations that capture the behaviour of the total automaton. These are special
method-level set-annotations that are evaluated upon entry or exit of a method.
We show that run-time monitoring of the program only throws a (new) exception
to signal an annotation violation if the monitor reaches the trap state, other-
wise the annotated program has the same executions as the monitored program.
(iii) We inline the set-annotations from the method specification to the method
body and prove equivalence of the run-time checking behaviour. All results in
the paper have been established formally using the PVS theorem prover [11].
The complete formalisation is available via http://www.cs.ru.nl/∼tamalet/.

To prove correctness, the order in which method specifications are evaluated
is important. Further, we had to add an explicit requirement that finally blocks
could not override annotation violation exceptions thrown inside try or catch

statements (see also [8]). The last complication that we encountered was how
to specify conveniently that specification-only constructs and steps taken by
the monitor did not have any side-effects on the program state. More detailed
information about the proofs is given in Section 4.

Throughout this paper, we use the

s1 s2

exit (sendSMS)?true →

n := n + 1;

exc exit (sendSMS)?true →ǫ;

exit (reset)?true →

n := 0;

entry (sendSMS)? n < N → ǫ;

Automaton vars = {n} Program vars = ∅

Fig. 1. Example Property Automaton

limited SMS example property of Fig. 1
(where ǫ denotes a skip) to illustrate
the different translations: the method
sendSMS can be called and terminate
successfully at most N times in between
calls to reset. The counter is not in-
creased if sendSMS terminates because
of an uncaught exception (with label
exc exit(sendSMS)), and reset should

not be called from within sendSMS. Even though very basic, this example is
representative of a wide range of important resource-related security properties.

The rest of this paper is organised as follows. Section 2 formalises the au-
tomaton format and defines completion. Next, Section 3 defines the semantics of
monitored and annotated programs. Section 4 defines the translation and proves
correctness. Sections 5 and 6 discuss related and future work and conclusions.

2 Modelling Security Properties with Automata

The automata that we use to express security properties are called Property
Automata (PA). These are extended finite state machines particularly suited for
monitoring, since transitions do not only depend on the automaton’s state (i.e.,
the current control point and a valuation for the automaton’s variables), but

2

also on the state of the monitored program. Transitions are labelled with guards,
events and a list of actions. Events specify the method whose entry and/or exit
is being monitored, with a distinction between normal and exceptional exits.
Guards describe the conditions under which a transition can be applied. They
depend on (i) the automaton state, (ii) the state of the program that is being
monitored, and (iii) the argument of the method, in case the event is method
entry; the result of the method, in case the event is normal method exit; or the
exception with which the method returns, in case the event is exceptional method
exit. Actions describe how the automaton state is updated by a transition.

Throughout, we assume that CP and N are possibly infinite, but countable
non-empty sets of control points and names. PA and programs share the defini-
tions of values, types and exceptions, denoted V , T and E , respectively. These
are defined by the following grammar, where B and Z denote the standard sets
of booleans and integers, respectively1.

V = B(b : B) | I(i : Z) | Null | R(i : Z) | 1l | ⊥
T = Bool | Int | Ref | Void

E = Throwable | RunTimeException | JMLException

The type Void, inhabited by 1l, models methods without results; a reference can
be Null or contain a number representing the location where the object is stored;
⊥ is used to denote the outcome of an expression whose evaluation is undefined
(in Java this would typically result in an exception).

A PA consists of (i) a name, (ii) a class name, to specify which class is being
monitored, (iii) a finite set of control points, (iv) an initial control point, (v) a
set of events, to specify which methods are being monitored, (vi) a set of PA
variable declarations, to describe the internal state of the automaton, (vii) a
set of program variable declarations, to specify which program variables will be
inspected by the monitor, and (viii) a set of transitions. Transitions relate source
and target control points; they are labelled with events, a guard and a list of
actions. An event is a tuple of an event type (entry, exit or exceptional exit),
and a method name. Each action assigns the result of an expression (containing
both program and PA variables) to a PA variable. Notice that we only monitor
classes here. This is often the case in practice, because security-critical methods
are often static API methods. However, a more precise formalisation of Java’s
semantics would allow to monitor objects as well. Formally, a PA is defined as
follows.

Decl = [# type : T , name : N , init : V #]

Event = [# etype : (entry | exit | exc exit), mname : N #]

Trans = [# source, dest : CP , event : Event , action : ([# target : N , expr : Expr #])∗,
guard : PAState × PState × (V | E) → B #]

PA = [# name, clname : N , cps : P(CP), init : CP , events : P(Event),
pa var decl : P(Decl), prog var decl : P(Decl), trans : P(Trans) #]

1 We will use a PVS-like notation to declare abstract data types and records (enclosed
by [# and #]). Further, if x is a record with field y, we use x.y to access field y, and
x(# y := z #) to denote the record x with the field y updated to z.

3

We require a PA to be deterministic, i.e., for every source control point and
event there is always at most one guard that holds. A PA is total if for any
source control point and event, there is always a guard that holds; otherwise it
is partial. Every deterministic PA can be completed into a total one (by function
complete): add a special control point halted, together with transitions for every
control point and every event to halted, where the guard is the negation of the
disjunction of all other guards for this control point and event. Additionally, add
unconditional transitions from halted to halted for every possible event.

A PA is wellformed if: (i) variable names are unique and are not reserved
words, (ii) guards do not have side-effects, (iii) guards and actions only use
declared variables, and (iv) control points and events in transitions are declared.

The state of a PA consists of a current control point, and the store of
automaton variables (the program store is not part of the automaton state):
PAState = [# current : CP , storeA : Store #]. Given PA a, the transition function
∆a specifies how an automaton state σA is updated for a given program state
σP , an event e, and a value or exception v (where ε is the arbitrary choice op-
erator, and apply is a function that updates the automaton store according to a
list of actions in the obvious way).

∆a : PAState × PState × Event × (V | E) →֒ PAState
∆a(σA, σP , e, v) =

let t = ε({t ∈ trans(a) | t.source = σA.current ∧ t.event = e∧
t.guard(σA.storeA, σP .fields.store, v)}) in

(# current := t.dest, storeA := apply(t.action, σA.storeA, σP .fields.store) #)

In a total PA a, the transition function ∆a is total. A partial automaton gets
stuck on a certain input if and only if the completed PA reaches the state halted.

∆a(σA, σP , e, v) =⊥⇔ ∆complete(a)(σA, σP , e, v).current = halted (1)

Example The property specified in Fig. 1 is encoded by the following PA2, while
Fig. 2 shows the completed PA (where new transitions are dashed).

(# name := LimitSMS, clname := Messaging, cps := {s1, s2}, init := s1,

events := {(# etype := e, mname := sendSMS #) | e ∈ {entry, exit, exc exit}} ∪
{(# etype := exit, mname := reset #)},

pa var decl := {(# name := n, type := Int, init := 0 #)}, prog var decl := ∅,
trans := { (# source := s1, dest := s2, guard := λ(σA, σP , v).σA(n) < N,

event := (# etype := entry, mname := sendSMS #) #),

(# source := s2, dest := s1, action := [(# target := n, expr := n + 1 #)]
event := (# etype := exit, mname := sendSMS #) #),

(# source := s2, dest := s1,

event := (# etype := exc exit, mname := sendSMS #) #),

(# source := s1, dest := s1, action := [(# target := n, expr := 0 #)],
event := (# etype := exit, mname := reset #) #)} #)

2 Where we leave the default guard λ(σA, σP , v).true and empty action ǫ implicit.

4

s1 s2

exit (SendSMS)?true
→n := n + 1;

exit (reset)?true →
n := 0;

entry (sendSMS)? n < N → ǫ;

entry (sendSMS)?true →ǫ
entry (sendSMS)?true →ǫ

exit (reset)?true →ǫ

exit (reset)?true →ǫ

exit (sendSMS)?true →ǫ

exit (sendSMS)?true →ǫ

exc exit (sendSMS)?true →ǫ

exc exit (sendSMS)?true →ǫ

exc exit (sendSMS)?true →ǫ

entry (sendSMS)?n ≥ N →ǫ

halted

Fig. 2. Automaton of Fig. 1, after completion

Expr = Plus(n1, n2 : Expr) | VarI(n : N) | Not(b : Expr) | And(b1, b2 : Expr) |
Eq(e1, e2 : Expr) | VarB(n : N) | VarR(n : N) | CondExpr(c, e1, e2 : Expr) |
Assign(n : N , e : Expr) | Call(o : Expr , mn : N , p : Expr) | Const(v : V)

Stmt = Skip | Sequence(s1, s2 : Stmt) | IfThenElse(c : Expr , s1, s2 : Stmt) |
While(c : Expr , s : Stmt) | StmtExpr(e : Expr) | Throw(e : E) |
TryCatchFinally(t : Stmt , e : E , c, f : Stmt) | Set(n : N , e : Expr) |
CaseSet(b : list[Expr × Stmt]) | Assert(e : Expr)

Fig. 3. Abstract syntax of expressions and statements

3 Programs and Semantics

This section first defines an abstract syntax of programs, followed by their se-
mantics. Both are fairly standard, except that the semantics is parametrised on
the treatment of specifications. In particular, we define a run-time checking and
a monitoring semantics, that evaluate differently upon method call and exit.

3.1 Program Syntax

Our language is a restricted subset of (sequential) Java, abstracting away from
typical object-oriented features, and in particular from method resolution; in-
stead we assume that the annotated class contains method bodies for the relevant
methods, thus method lookup is trivial. We consider only a few exceptions, and
assume that methods have only one parameter. We believe, however, that our
formalisation contains all constructs that are relevant for proving correctness of
our inlining algorithm for class-based monitoring, and implementing the algo-
rithm for the full language is mainly an engineering issue.

Figure 3 defines expressions and statements (we use the term body to denote
either an expression or a statement), e.g., Call represents a call to method mn

on target o with argument p. Notice that we define several special language
constructs to represent JML annotations: Set, to update ghost variables (i.e.,
specification-only variables), CaseSet, to abbreviate a list of conditional ghost
variable updates, and Assert, to evaluate a condition on the program state. A
standard program semantics ignores these statements, whereas the annotated
program semantics evaluates them.

5

Method = [# name : N , param : Decl , lvars : P(Decl), body : Stmt ,
res : Expr , res type : T , pre, post : Expr → Expr ,

pre set, post set : Expr → Stmt , exc set : E → Stmt #]

Class = [# name : N , super : N⊥, fields : P(Decl), methods : P(Method),
inv : Expr , ghost vars : P(Decl) #]

Program = [# classes : P(Class) #]

Fig. 4. Abstract Syntax for Programs

Figure 4 describes the syntax for methods, classes and programs. To ensure
that every method has an appropriate return expression, it is part of the method
signature. Furthermore, methods can be annotated with pre- and postconditions,
and classes with invariants. To support our annotation generation algorithm,
we define special annotations called pre set, post set and exc set. These anno-
tations describe the updates to the ghost variables at method entry, exit and
exceptional exit, respectively. Pre- and postcondition and the different method
specification-level set annotations have a function type to allow the use of the
method parameter, the method result, or the returned exception, respectively.

A program is said to be wellformed if (i) names of fields, local variables
and ghost variables are disjoint and are not reserved words; (ii) class names are
unique; (iii) method names are unique; (iv) every variable name that is used is
declared; and (v) only ghost variables are the target of Set statements.

3.2 Natural Semantics

The behaviour of a program is described via a big step semantics. We closely
follow Von Oheimb’s formalisation of Java [10], with simplifications wherever
possible, due to our simplified program syntax. A judgement P ⊢ 〈e, σ〉 ⊲ 〈v, σ′〉
means that the body e evaluates to v, while transforming the state σ into σ′,
in the context of the program P . Note that v is 1l for normally terminating
statements, while v is ⊥ whenever evaluation finishes in an exceptional state.

A basic program state PState is composed of an optional exception and a
store. The store maps every field and local variable to a value.

PState = [# exc : Excp⊥, store : PStore #]

PStore = [# fields : N 7→ V, loc vars : N 7→ V #]

Since annotated or monitored programs contain more information than unan-
notated programs, the evaluation rules are parametrised with types FullProgram

and FullState. For each instantiation we give mappings program and prog state

to the basic program type Program and the basic program state PState. Further,
we add parameters that specify the actions that are taken upon method entry or
(normal or exceptional) exit (γin, γnorm, and γexc, respectively), and the handling
of annotations (δset, δassert, and δcase). In a standard program semantics, where
specifications are ignored, these are all instantiated with the identity relation.

6

The evaluation rules are fairly standard, and we refer to Von Oheimb and the
PVS formalisation for more details. Evaluation of normally terminating method
calls is described by the following rule (where for clarity of presentation, we left
out several checks that intermediate states are not exceptional).

σ0.prog state.exc = ⊥ P ⊢ 〈o, σ0〉 ⊲ 〈r, σ1〉 P ⊢ 〈p, σ1〉 ⊲ 〈act , σ2〉
r 6= Null md = lookup mthd(P, r,mn)

old lvs = σ2.prog state.store.loc vars σ3 = update lvs(σ2, r,md .lvars, md.param, act)
γin(P,md , r,Const(act), σ3, σ4) P ⊢ 〈md .body, σ4〉 ⊲ 〈1l, σ5〉
P ⊢ 〈md .res, σ5〉 ⊲ 〈v, σ6〉 γnorm(P,md , r,Const(v), σ6, σ7)

P ⊢ 〈Call(o,mn, p), σ0〉 ⊲ 〈v, σ7(prog state.store.loc vars := old lvs)〉

First the receiver is evaluated, resulting in non-null reference r. Next, the
parameter is evaluated, resulting in value act . Using r, the method definition
md is looked up. The local variable store is updated assigning r to this, ini-
tialising the method’s local variables and assigning the actual parameter to the
formal parameter. The old local variable store is remembered as old lvs . Next,
an appropriate action upon method entry is taken, as specified by the relation
γin. Then the method body, and method result expression are evaluated. Since
this rule applies to normal method termination only, the parameter for normal
method termination γnorm is evaluated. Last, the local store is set back to old lvs .
In addition, rules exist that specify behaviour of a method call when it is called
upon a null reference, the body contains an uncaught exception etc.

Annotated Program Semantics The program state of an annotated program is
extended with a store for ghost variables:

AState = [# pstate : PState, ghost vars : N 7→ V #]

The types FullProgram and Program coincide, while FullState is instantiated as
AState, and the mapping prog state is defined as pstate. Figure 5 shows some
of the instantiations of the semantics parameters; the other instantiations are
similar. The relation γin uses the auxiliary relation β which checks a boolean
expression e and raises a special JMLException if it evaluates to false. Upon
method entry, the class invariant and precondition are evaluated. We assume
that lookup inv returns the complete class invariant, including those invariants
that are inherited from superclasses. If they fail, a JMLException is thrown,
otherwise the method’s pre set statement is executed. Finally, we ensure that
the program store is not changed. The function δset updates a ghost variable: it
first evaluates the expression and if this did not result in an exceptional state,
it updates the value of the ghost variable3 appropriately.

Monitored Program Semantics The parametrised program semantics is also in-
stantiated for monitored programs. This semantics is only defined when the PA
is compatible with the program. PA a is said to be compatible with a program

3 Where τ (ghost vars.n := v) abbreviates that the value of ghost vars(n) in τ is updated
to v.

7

inv = lookup inv(P, r) β(P, inv , σ1, τ1) β(P,md .pre(act), τ1, τ2)
P ⊢ 〈md.pre set(act), τ1〉 ⊲ 〈v, τ2〉 v ∈ {⊥, 1l} σ1.pstate.store = σ2.pstate.store

γin(P,md , r,act , σ1, σ2)

P ⊢ 〈e, σ1〉 ⊲ 〈v, τ〉 if v = B(true) then σ2 = τ else σ2 = τ (exc := JMLException)

β(P, e, σ1, σ2)

P ⊢ 〈e, σ1〉 ⊲ 〈v, τ〉 if τ.pstate.exc = ⊥ then σ2 = τ (ghost vars.n := v) else σ2 = τ

δset(P, Set(e, n), σ1, σ2)

Fig. 5. Instantiation of semantics for runtime annotation evaluation

P , denoted a ⊑ P , if (i) the program contains the class c that is being moni-
tored, (ii) all variables declared as program variables in a are fields of the class
c with the correct type, and (iii) every event name corresponds to a method
in the class. A monitored program is a product of a PA and a program. The
state of a monitored program consists of the states of the PA and the program
(including ghost variables)4, and a flag stuck. If the PA is partial, the flag stuck

is set when ∆a is not defined for a certain input. If the flag is set, this means
that the security policy is violated, and the program should be stopped (by some
external observer). If the PA is total, the stuck flag will never be set. Instead,
violation of the security policy is modelled by the PA reaching the trap state
halted (in which case the external observer again is supposed to stop execution).

MProgram = [# pa : PA, program : Program #]

MState = [# pa state : PAState , pstate : PState , ghost vars : N 7→ V, stuck : B #]

Thus, FullProgram gets instantiated as MProgram and FullState as MState, with
mappings program and pstate. Now we can give appropriate instantiations for the
γ- and δ-relations. The δ-relations are the same as for the annotated program
semantics, but the γ-relation also updates the state of the monitor. For example,
γin is defined in terms of γin for annotated programs, as defined in Fig. 5.

γAP
in (P,md , r,act , σ1, τ)

if τ.pstate.exc = ⊥ then σ2 = γpa(entry)(P,md , act , τ) else σ2 = τ

γin(P,md , r,act , σ1, σ2)

where

γpa(ev)(P,md , act , σ) = let e = (# etype := ev , mname := md .name #),

τ = ∆P.pa(σ.pa state, σ.prog state, e, act) in

if σ.stuck ∨ τ = ⊥ then σ(stuck := true) else σ(pa state := τ)

4 Annotation Generation

Given a security property encoded as a PA, the annotation generation proce-
dure generates JML-annotations that capture this property, i.e., if the program

4 For convenience, we assume that a monitored program also evaluates annotations,
but this instantiation is in fact orthogonal to the annotated program semantics.

8

respects the property encoded by the monitor, then it does not violate the gener-
ated annotations. As explained above, the procedure is defined in several steps:
(i) the monitor is completed; (ii) the annotations are generated at the method
specification level, as special set-annotations; and (iii) the method specification-
level set-annotations are inlined in the method body. Notice that the special
CaseSet annotation could be translated into standard JML annotations as well.

For each step we prove that the new program simulates the old program, i.e.,
we show for every translation step α there exists a relation R such that:

∀b, σ1, σ2, τ1, v1.P ⊢ 〈b, σ1〉 ⊲ 〈v1, σ2〉 ∧ R(σ1, τ1) ⇒
∃τ2, v2.α(P) ⊢ 〈b, τ1〉 ⊲ 〈v2, τ2〉 ∧ R(σ2, τ2)

Additionally, we show that the initial program states are related by R, and from
this we can conclude that for any reachable state of the monitored program,
there exists a related state, reachable in the translated program. As a side-
remark, for translation steps (i) and (iii), we can even prove that relation R is
a bisimulation, while for step (ii) we can only prove existence of a simulation
(since non-terminating monitored programs – for which no derivation exists in
the natural semantics – might terminate after annotation generation, because of
an annotation violation).

A natural way to prove the simulation is by induction over the derivation
length. However, induction can only be applied when the body is unchanged.
Since the translation introduces new (ghost) variables to encode the PA, this
is not always the case. For these cases, separate preservation lemmas have to
be proven. Further, to be able to complete the proof, we need to ensure that
in both bodies the same branches of conditional expressions and statements are
taken, and that the same values get assigned to the store. Therefore, we prove a
stronger result, adding that also the values v1 and v2 are the same (for step (ii):
provided the monitor did not reach the halted state).

Completion of the automaton The first translation step does not change the
program itself, it only completes the PA. Suppose that P is a monitored program,
where the monitor P.pa is deterministic and wellformed. Then the translation
to a monitored program with a total PA, α1(P), is defined as:

α1(P) = (# pa := complete(P.pa), program := P.program #)

The relation that is preserved between executions of P and α1(P) is the
following (where σ is a state of P and τ is a state of α1(P)):

R(σ, τ) = (if σ.stuck then τ.pa state.current = halted

else σ.pa state.current = τ.pa state.current) ∧ ¬τ.stuck ∧
(σ.pa state.storeA = τ.pa state.storeA) ∧
(σ.pstate = τ.pstate) ∧ (σ.ghost vars = τ.ghost vars)

To prove that this relation is preserved for any body b, we use equivalence (1)
on Page 4 and we observe further that (i) if stuck has been set, it remains set,
(ii) for a total PA, if halted is reached, it is never left, and (iii) for a total

9

α2(P) = (# classes := {α2,C(c, P.pa) | c ∈ P.program.classes} #)

α2,C(c, a) = if c.name 6= a.clname then c

else c (# ghost vars := c.ghost vars ∪ new vars(a)
inv := And(Not(Eq(cp, halted)), c.inv)
methods := {α2,M(m,a) | m ∈ c.methods} #)

α2,M(m,a) = m (# pre set := m.pre set; α2,E(entry, m.name, a);
Assert(Not(Eq(cp, halted))),

post set := m.post set; α2,E(exit, m.name, a)
exc set := m.exc set; α2,E(exc exit, m.name, a) #)

α2,E(e, n, a) = α2,T ({t | t ∈ a.trans ∧ t.etype = (# event := e, mname := m #)}, a)
α2,T (ts, a) = CaseSet({(Eq(cp, q), α2,S(ts, q)) | q ∈ a.cps})
α2,S (ts, q) = CaseSet({(t.guard, Set(cp, t.dest; t.action)) | t ∈ ts ∧ t.source = q})

Fig. 6. Formal definition of translation PA into annotations

PA, stuck is never set. Formally, where P is a monitored program, and Q is a
monitored program with total PA:

σ1.stuck ∧ P ⊢ 〈b, σ1〉 ⊲ 〈v, σ2〉 ⇒ σ2.stuck

σ1.pa state.current = halted ∧ Q ⊢ 〈b, σ1〉 ⊲ 〈v, σ2〉 ⇒ σ2.pa state.current = halted

¬σ1.stuck ∧ Q ⊢ 〈b, σ1〉 ⊲ 〈v, σ2〉 ⇒ ¬σ2.stuck

To illustrate how the annotation generation algorithm works on the Lim-
itSMS automaton in Fig. 1, assume we have declared a class Messaging, contain-
ing the methods used by the automaton, plus a method receiveSMS. Applying
translation α1 means that this class, instead of being monitored by the partial
PA in Fig. 1, is monitored by the total PA in Fig. 2.

From PA to Annotations Figure 6 contains the formal definition of the second
translation step: from PA to method-level set-annotations. Given a monitored
program P where P.pa is total, the annotation generation algorithm α2 ap-
plies α2,C to all classes. This function checks whether the class is the one being
monitored. If so, appropriate ghost variables are added to the class using the
function new vars (see the PVS formalisation for its formal definition). Basically
(i) for each automaton control point q, a (final) ghost variable declaration q is
generated, initialised to a unique value; (ii) a ghost variable cp is declared, ini-
tialised to the value of the ghost variable representing the initial control point;
and (iii) for each automaton variable declaration, a ghost variable is declared
with corresponding name, type and initialisation. Further, α2,C adds the condi-
tion that the current control point should not be halted to the class invariant5,
and it annotates all methods in the class using α2,M. For each method, pre set,
post set and exc set are extended with updates to the ghost variables encoding
the automaton. In addition, at the end of pre set, an Assert statement is added

5 For readability, we do not explicitly write the translation from PA control points to
ghost variables.

10

to verify whether the transition reached the halted state: in that case program
execution should terminate immediately. Without this Assert, the property vio-
lation would only be detected after the body is executed. To encode the updates
to the ghost variables, α2,E computes the set of relevant transitions (i.e., those
where the event and method name correspond). For these transitions, a CaseSet

statement is generated, where the different cases correspond to the current con-
trol point being equal to a control point q, for any q in the automaton. For each
such q, α2,S selects the transitions where t.source is q and generates a CaseSet

statement, that tests whether the guard holds, and if so, sets the control point
cp to t.dest, and executes the actions associated with this transition. Notice that
the order in which the different cases are generated is not important: since the
PA is total and deterministic there is always exactly one case that applies.

The formalisation does not specify how guards and actions are translated.
Instead, we assume there exists a translation into expressions in the programming
language that (i) are wellformed, (ii) give the same result, (iii) do not have side-
effects, (iv) do not throw exceptions, and (v) do not contain method calls. From
this we can derive that in the annotated program, the generated statements in
pre set can only throw a JMLException (because of the concluding Assert), while
the generated statements in post set and exc set do not throw any exception.

As an example, consider again the class Messaging and the completed PA,
encoding the limited SMS policy, in Fig. 2. Figure 7 shows the generated an-
notations that result from applying translation α2,C on this class and this PA.
Notice that for methods and events that are not involved in the property, an
empty CaseSet is generated – this is equivalent to a Skip statement.

To show correctness of the translation, we show that the following relation
is preserved (where P is the monitored program, σ a state of the monitored
program, and τ a state of the annotated program):

R(σ, τ) = ¬σ.stuck ∧
if σ.pa state.current = halted then τ.pstate.exc = JMLException else S(σ, τ)

S(σ, τ) = (unique(σ.pa state.current) = τ.ghost vars(cp)) ∧
∀q ∈ P.pa.cps. (unique(q) = τ.ghost vars(q)) ∧
∀n ∈ N .(σ.pa state(n) 6=⊥⇒ σ.pa state(n) = τ.ghost vars(n)) ∧
σ.pstate = τ.pstate ∧
∀n ∈ N .(σ.ghost vars(n) 6=⊥⇒ σ.ghost vars(n) = τ.ghost vars(n))

This relation specifies that if the monitor has reached control point halted, the
annotated program must have thrown a JMLException. Otherwise, the state of
the annotated program corresponds to the state of the original program, ex-
tended with the modelling of the monitor’s state. This means that the program
states (fields, local variables and exceptions) have to coincide, just as the values
of the ghost variables that are declared in the original program P . Further, the
current control point is represented by the value stored in ghost variable cp, and
all PA control points and variables correspond to ghost variables. Notice that if
an annotation already present in P causes a JMLException, both the monitored
and the annotated program will throw it. Therefore, we cannot prove that the
annotated program throws a JMLException if and only if halted is reached.

11

class Messaging {
//@ ghost int halted = 0, s1 = 1, s2 = 2, N = 5, cp = s1, n = 0;

//@ public invariant cp != halted;

/*@ pre_set CaseSet [(cp == s1, CaseSet [(n < N, cp = s2),

(n >= N, cp = halted)]),

(cp == s2, CaseSet [(true, cp = halted)]),

(cp == halted, CaseSet [(true, cp = halted)])];

Assert cp != halted;

post_set CaseSet [(cp == s1, CaseSet [(true, cp = halted)]),

(cp == s2, CaseSet [(true, cp = s1; n = n + 1)]),

(cp == halted, CaseSet [(true, cp = halted)])];

exc_set CaseSet [(cp == s1, CaseSet [(true, cp = halted)]),

(cp == s2, CaseSet [(true, cp = s1)]),

(cp == halted, CaseSet [(true, cp = halted)])]; @*/

void sendSMS(){/* body sendSMS */}

/*@ pre_set CaseSet []; Assert cp != halted;

post_set CaseSet []; exc_set CaseSet []; @*/

void receiveSMS(){/* body receiveSMS */}

/*@ pre_set CaseSet []; Assert cp != halted; exc_set CaseSet [];

post_set CaseSet [(cp == s1, CaseSet [(true, cp = s1; n = 0)]),

(cp == s2, CaseSet [(true, cp = halted)]),

(cp == halted, CaseSet [(true, cp = halted)])]; @*/

void reset() {/* body reset */} }

Fig. 7. Method-level set annotations generated for class Messaging

To prove that this relation is a preserved, it is strengthened with the following
property: if the control point is not halted, then the derivations also produce the
same value. The crucial part in the proof is of course what happens upon method
call and termination. For example, when a method is called, first the invariant
and the precondition are evaluated. Assuming that halted is not yet reached, the
new conjunct of the invariant evaluates to true, and induction allows to derive
that after evaluation of the precondition, the states are related by R. Next, the
original pre set annotations are evaluated, and again the induction hypothesis
allows to conclude that the resulting states are related. Next, the monitored
program makes a PA transition, and the annotated program executes the newly
generated set annotations, followed by an Assert to check whether halted has
been reached. Here we cannot use the induction hypothesis, but instead we show
manually that relation R is preserved. Notice that in post set or exc set we do
not have an Assert statement. Since the invariant is evaluated immediately after
the set-annotations, the reaching of halted will be detected immediately. For this
part of the proof it is crucial that the newly added invariant is evaluated first.

Finally, to complete the proof, we have to add a restriction to programs. We
follow the Java Language Specification in describing its behaviour [6]. This means
in particular that if the finally block in the statement terminates abnormally
(because of an exception, or any other reason for abrupt completion), it overrides
a possible exception thrown in the try or catch block. Thus, for example, if halted

12

α3,M(P, m) = m(# pre set := Skip, post set := Skip, exc set := Skip,

lvars := {result} ∪ m.lvars, res := lookup(result),
body := TryCatchFinally(

TryCatchFinally(m.pre set; m.body;
Assign(result, m.res); m.post set

Throwable, m.exc set, Skip),
RunTimeException, m.exc set, Skip) #)

Fig. 8. Formal definition of annotation inlining for methods

is reached in the try block, and hence a JMLException is thrown, this exception
might be overwritten by an exception thrown in the finally block (see also [8] for
a discussion of this problem), which would mean that the violation of the security
policy is not signalled to the user, and instead execution continues (with another
exception). To avoid this, for all TryCatchFinally statements in the program, we
require that if the try or catch block throws a JMLException, the whole statement
also terminates exceptionally because of a JMLException.

Inlining the Annotations Once the set-annotations at method specification level
are generated, the next step is to inline them into the method bodies. To ensure
that the appropriate set-statements are always executed at the end of the method
body, the body is wrapped in a TryCatchFinally statement. The translation α3

applies α3,C to all classes, which in turn applies α3,M to all methods in the class.
This function generates one new local variable6 result. The body of the method
is changed as follows: all code is wrapped in two TryCatchFinally statements, to
catch Throwable and RunTimeException exceptions7. In the try block, first pre set

is executed, followed by the body of the method. Then the result expression from
the original body is evaluated, and assigned to result. Next, post set is executed.
Notice that the latter is only executed if the body actually terminates normally,
otherwise the exception will simply be propagated. Finally, in the catch clauses,
exc set is executed. The new result expression of the method is the look up
of the variable result. To conclude, pre set, post set and exc set in the method
specification are set to Skip. Figure 8 gives the formal definition of α3,M (where
P is a program, and m a method).

To prove correctness of this translation, we use the following relation: all fields
and ghost variables coincide, exceptions coincide, and all local variables that are
declared in the original program coincide. In the correctness proof, we use that
the post set and exc set annotations do not throw any exceptions, and pre set

may only throw a JMLException. Moreover, we use that the set-annotations do
not contain method calls, from which we can conclude that they do not modify

6 In fact, this should be a local ghost variable, but these are not yet supported by our
formalisation, therefore we formalise it as a standard local variable.

7 For simplicity, we do not model the exception hierarchy and thus TryCatchFinally can
only catch a single exception, but in practice only one try-catch-finally instruction
would be necessary.

13

any variables that are not explicitly mentioned in them. In particular, this allows
to conclude that the new local variable is not changed by the set annotations.

5 Related Work

Security automata [13] are widely used for monitoring security properties. The
originality of our work lies in considering them as specifications in a general
specification language, with the ultimate goal of static verification.

Closely related to our approach is work by Aktug et al. [3, 1, 2], who define
a formal language for security policy specifications, ConSpec, that is similar to
our PAs. They prove that a monitor can be inlined into the program’s bytecode,
by adding first-order logic annotations, and then they use a weakest precondi-
tion computation that essentially works the same as the annotation propagation
algorithm that we plan to use [12] to produce a fully annotated, verifiable pro-
gram. In contrast, our algorithm is defined for source code, and connects with
the general-purpose specification language JML. This allows the use of JML ver-
ification tools, to verify the actual policy adherence. And of course, correctness
of our inlining algorithm has been proven with a theorem prover.

Cheon and Perumendla propose an extension of JML to specify allowed se-
quences of methods calls in a regular expression-like notation [4]. This results
in succinct specifications, but of limited expressiveness. Even our Limited SMS
example is out of their scope, because it contains a counter used only by the
specification. Further, they only target runtime verification.

Several tools exist that translate temporal properties into JML annotations:
AutoJML [7] translates finite state machine specifications into JML annotations
and can also generate a code skeleton for a smart card applet; JAG [5] translates
properties in (a subset of) temporal logic, including liveness properties. However,
they typically do not distinguish between method entry and exit, and moreover,
correctness of the translation algorithm has not been proven.

For more information about policy languages, monitor inlining and specifying
policy adherence, we refer to Section 4.10 of Aktug’s thesis [1].

6 Conclusions & Future Work

This paper presents an algorithm to inline security automata, in the form of
JML annotations. The translation is defined in several steps, thanks to the in-
troduction of method-level set-annotations as extension to JML. All steps are
formalised and proven correct, using the PVS theorem prover. The algorithm
might seem trivial, but several subtleties complicate the proof, i.e. evaluating
the specifications in the right order, dealing with side-effect-freeness of annota-
tions and the possibility that a finally block hides exceptions.

The formalisation has been developed for a subset of Java. We believe that
extending it to full (sequential) Java would be relatively straightforward. How-
ever, generalising to properties that are not restricted to a single class or that
are related to multithreading might be more challenging.

14

The ultimate goal of our work is to statically verify adherence to security
policies. To achieve this, a weakest precondition calculus can be used to generate
pre- and postconditions, based on the generated Set annotations. In earlier work,
we presented such a propagation algorithm [12], and proved correctness for a
limited case (instance variables and branches are not considered). It is future
work to overcome these limitations.

References

1. I. Aktug. Algorithmic Verification Techniques for Mobile Code. PhD thesis, Royal
Institute of Technology (KTH), Sweden, 2008.

2. I. Aktug, M. Dam, and D. Gurov. Provably correct runtime monitoring. In Formal
Methods (FM’08), volume 5014 of LNCS, pages 262–277, 2008.

3. I. Aktug and K. Naliuka. ConSpec: A Formal Language for Policy Specification.
In Run Time Enforcement for Mobile and Distributed Systems (REM’07), volume
197-1 of Electronic Notes in Theoretical Computer Science, pages 45–58, 2007.

4. Y. Cheon and A. Perumendla. Specifying and Checking Method Call Sequences of
Java Programs. Software Quality Journal, 15:7–25, 2007.

5. A. Giorgetti and J. Groslambert. JAG: JML Annotation Generation for verifying
temporal properties. In Fundamental Approaches to Software Engineering (FASE
2006), volume 3922 of LNCS, pages 373–376. Springer, March 2006.

6. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
third edition. The Java Series. Addison-Wesley, 2005.

7. E. Hubbers, M. Oostdijk, and E. Poll. From finite state machines to provably cor-
rect Java Card applets. In D. Gritzalis, S. De Capitani di Vimercati, P. Samarati,
and S.K. Katsikas, editors, IFIP Information Security Conference, pages 465–470.
Kluwer Academic Publishers, 2003. See http://autojml.sourceforge.net.

8. M. Huisman. Run-time verification can miss errors - why finally clauses can be
dangerous, 2008. Manuscript.

9. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML
Reference Manual, July 2005. In Progress. Department of Computer Science, Iowa
State University. Available from http://www.jmlspecs.org.

10. D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München, 2001.

11. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Henzinger,
editors, Computer-Aided Verification (CAV ’96), volume 1102 of LNCS, pages 411–
414. Springer, 1996.

12. M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high
level security properties for applets. In J.-J. Quisquater, P. Paradinas, Y. Deswarte,
and A.A. El Kalam, editors, Cardis’04, pages 1–16. Kluwer, 2004.

13. F.B. Schneider. Enforceable security policies. Technical Report TR99-1759, Cornell
University, October 1999.

Acknowledgements We thank Erik Poll for his useful comments on an earlier
draft of this paper, and Igor Siveroni, who started the work on this topic and
came up with the idea to use method-level set-annotations.

15

