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1 IntrodutionModel heking is emerging as a pratial tool for automated debugging ofomplex reative systems suh as embedded ontrollers and network protools.In model heking, a high-level desription of a system is ompared againsta logial orretness requirement to disover inonsistenies. The �rst teh-niques for model heking did not admit an expliit modeling of time, and arethus unsuitable for analysis of real-time systems whose orretness dependson relative magnitudes of di�erent delays. Consequently, Alur and Dill [AD90℄proposed timed automata as a formal notion to model the behavior of real-time systems. Timed automata are state-transition diagrams annotated withtiming onstraints using �nitely many real-valued lok variables. During thelast deade, there has been enormous progress in the area of timed modelheking. We refer to [Alu98, CGP99, LPY97, Yov98℄ for overviews of the un-derlying theory and referenes to appliations. Timed automata tools suh asUppaal [LPY97℄, Kronos [BDM+98℄, and PMC [LTA98℄ are now routinelyused for industrial ase studies.A disadvantage of the traditional approahes is, however, that they an onlybe used to verify onrete timing properties: one has to provide the valuesof all timing parameters that our in the system. Typial examples of suhparameters are upper and lower bounds on omputation times, message delaysand timeouts. For pratial purposes, one is often interested in deriving the(symboli) onstraints on the parameters that ensure orretness. The proessof manually �nding and proving suh results is very time onsuming and errorprone (we have disovered minor errors in the examples we have been lookingat). Therefore tool support for deriving the onstraints automatially is veryimportant.In this paper, we study a parametri extension of timed automata, alledparametri timed automata (PTAs), and present an extension to PTAs of the(forward) state spae exploration algorithm for timed automata. We show thetheoretial orretness of our approah, and its feasibility by appliation tothree non-trivial ase studies. For this purpose, we have implemented a proto-type extension of Uppaal, an eÆient real-time model heking tool [LPY97℄.The algorithmwe propose and have implemented fundamentally relies on para-metri di�erene bound matries (PDBMs) and operations on these. PDBMsonstitute a data type that extends the di�erene bound matries (DBMs,[Dil90℄) in a natural way. The latter are used for reording lok di�ereneswhen model heking (non-parametri) timed automata. PDBMs are basiallyDBMs, where the matrix entries are parameter expressions rather than on-stants. Our algorithm is a semi-deision algorithm whih will not terminate inall ases. In [AHV93℄, the problem of synthesizing values for parameters suhthat a property is satis�ed was shown to be undeidable, so this is the best2



we an hope for.A seond ontribution of this paper is the identi�ation of a sublass of para-metri timed automata, alled lower bound/upper bound (L/U) automata,whih appears to be suÆiently expressive from a pratial perspetive, whileit also has nie theoretial properties. Most importantly, we show that theemptiness problem, in [AHV93℄ shown to be undeidable for parametri timedautomata, is deidable for L/U automata. We also establish a number of resultswhih allow one to redue the number of parameters when takling spei�veri�ation questions for L/U automata. The appliation of these lemmas hasalready redued the veri�ation e�ort drastially in several of our experiments.Related work There are urrently several other tools available that an doparametri model heking, namely LPMC, HyTeh and TReX.LPMC [LTA98℄ is a parametri extension of the timed model heker PMC[BLT00℄. The model heking algorithm implemented in LPMC di�ers fromours: it represents the state spae of a system as an unstrutured set of on-straints, whereas we use PDBMs. Moreover, LPMC implements a partitionre�nement tehnique, whereas we use forward reahability. Other di�ereneswith our approah are that LPMC also allows for the omparison of non-lokvariables to parameter onstraints and for more general spei�ation proper-ties (full TCTL with fairness assumptions).The model heker HyTeh [HHWT97℄ is a tool for linear hybrid automata.These are more general than parametri timed automata, sine they allowthe modeling of ontinuous behavior via linear di�erential equations. TheHyTeh implementation uses polyhedra as its basi data type. It an explorethe state spae by using either forward reahability, as we do, or partitionre�nement, as in LPMC. The tool has been applied suessfully to relativelysmall examples suh as a railway gate ontroller. Experiene so far has shownthat HyTeh annot ope with larger examples, suh as the ones onsideredin this paper, see the results in [CS01℄.The tool TReX [AAB00, ABS01℄ is urrently the only one that an deal withnon-linear parameter onstraints. Moreover, TReX has a lever method forguessing the e�et of ontrol loops in a model, based on widening priniples,whih inreases hanes of termination. Independently, [AAB00℄ developedthe same data struture as we did (PDBMs) and implemented some similaroperations on these. However, the underlying theory was not worked out inthe researh literature. Hene, we believe that our ontribution over [AAB00℄onsists of the following. Our work presents an extensive elaboration of thetheory behind our implementation. In partiular, we present a orretnessproof of the model heking algorithm we implemented. That is, we provethat the symboli semantis of a PTA in terms of PDBMs is equivalent to its3



onrete semantis in terms of single states and transitions. These proofs relyon a number of non-trivial generalizations of results for DBMs.Eah of the tools above has been applied to the IEEE 1394 Root ContentionProtool [CS01, BLT00℄. We refer the reader to [Sto01℄ for a omparison ofthe results. An important onlusion was that eah of the veri�ations has itown merits, where our approah was the fastest.Overview The remainder of this paper is organized as follows. Setion 2 intro-dues the notion of parametri timed automata. Setion 3 gives the symbolisemantis in terms of PDBMs and is the basis for the model heking algo-rithm presented in Setion 3.5. In Setion 4, we introdue the lass of L/Uautomata. Setion 5 reports on several experiments with our tool. Finally,Setion 6 presents some onlusions.Aknowledgements We thank the reviewers for their reports, in partiularReviewer 3 who gave many omments that helped us to improve our paperand pointed out the neessity of imposing nonegative lower bounds on loksin onstrained PBDMs.2 Parametri Timed AutomataParametri timed automata were �rst de�ned in [AHV93℄. They generalizethe timed automata of [AD90℄. The de�nition of parametri timed automatathat we present in this setion is very similar to the de�nition in [AHV93℄, ex-ept that progress is ensured via loation invariants rather than via aeptingstates. This di�erene is not essential.2.1 Parameters and ConstraintsThroughout this paper, we assume a �xed set of parameters P = fp1; : : : ; png.De�nition 2.1 (Constraints) A linear expression e is either an expressionof the form t1p1 + � � � + tnpn + t0, where t0; : : : ; tn 2 Z, or 1. We write Eto denote the set of all linear expressions. A onstraint is an inequality of theform e � e0, with e; e0 linear expressions and �2 f<;�; >;�g. The negation ofonstraint , denoted :, is obtained by replaing relation symbols <, �, >, �by �, >, �, <, respetively. A (parameter) valuation is a funtion v : P ! R�0assigning a nonnegative real value to eah parameter. There is a one-to-oneorrespondene between valuations and points in (R�0)n. In fat we oftenidentify a valuation v with the point (v(p1); : : : ; v(pn)) 2 (R�0)n.4



If e is a linear expression and v is a valuation, then e[v℄ denotes the expressionobtained by replaing eah parameter p in e with v(p). Likewise, we de�ne[v℄ for  a onstraint. Valuation v satis�es onstraint , denoted v j= , if [v℄evaluates to true. The semantis of a onstraint , denoted [[℄℄, is the set ofvaluations that satisfy . A �nite set of onstraints C is alled a onstraint set.A valuation satis�es a onstraint set if it satis�es eah onstraint in the set.The semantis of a onstraint set C is given by [[C℄℄ := T2C [[℄℄. We say thatC is satis�able if [[C℄℄ is nonempty.Constraint  overs onstraint set C, denoted C j= , i� [[C℄℄ � [[℄℄. Constraintset C is split by onstraint  i� neither C j=  nor C j= :.During the analysis questions arise of the kind: given a onstraint set C anda onstraint , does  hold, i.e., does onstraint  over C? There are threepossible answers to this, yes, no, and split. A split ours when  holds forsome valuations in the semantis of C and : holds for some other valuations.Here will not disuss in detail methods for answering suh questions: in theremainder of this paper we just assume the presene of the following \orale"funtion.De�nition 2.2 (Orale)O(; C) = 8>><>>:yes if C j= no if C j= :split otherwiseThe orale funtion an be omputed in polynomial time using linear pro-gramming (LP) solvers. Suppose we want to ompute O(; C), where  takesthe form e � e0. Then we �rst maximize the linear funtion e0 � e subjet tothe set C of linear inequalities. This is a linear programming problem. If theoutome is negative then O(; C) = no. Otherwise we maximize e� e0 subjetto C. If the outome is less than or equal to 0 then O(; C) = yes. OtherwiseO(; C) = split. In our implementation we use an LP solver that was kindlyprovided to us by the authors of [BLT00℄, who built it for their model hekingtool LPMC. This LP solver is geared to perform well on small, simple sets ofonstraints rather than large, ompliated ones.Observe that using the orale, we an easily deide semanti inlusion betweenonstraint sets: [[C℄℄ � [[C 0℄℄ i� 80 2 C 0 : O(0; C) = yes.5



2.2 Parametri Timed AutomataThroughout this paper, we assume a �xed set of loks X = fx0; : : : ; xmg anda �xed set of ations A = fa1; : : : ; akg. The speial lok x0, whih is alledthe zero lok, always has the value 0 (and hene does not inrease with time).A simple guard is an expression f of the form xi � xj � e, where xi; xj areloks, �2 f<;�g, and e is a linear expression. We say that f is proper ifi 6= j. We de�ne a guard to be a (�nite) onjuntion of simple guards. We letg range over guards and write G to denote the set of guards. A lok valuationis a funtion w : X ! R�0 assigning a nonnegative real value to eah loksuh that w(x0) = 0. We will identify a lok valuation w with the point(w(x0); : : : ; w(xm)) 2 (R�0)m+1. Let g be a guard, v a parameter valuation,and w a lok valuation. Then g[v; w℄ denotes the expression obtained byreplaing eah parameter p with v(p), and eah lok x with w(x). A pair(v; w) of a parameter valuation and a lok valuation satis�es a guard g,denoted (v; w) j= g, if g[v; w℄ evaluates to true. The semantis of a guard g,denoted [[g℄℄, is the set of pairs (v; w) suh that (v; w) j= g. Given a parametervaluation v, we write [[g℄℄v for the set of lok valuations fw j (v; w) j= gg.A reset is an expression of the form, xi := b where i 6= 0 and b 2 N. A resetset is a set of resets ontaining at most one reset for eah lok. The set ofreset sets is denoted by R.We now de�ne an extension of timed automata [AD94, Yov98℄ alled paramet-ri timed automata. Similar models have been presented in [AHV93, AAB00,BLT00℄.De�nition 2.3 (PTA) A parametri timed automaton (PTA) over set ofloks X, set of ations A, and set of parameters P , is a quadruple A =(Q; q0;!; I), where Q is a �nite set of loations, q0 2 Q is the initial loation,!� Q�A�G�R�Q is a �nite transition relation, and funtion I : Q! Gassigns an invariant to eah loation. We abbreviate a (q; a; g; r; q0) 2! on-sisting of a soure loation q, an ation a, a guard g, a reset set r, and atarget loation q0 as q a;g;r�! q0. For a simple guard xi � xj � e to be used in aninvariant it must be the ase that j = 0, that is, the simple guard representsan upper bound on a lok. 2Example 2.4 A parametri timed automaton with loks x, y and param-eters p, q an be seen in Fig. 1. The initial loation is S0 and has invariant2 There is no fundamental reason to impose this restrition on invariants; our wholetheory an be developed without it. However, tehnially the restrition makes ourlives a bit easier, see for instane Proposition 3.17. In pratie the ondition is (asfar as we are aware) always met. 6



x � qS0 S1x � p x := 0x � 5Fig. 1. A parametri timed automatonx � p. There is a transition from the initial loation to S1, whih has guardy � q and reset set fx := 0g. There are no ations on the transitions. Thetransition from S0 to S1 an only beome enabled if p � q, otherwise thesystem will end up in a deadlok.To de�ne the semantis of PTAs, we require two auxiliary operations on lokvaluations. For lok valuation w and nonnegative real number d, w + d isthe lok valuation that adds to eah lok (exept x0) a delay d. For lokvaluation w and reset set r, w[r℄ is the lok valuation that resets loksaording to r.(w + d)(x) = 8><>: 0 if x = x0w(x) + d otherwise (w[r℄)(x) = 8><>: b if x := b 2 rw(x) otherwise:De�nition 2.5 (LTS) A labeled transition system (LTS) over a set of sym-bols � is a triple L = (S; S0;!), with S a set of states, S0 � S a set ofinitial states, and !� S � � � S a transition relation. We write s a�! s0for (s; a; s0) 2!. A run of L is a �nite alternating sequene s0a1s1a2 � � � snof states si 2 S and symbols ai 2 � suh that s0 2 S0 and, for all i < n,si ai+1�! si+1. A state is reahable if it is the last state of some run.De�nition 2.6 (Conrete semantis) LetA = (Q; q0;!; I) be a PTA andv be a parameter valuation. The onrete semantis of A under v, denoted[[A℄℄v, is the labeled transition system (LTS) (S; S0;!) over A [ R�0 whereS= f(q; w) 2 Q� (X ! R�0) j w(x0) = 0 ^ (v; w) j= I(q)g;S0= f(q; w) 2 S j q = q0 ^ w = �x:0g;and the transition prediate ! is spei�ed by the following two rules. For all(q; w), (q0; w0) 2 S, d � 0 and a 2 A,� (q; w) d�! (q0; w0) if q = q0 and w0 = w + d.� (q; w) a�! (q0; w0) if 9g; r : q a;g;r�! q0 and (v; w) j= g and w0 = w[r℄.7



Note that the LTS [[A℄℄v has at most one initial state. It has no initial state ifthe invariant assigned to the initial loation of A is unsatis�able.2.3 The Parametri Model Cheking ProblemIn its urrent version, Uppaal is able to hek for reahability properties,in partiular whether ertain ombinations of loations and onstraints onlok variables are reahable from the initial on�guration. Our parametriextension of Uppaal handles exatly the same properties. However, ratherthan just telling whether a property holds or not, our tool looks for onstraintson the parameters whih ensure that the property holds.De�nition 2.7 (Properties) Let A = (Q; q0;!; I) be a PTA. The sets ofsystem properties and state formulas for A are de�ned by, respetively, ::= 82� j 93� � ::= x� y � b j q j :� j � ^ � j � _ �where x; y 2 X, b 2 N and q 2 Q. Let A be a PTA, v a parameter valuation,s a state of [[A℄℄v, and � a state formula. We write s j=v � if � holds in states of [[A℄℄v, we write [[A℄℄v j= 82� if � holds in all reahable states of [[A℄℄v, andwe write [[A℄℄v j= 93� if � holds for some reahable state of [[A℄℄v.The problem that we address in this paper an now be stated as follows:Given a parametri timed automaton A and a system property  ,ompute the set of parameter valuations v for whih [[A℄℄v j=  .Remark 2.8 Timed automata [AD94, Yov98℄ arise as a speial ase of PTAsfor whih the set P of parameters is empty. If A is a PTA and v is a parametervaluation, then the struture A[v℄ that is obtained by replaing all linearexpressions e that our in A by e[v℄ is a timed automaton. 3 It is easy tosee that in general [[A℄℄v = [[A[v℄℄℄. Sine the reahability problem for timedautomata is deidable [AD94℄, this implies that, for any A, integer valued vand  , [[A℄℄v j=  is deidable.2.4 Example: Fisher's Mutual Exlusion AlgorithmFigure 3 shows a PTA model of Fisher's mutual exlusion algorithm [Lam87℄.The purpose of this algorithm is to guarantee mutually exlusive aess to a3 Stritly speaking, A[v℄ is only a timed automaton if v assigns an integer to eahparameter. 8



ritial setion among n ompeting proesses P1, P2; : : : Pn. The algorithm,where eah proess Pi (perpetually) runs the ode of Figure 2, uses a sharedvariable lok for ommuniation between the proesses.Fisher (Pi)lok := 0repeatwhile lok 6= 0 do skip odlok := idelayuntil lok = iritial setionlok := 0Fig. 2. Fisher's mutual exlusion algorithmThe orretness of this algorithm ruially depends on the timing of the op-erations. The key idea is that any proess Pi that sets lok := i is made towait long enough before heking lok = i to ensure that any other proess Pjthat tested lok = 0, before Pi set lok to its index, has already set lok to itsindex j, when Pi �nally heks lok = i.Assume that read/write aess to the global variable (in the operations lok =i and lok := 0) takes betweenmin rw andmax rw time units and assume thatthe delay operation (inluding the time needed for the assignment lok := i)takes between min delay and max delay time units. If we assume the basionstraints 0�min rw <max rw ^ 0�min delay<max delay , then mutualexlusion is guaranteed if and only if max rw�min delay .
start
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x:=0

lock != i, 
x > min_delay

x:= 0

Fig. 3. A PTA model of Fisher's mutual exlusion algorithmNow onsider the PTA in Fig. 3, whih is represented in Uppaal syntax. (Sev-eral di�erent models of this algorithm exist [AL92, AHV93, Lyn96, KLL+97℄;our model is losest to the one in [Lyn96℄.) It onsists of four loations start(whih is initial), set , try enter and s; four parameters, min rw , max rw ,min delay and max delay; one lok x and a shared variable lok . By on-vention, x and lok are initially 0. Note that the proess an remain in theloations start and set for at least min rw and stritly less than max rwtime units. Similarly, the proess an remain in try enter for any time in theinterval [min delay ;max delay). 9



The shared variable, whih is not a part of the de�nition of PTAs, is syntatisugar whih allows for an eÆient enoding of the algorithm as a PTA. Also thenotion of parallel omposition for PTAs is standard, see for instane [LPY97℄for their de�nitions.3 Symboli State Spae ExplorationOur aim is to use basially the same algorithm for parametri timed modelheking as for timed model heking. We represent sets of states symboliallyin a similar way and support the same operations used for timed model hek-ing. In the nonparametri ase, sets of states an be eÆiently representedusing matries [Dil90℄. Similarly, in this paper we represent sets of states sym-bolially as (onstrained) parametri di�erene bound matries.3.1 Parametri Di�erene Bound MatriesIn the nonparametri ase, a di�erene bound matrix is a (m + 1)� (m + 1)matrix whose entries are elements from (Z[f1g)�f0; 1g. An entry (; 1) forDij denotes a nonstrit bound xi � xj � , whereas an entry (; 0) denotes astrit bound xi � xj < . In the parametri ase, instead of using integers inthe entries, we will use linear expressions over the parameters. Also, we �ndit onvenient to view the matrix slightly more abstratly as a set of guards.De�nition 3.1 (PDBM) A parametri di�erene bound matrix (PDBM) isa set D whih ontains, for all 0 � i; j � m, a simple guard Dij of the formxi � xj �ij eij. We require that, for all i, Dii is of the form xi� xi � 0. Givena parameter valuation v, the semantis of D is given by [[D℄℄v = [[Vi;jDij℄℄v.PDBM D is satis�able for v if [[D℄℄v is nonempty. If f is a guard of the formxi � xj � e with i 6= j (i.e., a proper guard), then D[f ℄ denotes the PDBMobtained from D by replaing Dij by f . If i; j are indies then Dij denotes thepair (eij;�ij); we all Dij a bound of D. Clearly, a PDBM is fully determinedby its bounds.De�nition 3.2 (Constrained PDBM) A onstrained PDBM is a pair (C;D)where C is a onstraint set and D is a PDBM. We require that C j= p � 0,for eah p, and C j= e0i � 0, for eah i. The semantis of (C;D) is given by[[C;D℄℄ = f(v; w) j v 2 [[C℄℄ ^ w 2 [[D℄℄vg. We all (C;D) satis�able if [[C;D℄℄ isnonempty.Condition C j= p � 0 expresses that parameter p may only take nonnegativevalues. The ondition C j= e0i � 0 ensures a nonnegative lower bound on the10



value of lok xi. Suh a ondition is required sine loks in a PTA only takenonnegative values. A similar ondition ours in [Yov98℄. In the setting of[Dil90℄ the ondition of nonnegative lower bounds is not needed sine in thispaper loks (alled timers) may take values in R. In [LLPY97, Alu98, CGP99,AAB00℄ the ondition (or something similar) is needed but not mentioned. 4PDBMs with the tightest possible bounds are alled anonial. To formalizethis notion, we de�ne an addition operation on linear expressions by(t1p1 + � � �+ tnpn + t0)+ (t01p1 + � � �+ t0npn + t00)�=(t1 + t01)p1 + � � �+ (tn + t0n)pn + (t0 + t00):Also, we view Boolean onnetives as operations on relation symbols � and <by identifying� with 1 and < with 0. For instane, (� ^ �) =�, (� ^ <) =<,: �=<, and (� =) <) =<.Our de�nition of a anonial form of a onstrained PDBM is essentially equiv-alent to the one for standard DBMs.De�nition 3.3 (Canonial Form) A onstrained PDBM (C;D) is in anon-ial form i� for all i; j; k, C j= eij (�ij =) �ik ^ �kj) eik + ekj.The proof of the following tehnial result is immediate from the de�nitions.Lemma 3.4(1) If v j= e � e0 and v j= e0 �0 e00 then v j= e (� ^ �0) e00.(2) If (v; w) j= x� y � e and v j= e �0 e0 then (v; w) j= x� y (� ^ �0) e0.(3) If v j= e (� ^ �0) e0 then v j= e � e0.(4) If (v; w) j= x� y (� ^ �0) e then (v; w) j= x� y � e.(5) If (v; w) j= x� y � e and (v; w) j= y� z �0 e0 then (v; w) j= x� z (�^ �0) e+ e0.(6) v j= :(e � e0) i� v j= e0 (: �) e.The next lemma states that anoniity of a onstrained PDBM guaranteessatis�ability.Lemma 3.5 Suppose (C;D) is a onstrained PDBM in anonial form andv 2 [[C℄℄. Then D is satis�able for v.4 For instane, in [CGP99℄ it is laimed on page 289: \If the lok zone is empty orunsatis�able, there will be at least one negative entry in the main diagonal." Thislaim is inorret. A ounterexample is the anonial form of a DBM that ontainsas the only nontrivial guard x1 � x0 � �1.11



Proof: By indution on i, with 0 � i � m, we onstrut a valuation(t0; : : : ; ti) for lok variables (x0; : : : ; xi) suh that all onstraints Djk for0 � j; k � i are met.To begin with, we set t0 = 0. Then, trivially, (v; x0 7! t0) j= D00.For the indution step, suppose that for some i < m we have a valuation(t0; : : : ; ti) for variables (x0; : : : ; xi) suh that all onstraints Djk for 0 �j; k � i are met. In order to extend this valuation to xi+1, we have to�nd a value ti+1 suh that the following simple guards hold for valuation(v; x0 7! t0; : : : ; xi+1 7! ti+1):Di+1;0 � � � Di+1;i D0;i+1 � � � Di;i+1 Di+1;i+1 (1)Here the �rst i+ 1 simple guards give upper bounds for ti+1, the seond i+ 1simple guards give lower bounds for ti+1, and the last simple guard is triviallymet by any hoie for ti+1. We laim that eah of the upper bounds is largerthan or equal to eah of the lower bounds. In partiular, the minimum of theupper bounds is larger than or equal to the maximum of the lower bounds.This gives us a nonempty interval of possible values for ti+1 to hoose from.Formally, we laim that, for all 0 � j; k < i + 1, the following formula holdsfor valuation (v; [x0 7! t0; : : : ; xi 7! ti℄):xj � ej;i+1 (�j;i+1 ^ �i+1;k)xk + ei+1;k (2)To see why (2) holds, observe that by indution hypothesis (v; x0 7! t0; : : : ; xi 7!ti) j=xj � xk�jk ejk (3)Furthermore, sine (C;D) is anonial and v 2 [[C℄℄, v j=ejk (�jk =) �j;i+1 ^ �i+1;k) ej;i+1 + ei+1;k (4)Combination of (3) and (4), using Lemma 3.4(2), gives (v; x0 7! t0; : : : ; xi 7!ti) j=xj � xk (�j;i+1 ^ �i+1;k) ej;i+1 + ei+1;kwhih is equivalent to (2). This means that we an hoose ti+1 in aordanewith all the guards of (1). In partiular, guard D0;i+1 holds, whih by theassumption that lower bounds on loks are nonnegative implies that ti+1 isnonnegative. This ompletes the proof of the indution step and thereby ofthe lemma. � 12



The following lemma essentially arries over from the nonparametri ase too,see for instane [Dil90℄. As a diret onsequene, semanti inlusion of on-strained PDBMs is deidable for anonial PDBMs (using the orale funtion).Lemma 3.6 Suppose (C;D); (C 0; D0) are onstrained PDBMs and (C;D) isanonial. Then [[C;D℄℄ � [[C 0; D0℄℄ , ([[C℄℄ � [[C 0℄℄ ^ 8i; j : C j= eij(�ij =)�0ij)e0ij).3.2 Operations on PDBMsOur algorithm requires basially four operations to be implemented on on-strained PDBMs: adding guards, anonialization, resetting loks and om-puting time suessors.3.2.1 Adding GuardsIn the ase of DBMs, adding a guard is a simple operation. It is implementedby taking the onjuntion of a DBM and the guard (whih is also viewedas a DBM). The onjuntion operation just takes the pointwise minimum ofthe entries in both matries. In the parametri ase, adding a guard to aonstrained PDBM may result in a set of onstrained PDBMs. We de�ne arelation ( whih relates a onstrained PDBM and a guard to a olletion ofonstrained PDBMs that satisfy this guard. For this we need an operationC that takes a PDBM and a simple guard, and produes a onstraint statingthat the bound imposed by the guard is weaker than the orresponding boundin the PDBM. Let Dij = (eij;�ij). ThenC(D; xi � xj � e)= eij (�ij =) �) e:Relation( is de�ned as the smallest relation that satis�es the following rules:(R1) O(C(D; f); C) = yes(C;D) f( (C;D) (R2) O(C(D; f); C) = no; f proper(C;D) f( (C;D[f ℄)(R3) O(C(D; f); C) = split(C;D) f( (C [ fC(D; f)g; D) (R4) O(C(D; f); C) = split; f proper(C;D) f( (C [ f:C(D; f)g; D[f ℄)(R5) (C;D) g( (C 0; D0) ; (C 0D0) g0( (C 00; D00)(C;D) g^g0( (C 00; D00)13



If the orale replies \yes" then adding a simple guard will not hange theonstrained PDBM. If the answer is \no" then we tighten the bound in thePDBM. With the answer \split" there are two possibilities and two PDBMswith updated onstraint systems are returned. Thus the result of the operationof adding a guard is a set of onstrained PDBMs. The side ondition \f proper"in R2 and R4 rules out guards of the form xi�xi � e and thereby ensures thatthe diagonal bounds in the PDBM always remain equal to (0;�). It is routineto hek, using Lemma 3.4, that relation ( is well-de�ned in the sense that(C;D) g( (C 0; D0) implies that (C 0; D0) is a onstrained PDBMs. In partiular,the ondition that loks have nonnegative lower bounds is met. Note that ifwe update a bound in D the semantis of the PDBM may beome empty:a typial situation ours when D ontains a onstraint x � 5 and we adda guard x � 3. Note however that (C;D) g( (C 0; D0) and [[C℄℄ 6= ; implies[[C 0℄℄ 6= ;. The following lemma haraterizes ( semantially.Lemma 3.7 [[C;D℄℄ \ [[g℄℄ = Sf[[C 0; D0℄℄ j (C;D) g( (C 0; D0)g.Proof: \�". Assume (v; w) 2 [[C;D℄℄^(v; w) j= g. By strutural indution ong we prove that there exists a onstrained PDBM (C 0; D0) suh that (C;D) g((C 0; D0) and (v; w) 2 [[C 0; D0℄℄.For the indution basis, suppose g is of the form xi�xj � e. We onsider fourases:� O(C(D; g); C) = yes. Let C 0 = C and D0 = D. Then trivially (v; w) 2[[C 0; D0℄℄ and, by rule R1, (C;D) g( (C 0; D0).� O(C(D; g); C) = no. By ontradition we prove that g is proper. Suppose gis not proper. Then, sine i = j and v j= :eij(�ij =) �)e, v j= :(0 � e).By Lemma 3.4(6), v j= e(: �)0. But (v; w) j= g implies v j= 0 � e. Hene,by Lemma 3.4(1), v j= 0 < 0, a ontradition. Let C 0 = C and D0 = D[g℄.Then, by rule R2, (C;D) g( (C 0; D0). Sine v 2 [[C℄℄ and C 0 = C, triviallyv 2 [[C 0℄℄. Sine w 2 [[D℄℄v and (v; w) j= g, easily w 2 [[D[g℄℄℄v. It follows that(v; w) 2 [[C 0; D0℄℄.� O(C(D; g); C) = split and v j= C(D; g). Let C 0 = C[fC(D; g)g and D0 = D.Then, by rule R3, (C;D) g( (C 0; D0). Sine v 2 [[C℄℄ and v j= C(D; g),v 2 [[C [ fC(D; g)g℄℄. Sine w 2 [[D℄℄v and D0 = D, trivially w 2 [[D0℄℄v. Itfollows that (v; w) 2 [[C 0; D0℄℄.� O(C(D; g); C) = split and v j= :C(D; g). By ontradition we prove that gis proper. Suppose g is not proper. Then, sine v j= :C(D; g), v j= :(0 � e).By Lemma 3.4(6), v j= e: � 0. But (v; w) j= g implies v j= 0 � e. Hene,by Lemma 3.4(1), v j= 0 < 0, a ontradition. Let C 0 = C [ f:C(D; g)gand D0 = D[g℄. Then, by rule R4, (C;D) g( (C 0; D0). Sine v 2 [[C℄℄ andv j= :C(D; g), v 2 [[C [ f:C(D; g)g℄℄. Sine w 2 [[D℄℄v and (v; w) j= g, easilyw 2 [[D[g℄℄℄v. It follows that (v; w) 2 [[C 0; D0℄℄.14



For the indution step, suppose that g is of the form g0^g00. Then (v; w) j= g0.By indution hypothesis, there exist C 00; D00 suh that (C;D) g0( (C 00; D00) and(v; w) 2 [[C 00; D00℄℄. Sine (v; w) j= g00, we an use the indution hypothesisone more to infer that there exist C 0; D0 suh that (C 00; D00) g00( (C 0; D0) and(v; w) 2 [[C 0; D0℄℄. Moreover, by rule R5, (C;D) g( (C 0; D0).\�" Assume (C;D) g( (C 0; D0) and (v; w) 2 [[C 0; D0℄℄. By indution on thesize of the derivation of (C;D) g( (C 0; D0), we establish (v; w) 2 [[C;D℄℄ and(v; w) j= g. There are �ve ases, depending on the last rule r used in thederivation of (C;D) g( (C 0; D0).(1) r = R1. Then C = C 0, D = D0 and C j= C(D; g). Let g be of theform xi � xj � e. Hene, (v; w) 2 [[C;D℄℄ and v j= C(D; g). By the�rst statement (v; w) j= xi � xj �Dij eDij , and by the seond statementv j= eDij (�Dij =) �) e. Combination of these two observations, usingparts (2) and (4) of Lemma 3.4 yields (v; w) j= g.(2) r = R2. Then C = C 0, D0 = D[g℄ and C j= :C(D; g). Hene, (v; w) j= gand v j= :C(D; g). Let g be of the form xi�xj � e. By Lemma 3.4(6), v j=e :(�Dij =) �) eDij . Using parts (2) and (4) of Lemma 3.4, ombinationof these two observations yields (v; w) j= xi � xj �Dij eDij . Sine trivially(v; w) is a model for all the other guards in D, (v; w) 2 [[C;D℄℄.(3) r = R3. Then C 0 = C [ fC(D; g)g and D0 = D. Let g be of the formxi � xj � e. We have (v; w) 2 [[C;D℄℄. This implies (v; w) j= xi � xj �DijeDij . We also have v j= eDij (�Dij =) �) e. Combination of these twoobservations, using parts (2) and (4) of Lemma 3.4 yields (v; w) j= g.(4) r = R4. Then C 0 = C[f:C(D; g)g andD0 = D[g℄. We have v j= :C(D; g)and (v; w) j= g. Let g be of the form xi � xj � e. By Lemma 3.4(6),v j= e :(�Dij =) �) eDij . Using parts (2) and (4) of Lemma 3.4 yields(v; w) j= xi � xj �Dij eDij . Sine trivially (v; w) is a model for all otherguards in D, (v; w) 2 [[C;D℄℄.(5) r = R5. Then g is of the form g0 ^ g00 and there are C 00; D00 suh that(C;D) g0( (C 00; D00) and (C 00; D00) g00( (C 0; D0). By indution hypothe-sis, (v; w) 2 [[C 00; D00℄℄ and (v; w) j= g00. Again by indution hypothesis,(v; w) 2 [[C;D℄℄ and (v; w) j= g0. It follows that (v; w) j= g.�3.2.2 CanonializationEah DBM an be brought into anonial form using lassial algorithms foromputing all-pairs shortest paths, for instane the Floyd-Warshall (FW) al-gorithm [CLR91℄. In the parametri ase, we also apply this approah exeptthat now we run FW symbolially, see Figure 4. The algorithm repeatedly15



Floyd-Warshall (C0; D0)(C;D) := (C0; D0)for k = 0 to mdo for i = 0 to mdo for j = 0 to m(C;D) := hoose (C 0; D0) suh that(C;D) xi�xj �ik^�kj eik+ekj((C 0; D0)return (C;D)Fig. 4. The Floyd-Warshall algorithmompares the di�erene between two loks to the di�erene obtained by tak-ing an intermediate lok into aount (f. the inequality in De�nition 3.3).The symboli FW algorithm ontains a nondeterministi assignment, in whih(C;D) nondeterministially gets a value from a set. This set may be empty, inwhih ase the algorithm terminates unsuessfully. We are interested in the(possibly empty, �nite) set of all possible onstrained PDBMs that may resultwhen running the algorithm.For the purpose of proving things we �nd it onvenient to desribe the om-putation steps of the symboli FW algorithm in SOS style. In the SOS de-sription, we use on�gurations of the form (k; i; j; C;D), where (C;D) is aonstrained PDBM and k; i; j 2 [0; m+ 1℄ reord the values of indies. In therules below, k; i; j range over [0; m℄.(C;D) xi�xj (�ik^�kj) eik+ekj( (C 0; D0)(k; i; j; C;D)!FW (k; i; j + 1; C 0; D0)(k; i;m+ 1; C;D)!FW (k; i+ 1; 0; C;D)(k;m+ 1; 0; C;D)!FW (k + 1; 0; 0; C;D)We write (C;D) ! (C 0; D0) if there exists a sequene of !FW steps lead-ing from on�guration (0; 0; 0; C;D) to on�guration (m + 1; 0; 0; C 0; D0). Inthis ase, we say that (C 0; D0) is an outome of the symboli Floyd-Warshallalgorithm on (C;D). It is easy to see that the set of all outomes is �-nite and an be e�etively omputed. If the semantis of (C;D) is empty,then the set of outomes is also empty. We write (C;D) g( (C 0; D0) i�(C;D) g( (C 00; D00)! (C 0; D0), for some C 00; D00.The following lemma says that if we run the symboli Floyd-Warshall algo-rithm, the union of the semantis of the outomes equals the semantis of theoriginal onstrained PDBM. 16



Lemma 3.8 [[C;D℄℄ = Sf[[C 0; D0℄℄ j (C;D)! (C 0; D0)g.Proof: By an indutive argument, using Lemma 3.7 and the fat that, forany valuation (v; w) in the semantis of (C;D),(v; w) j= xi � xk �ik eik and(v; w) j= xk � xj �kj ekj; and therefore by Lemma 3.4(5)(v; w) j= xi � xj �ik ^ �kj eik + ekj:�Lemma 3.9 Eah outome of the symboli Floyd-Warshall algorithm is aonstrained PDBM in anonial form.Proof: As in [CLR91℄. �Remark 3.10 Non-parametri DBMs an be anonialized in O(n3), wheren is the number of loks. In the parametri ase, however, eah operationof omparing the bound D(x; x0) to the weight of another path from x to x0may give rise to two new PDBMs if this omparison leads to a split. Thenthe two PDBMs must both be anonialized to obtain all possible PDBMswith tightest bounds. Still, that part of these two PDBMs whih was alreadyanonial, does not need to be investigated again. So in the worst ase, theost of the algorithm beomes O(2n3). In pratie, it turns out that this ishardly ever the ase.3.2.3 Resetting CloksA third operation on PDBMs that we need is resetting loks. Sine we do notallow parameters in reset sets, the reset operation on PDBMs is essentiallythe same as for DBMs, see [Yov98℄. If D is a PDBM and r is a singleton resetset fxi := bg, then D[r℄ is the PDBM obtained by (1) replaing eah boundDij, for j 6= i, by (e0j + b;�0j); (2) replaing eah bound Dji, for j 6= i, by(ej0 � b;�j0). We generalize this de�nition to arbitrary reset sets byD[xi1 := b1; : : : ; xih := bh℄ =D[xi1 := b1℄ : : : [xih := bh℄:It easily follows from the de�nitions that resets preserve anoniity. Note alsothat the reset operation is well-de�ned on onstrained PDBMs: if (C;D) isa onstrained PDBMs then (C;D[r℄) is a onstrained PDBMs as well: sineloks an only be reset to natural numbers, lower bounds on loks remainnonnegative.Lemma 3.11 If (C;D) is anonial then (C;D[r℄) is anonial as well.17



The following lemma haraterizes the reset operation semantially.Lemma 3.12 Let (C;D) be a onstrained PDBM in anonial form, v 2 [[C℄℄,and w a lok valuation. Then w 2 [[D[r℄℄℄v i� 9w0 2 [[D℄℄v : w = w0[r℄.Proof: We only prove the lemma for singleton resets. Using Lemma 3.11,the generalization to arbitrary resets is straightforward. Let r = fxi := bg andD0 = D[r℄.\(" Suppose w0 2 [[D℄℄v and w = w0[r℄. In order to prove w 2 [[D0℄℄v, we mustshow that (v; w) j= D0kj, for all k and j. There are four ases:(1) k 6= i 6= j. Then D0kj = Dkj. Sine (v; w0) j= Dkj and w and w0 agree onall loks ourring in Dkj, (v; w) j= D0kj.(2) k = i = j. Then D0kj = Dkj. Sine (v; w0) j= Dii, 0 �ii eii[v℄. Hene,(v; w) j= D0kj.(3) k 6= i = j. Then D0kj = xk � xj �k0 ek0 � b. Using that (v; w0) j= Dk0, wederive w(xk)� w(xj) = w0(xk)� b �k0 ek0[v℄� b. Hene, (v; w) j= D0kj.(4) k = i 6= j. Then D0kj = xk � xj �0j e0j + b. Using that (v; w0) j= D0j, wederive w(xk)� w(xj) = b� w0(xj) �0j e0j[v℄ + b. Hene, (v; w) j= D0kj.\)" Suppose w 2 [[D0℄℄v. We have to prove that there exists a lok valuationw0 2 [[D℄℄v suh that w = w0[r℄. Clearly we need to hoose w0 in suh a waythat, for all j 6= i, w0(xj) = w(xj). This means that, for any hoie of w0(xi),for all j 6= i 6= k, v; w0 j= Djk. Using the same argument as in the proof ofLemma 3.5, we an �nd a value for w0(xi) suh that also the remaining simpleguards of D are satis�ed. �3.2.4 Time SuessorsFinally, we need to transform PDBMs for the passage of time, notation D ".As in the DBMs ase [Dil90℄, this is done by setting the upper bounds xi�x0to (1; <), for eah i 6= 0, and leaving all other bounds unhanged. We havethe following lemma.Lemma 3.13 Suppose (C;D) is a onstrained PDBM in anonial form, v 2[[C℄℄, and w a lok valuation. Then w 2 [[D"℄℄v i� 9d � 0 9w0 2 [[D℄℄v :w0 + d = w.Proof: \(" Suppose d � 0, w0 2 [[D℄℄v and w0 + d = w. We laim thatw 2 [[D"℄℄v. For this we must show that for eah guard f of D ", (v; w) j= f .Let f be of the form xi � xj � e. We distinguish between three ases:� i 6= 0^j = 0. In this ase, by de�nition of D", f is of the form xi�x0 <1,and so (v; w) j= f trivially holds. 18



� i = 0. In this ase f is also a onstraint of D. Sine w0 2 [[D℄℄v we have(v; w0) j= f , and thus �w0(xj) � e[v℄. But sine d � 0, this means that�w(xj) = �w0(xi)� d � e[v℄ and therefore (v; w) j= f .� i 6= 0 ^ j 6= 0. In this ase f is again a onstraint of D. Sine w0 2 [[D℄℄v wehave (v; w0) j= f , and therefore w0(xi)� w0(xj) � e[v℄. But this means thatw0(xi)�w0(xj) = (w(xi)� d)� (w(xj)� d) � e[v℄ and therefore (v; w) j= f .\)" Suppose w 2 [[D"℄℄v. If m = 0 (i.e., there are no loks) then D "= Dand the rhs of the impliation trivially holds (take w0 = w and d = 0). Soassume m > 0. For all indies i; j with i 6= 0 and j 6= 0, (v; w) j= Dij. Hene,w(xi)�w(xj) �ij eij[v℄. Thus, for any real number t, w(xi)�t�(w(xj)�t) �ijeij[v℄. But this means (v; w�t) j= Dij. It remains to be shown that there existsa value d suh that in valuation (v; w� d) also the remaining guards D0i andDi0 hold. Lett0=max(0; w(x1)� e10[v℄; : : : ; w(xn)� en0[v℄)t1=min(w(x1) + e01[v℄; : : : ; w(xn) + e0n[v℄)d=(t0 + t1)=2w0=w � dIntuitively, t0 gives the least amount of time one has to go bakwards in timefrom w to meet all upper bounds of D (modulo stritness), whereas t1 givesthe largest amount of time one an go bakwards in time from w withoutviolating any of the lower bounds of D (again modulo stritness). Value d sitsright in the middle of these two. We laim that d and w0 satisfy the requiredproperties. For any i, sine (v; w) j= D0i, trivially0�0i w(xi) + e0i[v℄ (5)Using that D is anonial we have, for any i; j,eji[v℄ (�ji =) �j0 ^ �0i) ej0[v℄ + e0i[v℄and, sine v; w j= Dji, w(xj)� w(xi) �ji eji[v℄:Using these two observations we inferw(xj)� ej0[v℄ (�ji =) �j0 ^ �0i) w(xj)� eji[v℄ + e0i[v℄ �ji w(xi) + e0i[v℄:Hene,w(xj)� ej0[v℄ �j0 ^ �0i w(xi) + e0i[v℄ (6)19



By inequalities (5) and (6), eah subterm of max in the de�nition of t0 isdominated by eah subterm of min in the de�nition of t1. This implies 0 �t0 � t1.Now either t0 < t1 or t0 = t1. In the �rst ase it easy to prove that in valuation(v; w) the guards D0i and Di0 hold, for any i:w0(xi) = w(xi)� d < w(xi)� t0 � w(xi)� (w(xi)� ei0[v℄) = ei0[v℄and thus w0(xi) < ei0[v℄ and v; w0 j= Di0. Also�w0(xi) = �w(xi) + d < �w(xi) + t1 � �w(xi) + (w(xi) + e0i[v℄) = e0i[v℄and so �w0(xi) < e0i[v℄ and v; w0 j= D0i.In the seond ase, �x an i. If w(xi)� ei0[v℄ < t0 thenw0(xi) = w(xi)� d = w(xi)� t0 < w(xi)� (w(xi)� ei0[v℄) = ei0[v℄and thus w0(xi) < ei0[v℄ and v; w0 j= Di0. Otherwise, if w(xi) � ei0[v℄ = t0observe that by t0 = t1, inequality (6) and the fat that, t1 = w(xj) + e0j[v℄,for some j, �i0=�. Sinew0(xi) = w(xi)� d � w(xi)� t0 � w(xi)� (w(xi)� ei0[v℄) � ei0[v℄and thus w0(xi) � ei0[v℄ this implies v; w0 j= Di0.t0 = t1 proeeds similarly. �3.3 Symboli SemantisHaving de�ned the four operations on PDBMs, we are now in a position todesribe the semantis of a parametri timed automaton symbolially.De�nition 3.14 (Symboli semantis) Let A = (Q; q0;!; I) be a PTA.The symboli semantis of A is an LTS: the states are triples (q; C;D) withq a loation from Q and (C;D) a onstrained PDBM in anonial form suhthat [[C;D℄℄ � [[I(q)℄℄; the set of initial states isf(q0; C;D) j (C0;E") I(q0)(  (C;D)g;where C0 = fp � 0 j p 2 Pg, E is the PDBM with Eij = (0;�), for all i; j; thetransitions are de�ned by the following rule:q a;g;r�! q0 ; (C;D) g( (C 00; D00) ; (C 00; D00[r℄") I(q0)(  (C 0; D0)(q; C;D)! (q0; C 0; D0) :20



Observe that if (q; C;D) is a state in the symboli semantis and (v; w) 2[[C;D℄℄, then (q; w) is a state of the onrete semantis [[A℄℄v. It is also easy tosee that the symboli semantis of a PTA is a �nitely branhing LTS. It mayhave in�nitely many reahable states though.In order to establish that eah run in the symboli semantis an be simulatedby a run in the onrete semantis, we require two lemmas.Lemma 3.15 Suppose that (q; C;D) is an initial state of the symboli seman-tis of A with (v; w) 2 [[C;D℄℄. Then the onrete semantis [[A℄℄v has an initialstate (q0; w0) from whih state (q; w) an be reahed.Proof: Using the fat that (v; w) 2 [[C;D℄℄, the de�nition of initial states,Lemma 3.8 and Lemma 3.7, we know that q = q0, (v; w) j= I(q0) and (v; w) 2[[C0;E"℄℄. By Lemma 3.13, we get that there exists a d � 0 and w0 2 [[E℄℄v suhthat w0+d = w. Sine (v; w) j= I(q0) and invariants in a PTA only give upperbounds on loks, also (v; w0) j= I(q0). It follows that (q0; w0) is a state of theonrete semantis [[A℄℄v and (q0; w0) d�! (q; w). Sine w0 2 [[E℄℄v, w0 is of theform �x:0. Hene, (q0; w0) is an initial state of the onrete semantis. �Lemma 3.16 Suppose that (q0; C 0; D0)! (q; C;D) is a transition in the sym-boli semantis of A and (v; w) 2 [[C;D℄℄. Then there exists a pair (v; w0) 2[[C;D℄℄ suh that in the onrete semantis [[A℄℄v there is a path from (q0; w0)to (q; w).Proof: By the de�nition of transitions in the symboli semantis, Lemma 3.8and Lemma 3.7, we know that there is a transition q0 a;g;r�! q in A, and thereare C 00; D00 suh that (v; w) j= I(q), (v; w) 2 [[C 00; D00[r℄"℄℄ and (C 0; D0) g((C 00; D00). By Lemma 3.13, we get that there exists a d � 0 and w00 2 [[D00[r℄℄℄vsuh that w00 + d = w. Sine (v; w) j= I(q) and invariants in a PTA only giveupper bounds on loks, also (v; w00) j= I(q). It follows that (q; w00) is a stateof the onrete semantis [[A℄℄v and (q; w00) d�! (q; w). Using Lemma 3.12 weget that there exists a w0 2 [[D00℄℄v suh that w00 = w0[r℄. Using Lemma 3.8and Lemma 3.7 again, it follows that (v; w0) j= g and (v; w0) 2 [[C 0; D0℄℄. Sine(q0; C 0; D0) is a state of the symboli semantis, (v; w0) j= I(q0). Hene, (q0; w0)is a state of the onrete semantis and (q0; w0) a�! (q; w00) is a transitionin the onrete semantis. Combination of this transition with the transition(q; w00) d�! (q; w) gives the required path in the onrete semantis. �Proposition 3.17 For eah parameter valuation v and lok valuation w, ifthere is a run in the symboli semantis of A reahing state (q; C;D), with(v; w) 2 [[C;D℄℄, then this run an be simulated by a run in the onrete se-mantis [[A℄℄v reahing state (q; w).Proof: By indution on the number of transitions in the run.21



As basis we onsider a run with 0 transitions, i.e., a run that onsists of aninitial state of the symboli semantis. So this means that (q; C;D) is an initialstate. The indution basis now diretly follows using Lemma 3.15.For the indution step, assume that we have a run in the symboli semantis,ending with a transition (q0; C 0; D0) ! (q; C;D). By (v; w) 2 [[C;D℄℄ andLemma 3.16, there exists a pair (v; w0) 2 [[C;D℄℄ suh that in the onretesemantis [[A℄℄v there is a path from (q0; w0) to (q; w). By indution hypothesis,there is a path in the onrete semantis leading up to state (q0; w0). Extensionof this path with the path from (q0; w0) to (q; w) gives the required path in theonrete semantis. �Conversely, for eah path in the onrete semantis, we an �nd a path in thesymboli semantis suh that the �nal state of the �rst path is semantiallyontained in the �nal state of the seond path.Proposition 3.18 For eah parameter valuation v and lok valuation w, ifthere is a run in the onrete semantis [[A℄℄v reahing a state (q; w), thenthis run an be simulated by a run in the symboli semantis reahing a state(q; C;D) suh that (v; w) 2 [[C;D℄℄.Proof: In any exeution in the onrete semantis, we an always insertzero-delay transitions at any point. Also, two onseutive delay transitions(q; w) d�! (q; w+d) and (q; w+d) d0�! (q; w+d+d0) an always be ombinedinto a single delay transition (q; w) d+d0�! (q; w+d+d0). Therefore, without lossof generality, we only onsider onrete exeutions that start with a delay tran-sition, and in whih there is a strit alternation of ation transitions and delaytransitions. The proof is by indution on the number of ation transitions.As basis we onsider a run onsisting of a single time-passage transition:(q0; w0) d�! (q0; w0+d), where w0 = �x:0. By de�nition of the onrete seman-tis, (v; w0+d) j= I(q0). Using Lemma 3.13, we have that (v; w0+d) 2 [[C0;E"℄℄sine (v; w0) 2 [[C0;E℄℄. From (v; w0 + d) 2 [[C0;E"℄℄ and (v; w0 + d) j= I(q0),using Lemma 3.7 and Lemma 3.8 we get that there exists C;D suh that(C0;E") I(q0)(  (C;D) and (v; w0+ d) 2 [[C;D℄℄. By de�nition, (C;D) is an ini-tial state of the symboli semantis. This ompletes the proof of the indutionbasis.For the indution step, assume that the run in the onrete semantis of [[A℄℄vends with transitions (q00; w00) a�! (q0; w0) d�! (q; w). By indution hypothesis,there exists a run in the symboli semantis ending with a state (q00; C 00; D00)suh that (v; w00) 2 [[C 00; D00℄℄.By de�nition of the onrete semantis, there is a transition q00 g;a;r�! q0 in Asuh that (v; w00) j= g and w0 = w00[r℄. Moreover, we have q0 = q, w = w0 + d22



and (v; w) j= I(q). Using Lemma 3.7 and Lemma 3.8 gives that there existsC 0; D0 suh that (C 00; D00) g( (C 0; D0) and (v; w00) 2 [[C 0; D0℄℄. By Lemma 3.12,w0 2 [[D0[r℄℄℄v. Moreover, by Lemma 3.13, w 2 [[D0[r℄"℄℄v. Using (v; w) j=I(q), Lemma 3.7 and Lemma 3.8, we infer that there exists C;D suh that(v; w) 2 [[C;D℄℄ and (C 0; D0[r℄ ") I(q)(  (C;D). Finally, using the de�nition ofthe symboli semantis, we infer the existene of a transition (q00; C 00; D00) !(q; C;D).�Example 3.19 Figure 3.19 shows the symboli state-spae of the automatonin Fig. 1 represented by onstrained PDBMs. In the initial state the invariantx � p limits the value of x, and sine both loks have the same value alsothe value of y. When taking the transition from S0 to S1 we have to omparethe parameters p and q. This leads to a split where in the one ase no stateis reahable sine the region is empty, and in the other (when q � p) S1 anbe reahed. From then on, no more splits our and only one new state isreahable.
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Fig. 5. The symboli state spae of the PTA in Fig. 1.3.4 Evaluating State FormulasWe now de�ne the prediate �( whih relates a symboli state and a stateformula � (as de�ned in De�nition 2.7) to a olletion of symboli states thatsatisfy �.In order to hek whether a state formula holds, we break it down into itsatomi subformulas, namely heking loations and lok guards. Cheking23



that a lok guard holds relies on the de�nition given earlier, of adding thatlok guard to the onstrained PDBM. We rely on a speial normal form ofthe state formula, in whih all : signs have been pushed down to the basiformulas.De�nition 3.20 State formula � is in normal form if all : signs in � appearonly in subformulae of the form :q.Sine eah simple guard with a : sign in front an be rewritten to equivalentsimple guard without, for eah state formula there is an equivalent one innormal form.In the following, let f be a simple guard, and � be in normal form.(Q1) (q; C;D) q( (q; C;D) (Q2) q 6= q0(q; C;D) :q0( (q; C;D)(Q3) (C;D) f((C 0; D0)(q; C;D) f( (q; C 0; D0)(Q4) (q; C;D) �1( (q; C 0; D0) ; (q; C 0; D0) �2( (q; C 00; D00)(q; C;D) �1^�2( (q; C 00; D00)(Q5) (q; C;D) �1( (q; C 0; D0)(q; C;D) �1_�2( (q; C 0; D0) (Q6) (q; C;D) �2( (q; C 0; D0)(q; C;D) �1_�2( (q; C 0; D0)The following lemma gives the soundness and ompleteness of relation �(.Lemma 3.21 Let � be a state formula in normal form, q a loation and(C;D) a onstrained PDBMs. Let [[q; �℄℄ denote the set f(v; w) j (q; w) j=v �g.Then[[C;D℄℄ \ [[q; �℄℄ =[ f[[C 0; D0℄℄ j (q; C;D) �( (q; C 0; D0)g:Proof: \�": Assume that (v; w) 2 [[C;D℄℄ and (q; w) j=v �. We prove thatthere are C 0, D0 suh that (v; w) 2 [[C 0; D0℄℄ and (q; C;D) �( (q; C 0; D0). Weproeed by indution on the struture of �.� Base ases.� Suppose � = q0. As (q; w) j=v q0, learly, q = q0. Sine, by rule Q1,(q; C;D) q( (q; C;D), we an take C = C 0 and D = D0 and the resultfollows. 24



� Suppose � = :q0. Similar to the previous ase, apply rule Q2.� Suppose � = f with f a simple guard. Then (v; w) 2 [[C;D℄℄ and (v; w) j=f . By Lemma 3.7 there exist C 00; D00 suh that (C;D) f( (C 00; D00) and(v; w) 2 [[C 00; D00℄℄. Lemma 3.8 yields the existene ofC 0; D0 with (C 00; D00)!(C 0; D0) and (v; w) 2 [[C 0; D0℄℄. By appliation of ruleQ3 we have (q; C;D) f((q; C 0; D0).� Indution step.� Suppose � = �1^�2. Then (q; w) j=v �1 and (q; w) j=v �2. By applying theindution hypothesis on �1, we derive that there exist C 00; D00 suh that(q; C;D) �1( (q; C 00; D00) and (v; w) 2 [[C 00; D00℄℄. Applying the indutionhypothesis on �2 yields the existene of C 0; D0 suh that (q; C 00; D00) �2((q; C 0; D0) and (v; w) 2 [[C 0; D0℄℄. Then by appliation of rule Q4 also(q; C;D) �1^�2( (q; C 0; D0).� Suppose � = �1 _ �2. Then (q; w) j=v �1 or (q; w) j=v �2. Suppose that(q; w) j=v �1. The indution hypothesis yields the existene of C 0; D0 suhthat (q; C;D) �1( (q; C 0; D0) and (v; w) 2 [[C 0; D0℄℄. Then, by appliation ofrule Q5, (q; C;D) �1_�2( (q; C 0; D0). The ase (q; w) j= �2 is similar (usingrule Q6).\�": Assume (q; C;D) �( (q; C 0; D0) and (v; w) 2 [[C 0; D0℄℄. By indution onthe struture of the derivation of �(, we establish that (v; w) 2 [[C;D℄℄ and(q; w) j=v �.� Base ases. The derivation onsists of a single step r.� r = Q1. Then � = q, C = C 0, D = D0. Trivially (v; w) 2 [[C;D℄℄ and(q; w) j=v q.� r = Q2. Similar to the previous ase.� r = Q3. Suppose � = f with f a simple guard. Then (C;D) f((C 0; D0).This means that there exist C 00, D00 suh that (C;D) f((C 00; D00) and(C 00; D00)!(C 0; D0). By Lemma 3.8 we have (v; w) 2 [[C 00; D00℄℄. Then wehave by Lemma 3.7 that (v; w) j= f and (v; w) 2 [[C;D℄℄.� Indution step. Consider the last rule r used in the derivation of (q; C;D) �((q; C 0; D0).� r = Q4. Then � = �1 ^ �2 and (q; C;D) �1( (q; C 00; D00) and (q; C 00; D00) �2((q; C 0; D0) for some C 00; D00. Applying the indution hypothesis to thederivation of �1( yields (q; w) j=v �2 and (v; w) 2 [[C 00; D00℄℄. Then applyingthe indution hypothesis to the derivation of �2( yields (q; w) j=v �1 and(v; w) 2 [[C;D℄℄. Then also (q; w) j=v �1 ^ �2.� r = Q5. Then � = �1 _ �2. Then (q; C;D) �1( (q; C 0; D0). By indutionhypothesis we have (q; w) j=v �1 and (v; w) 2 [[C;D℄℄.25



� r = Q6. Similar to the previous ase.�3.5 AlgorithmWe are now in a position to present our model heking algorithm for para-metri timed automata. The algorithm displayed in Fig. 6 desribes how ourtool explores the symboli state spae and searhes for onstraints on theparameters for whih a reahability property 93� holds in a PTA A.Reahable (A, �)Result := ;,Passed := ;,Waiting := f(q0; C;D) j (C0;E") I(q0)(  (C;D)gwhile Waiting 6= ; doselet (q; C;D) from WaitingResult := Result [ f(q0; C 0;D0) j (q; C;D) �( (q0; C 0;D0)gFalse := f(q0; C 0;D0) j (q; C;D) :�( (q0; C 0;D0)gfor eah (q0; C 0;D0) in False doif for all (q00; C 00;D00) in Passed: (q0; C 0;D0) 6� (q00; C 00;D00) thenadd (q0; C 0;D0) to Passedfor eah (q00; C 00;D00) suh that (q0; C 0;D0)! (q00; C 00;D00) doWaiting := Waiting [ f(q00; C 00;D00)greturn ResultFig. 6. The parametri model heking algorithmIn the algorithm, we use inlusion between symboli states de�ned by(q; C;D) � (q0; C 0; D0) �= q = q0 ^ [[C;D℄℄ � [[C;D0℄℄:Note that whenever a triple (q; C;D) ends up in one of the lists maintainedby the algorithm, (C;D) is a onstrained PDBM in anonial form. This fat,in ombination with Lemma 3.6, gives deidability of the inlusion opera-tion. Our searh algorithm explores the symboli semantis in an \intelligent"manner, and stops whenever it reahes a state whose semantis is ontainedin the semantis of a state that has been enountered before. Despite this, ouralgorithm need not terminate.If it terminates, the result returned by the algorithm is a set of satis�ablesymboli states, all of whih satisfy �, for any valuation of the parameters andloks in the state.Theorem 3.22 Suppose (q; C;D) is in the result set returned by Reahable(A, �). Then (C;D) is satis�able. Moreover, for all (v; w) 2 [[C;D℄℄, (q; w) is26



a reahable state of [[A℄℄v and (q; w) j=v �.Proof: It is easy to see that all the symboli states returned by the algorithmare satis�able: the only operation that may modify the onstraint set is addinga guard, but this will never lead to unsatis�able onstraint sets. Sine allonstrained PDBMs returned by the algorithm are in anonial form, they areall satis�able by Lemma 3.5.Suppose that (v; w) 2 [[C;D℄℄. By a straightforward indutive argument, usingLemmas 3.15, 3.16 and 3.21, it follows that (q; w) is a reahable state of [[A℄℄vand (q; w) j=v �. �For invariane properties 82�, our tool runs the algorithm on :�, and theresult is then a set of symboli states, none of whih satis�es �. The answerto the model heking problem, stated in Setion 2.2, is obtained by takingthe union of the onstraint sets from all symboli states in the result of thealgorithm; in the ase of an invariane property we take the omplement ofthis set.A di�erene between the above algorithm and the standard timed model hek-ing algorithm is that we ontinue the exploration until either no more newstates are found or all paths end in a state satisfying the property. This isbeause we want to �nd all the possible onstraints on the parameters forwhih the property holds. Also, the operations on non-parametri DBMs onlyhange the DBM they are applied to, whereas in our ase, we may end upwith a set of new PDBMs and not just one.Some standard operations on symboli states that help in exploring as littleas possible, have also been implemented in our tool for parametri symbolistates. Before starting the state spae exploration, our implementation de-termines the maximal onstant for eah lok. This is the maximal value towhih the lok is ompared in any guard or invariant in the PTA. Whenthe lok value grows beyond this value, we an ignore its real value. Thisenables us to identify many more symboli states, and helps termination. Infat, for unparameterized timed automata this trik guarantees termination[AD94, Alu98℄.4 Lower Bound / Upper Bound AutomataThis setion introdues the lass of lower bound/upper bound (L/U) automataand desribes several (rather intuitive) observations that simplify the para-metri model heking problem for PTAs in this lass. Our results use thepossibility to eliminate parameters in ertain ases. This is a relevant issue,27



beause the omplexity of parametri model heking grows very fast in thenumber of parameters. Moreover, our observations yield some deidability re-sults for L/U automata, where the orresponding problems are undeidable forgeneral PTAs. The appliability of the results is illustrated by the veri�ationof Fisher's algorithm.4.1 Lower bound/Upper bound AutomataInformally, eah parameter in an L/U automaton A ours either as a lowerbound in the invariants and guards of A or as an upper bound, but never asboth. For instane, p is an upper bound parameter in x�y < 2p. Lower boundparameters are for instane q and q0 in y � x > q + 2q0 (� x� y < �q � 2q0)and in x� y < 2p� q� 2q0. A PTA ontaining both the guards x� y � p� qand z < q � p is not an L/U automaton.De�nition 4.1 A parameter pi 2 P is said to our in the linear expressione = t0 + t1 � p1 + � � � tn � pn if ti 6= 0; pi ours positively in e if ti > 0 and piours negatively in e if ti < 0. A lower bound parameter of a PTA A is aparameter that only ours negatively in the expressions of A and an upperbound parameter of A is a parameter that only ours positively in A. We allA a lower bound/upper bound (L/U) automaton if every parameter ourringin A is either a lower bound parameter or an upper bound parameter.From now on, we work with a �xed set L = fl1; : : : lKg of lower bound pa-rameters and a �xed set U = fu1; : : : uMg of upper bound parameters withL \ U = ; and L [ U = P . Furthermore, we onsider, apart from parametervaluations, also extended parameter valuations. Intuitively, an extended pa-rameter valuation is a parameter valuation with values in R�0 [ f1g, ratherthan in R�0. Extended parameter valuations are useful in ertain ases to solvethe veri�ation problem (over non-extended valuations) stated in Setion 2.3.Working with extended parameter valuations may ause the evaluation of anexpression to be unde�ned. For example, the expression e[v℄ is not de�nedfor e = p � q and v(p) = v(q) = 1. We therefore require that an extendedparameter valuation does not assign the value 1 to both a lower bound pa-rameter and an upper bound parameter. Then we an easily extend notionse[v℄, (v; w) j= e and A[v℄ (de�ned in Setion 2) to extended valuations. Here,we use the onventions that 0 �1 = 0, that x� y � 1 evaluates to true andx�y � �1 to false. In partiular, we have [[A℄℄v = [[A[v℄℄℄ for extended valua-tions v and L/U automata A. Moreover, we extend the orders � to R [ f1gin the usual way and we extend them to extended parameter valuations viapoint wise extension (i.e. v � v0 i� v(p) � v0(p) for all p 2 P ). We denote anextended valuation of an L/U automaton by a pair (�; �), whih equals thefuntion � on the lower bound parameters and � on the upper bound param-28



eters. We write 0 and 1 for the funtions assigning respetively 0 and 1 toeah parameter.The following proposition is based on the fat that weakening the guards inA (i.e. dereasing the lower bounds and inreasing the upper bounds) yieldsan LTS whose reahable states inlude those of A. Dually, strengthening theguards inA (i.e. inreasing the lower bounds and dereasing the upper bounds)yields an LTS whose reahable states are a subset of those of A. The resultruially depends on the fat that state formulae (by de�nition) do not ontainparameters. The usefulness of this property (and of several other propertiesin this setion) lies in the fat that the satisfation of a property for in�nitelymany extended parameter valuations (�0; �0) is redued to its satisfation fora single valuation (�; �).Proposition 4.2 Let A be an L/U automaton and � a state formula. Then(1) [[A℄℄(�;�) j= 93� () 8�0 � �; � � �0 : [[A℄℄(�0;�0) j= 93�:(2) [[A℄℄(�;�) j= 82� () 8� � �0; �0 � � : [[A℄℄(�0;�0) j= 82�:Proof: (sketh) The \(=" parts of both statements are trivial. The ruialobservation for both \=)" parts is the following. For all linear expressions ein A and all extended parameter valuations (�; �), (�0; �0) with �0 � � and� � �0, we have that e[�; �℄ � e[�0; �0℄. Therefore, if ((�; �); w) j= x � y � e,then ((�0; �0); w) j= x� y � e. �The following example illustrates how Proposition 4.2 an be used to eliminateparameters in L/U automata.Example 4.3 The PTA in Fig. 7 is learly an L/U automaton: min is alower bound and max is an upper bound parameter. Loation S1 is reahableirrespetive of the parameter values. By setting the parameter min to 1 andmax to 0, one heks with a non-parametri model heker that A[(1; 0)℄ j=93S1. Then Proposition 4.2(1) (together with [[A℄℄v = [[A[v℄℄℄) yields that S1is reahable in [[A℄℄(�;�) for all extended parameter valuations 0 � �; � � 1.Clearly, [[A℄℄(�;�) j= 93S2 i� �(min) � �(max) ^ �(min) < 1. We willsee in this running example how we an verify this property ompletely bynon-parametri model heking. Heneforth, we onstrut the automaton A0from A by substituting the parameter max by the parameter min yield-ing an (non L/U) automaton with one parameter, min. The next exampleshows that [[A0℄℄v j= 93S2 for all valuations v, whih essentially means that[[A℄℄(�;�) j= 93S2 for all �; � suh that �(max) = �(min) < 1. From thisfat, Proposition 4.2(1) onludes that [[A℄℄(�;�) j= 93S2 for all �; � with�(min) � �(max) and �(min) <1. 29



S0 S1
S2 x � minx � maxx := 0

Fig. 7. Reduing parametri to non-parametri model hekingThe question whether there exists a (non-extended) parameter valuation suhthat a given loation q is reahable, is known as the emptiness problem forPTAs. In [AHV93℄, it is shown that the emptiness problem is undeidable forPTAs with three loks or more. The following proposition implies that wean solve the emptiness problem for an L/U automaton A by only onsid-ering the timed automaton A[(0;1)℄. Sine reahability for timed automatais deidable ([AD94℄), the emptiness problem is deidable for L/U automata.Then it follows that the dual problem is also deidable for L/U automata.This is the universality problem for invariane properties, asking whether aninvariane property holds for all parameter valuations.Proposition 4.4 Let A be an L/U automaton with loation q. ThenA[(0;1)℄ j=93q if and only if there exists a (non-extended) parameter valuation (�; �)suh that [[A℄℄(�;�) j= 93q.Proof: The \only if" part is an immediate onsequene of Proposition 4.2(1)and the fat that [[A[(0;1)℄℄℄ = [[A℄℄(0;1). For the \if" part, assume that �is a run of [[A[(0;1)℄℄℄ that reahes the loation q. Let T 0 be the smallestonstant ourring in A and let T be the maximum lok value ourringin �. (More preisely, if � = s0a1s1a2 : : : aNsN and si = (qi; wi), then T =maxi�N;x2X wi(x); T 0 ompensates for negative onstants t0 in expressions e ofA.) Now, take �(lj) = 0 and �(uj) = T + jT 0j+1. Let i � N and g = x� y �e be the invariant assoiated with a state si ourring in � or the guardassoiated with the ith transition taken by �. One easily shows that, sinewi(x)� wi(y) � e[0;1℄, also wi(x) � wi(y) � e[�; �℄, that is ((�; �); wi) j= g.Hene, � is a run of [[A℄℄(�;�), so [[A℄℄(�;�) j= 93q. �Corollary 4.5 The emptiness problem is deidable for L/U automata.De�nition 4.6 A PTA A is fully parametri if loks are only reset to 0 andevery linear expression in A of the form t1 � p1 + � � �+ tn � pn, where ti 2 Z.The following proposition is basially the observation in [AD94℄, that multi-pliation of eah onstant in a timed automaton and in a system propertywith the same positive fator preserves satisfation.30



Proposition 4.7 Let A be fully parametri PTA. Then for all parameter val-uations v and all system properties  [[A℄℄v j=  () 8t 2 R>0 : [[A℄℄t � v j= t � ;where t � v denotes the valuation p 7! t � v(p) and t � the formula obtainedfrom  by multiplying eah number in  by t.Proof: It is easy to see that for all t 2 R>0, � = s0a1s1a2 : : : aNsN withsi = (qi; wi) is a run of [[A℄℄v if and only if s00a1s01 : : : aNs0N is a run of [[A℄℄t � v,where s0i = (qi; t �wi) and t �wi denotes x 7! t �wi(x). �Then for fully parametri PTAs with one parameter and system properties  without onstants (exept for 0), we have [[A℄℄v j=  for all valuations v of Pif and only if both A[0℄ j=  and A[1℄ j=  . The need for a separate treatmentof the value 0 is illustrated by the (fully parametri) automaton with a singletransition equipped with the guard x < p. The target loation of the transitionis reahable for any value of p, exept for p = 0.Corollary 4.8 For a fully parametri PTA A with one parameter, a on-straint set C and a property  without onstants (exept 0), it is deidablewhether 8v 2 [[C℄℄ : [[A℄℄v j=  .Example 4.9 The PTA A0 mentioned in Example 4.3 is a fully parametritimed automaton and the property 93S2 is without onstants. We establishthat A0[0℄ j= 93S2 and A0[1℄ j= 93S2. Then Proposition 4.7 implies thatA0[v℄ j= 93S2 for all v. As shown in Example 4.3, this implies that [[A℄℄(�;�) j=93S2 for all �, � with �(min) = �(max) <1.In the running example, we would like to use the same methods as above toverify that [[A℄℄(�;�) 2 93S2 if �(min) > �(max). However, we an not takemin = max in this ase, sine the bound in the onstraint is a strit one. Thefollowing de�nition and results allows us to move the stritness of a onstraintinto the PTA.De�nition 4.10 Let P 0 � P be a set of parameters. De�ne A<P 0 as the PTAobtained from A by replaing every inequality x � y � e in A by a stritinequality x� y < e, provided that e ontains at least one parameter from P 0.Similarly, de�neA�P 0 as the PTA obtained fromA by replaing every inequalityx � y < e by a non{strit inequality x � y � e, provided that e ontains atleast one parameter from P 0. For � = <;�, write A� for A�P . Moreover, de�nev �P 0 v0 by v(p) � v0(p) if p 2 P 0 and v(p) = v0(p) otherwise.Proposition 4.11 Let A be an L/U automaton. Then for all extended valu-ations (�; �) of A 31



(1) [[A�℄℄(�;�) j= 93� =) 8�0 < �; � < �0 : [[A℄℄(�0;�0) j= 93�.(2) [[A<℄℄(�;�) j= 82� () 8� < �0; �0 < � : [[A℄℄(�0;�0) j= 82�.Proof:1 Let (�; �) be an extended valuation and assume that [[A�℄℄(�;�) j= 93�. Lete be a linear expression ourring in A. Then we an write e = t0+ e1 + e2,where t0 2 Z, e1 is an expression over the upper bound parameters and e2an expression over the lower bound parameters. Then we have� � �0 =) e1[�℄ � e1[�0℄;�0 � � =) e2[�0℄ � e2[�℄;�0 � �; � � �0 =) e[(�; �)℄ � e[(�0; �0)℄:If there is at least one parameter ourring respetively in e1 or e2 thenrespetively � < �0 =) e1[�℄ < e1[�0℄�0 < � =) e2[�℄ < e2[�0℄:Thus, if there is at least one parameter ourring in e, then�0 < �; � < �0 =) e[(�; �)℄ < e[(�0; �0)℄:Now, let g � x � y � e be a simple guard ourring in A� and let g0 �x � y �0 e be the orresponding guard in A. Assume that (w; (�; �)) j= g,i.e. w(x)� w(y) � e[(�; �)℄. We show that (w; (�; �)) j= g0. We distinguishtwo ases.ase 1: There exists a parameter ourring in e. Then w(x) � w(y) �e[(�; �)℄ < e[(�0; �0)℄. Then ertainly ((�; �); w) j= g0 � x� y �0 e.ase 2: The expression e does not ontain any parameter. Then g0 � gand hene ((�; �); w) j= g0.It easily follows that every run of [[A�℄℄(�;�) is also a run of [[A℄℄(�0;�0). Thus,if a state satisfying � is reahable in [[A�℄℄(�;�) then it is also reahable in[[A℄℄(�0;�0).2, =) : This follows from statement (1) of this proposition: assume that[[A<℄℄(�;�) j= 82� and let �0, �0 be suh that � < �0, �0 < �. Sine [[A<℄℄(�;�) 293:�, we have :8�00 < �0; �0 < �00 : [[A<℄℄(�00 ;�00) j= 93:�:Then ontraposition of statement (1) together with (A<)� = A� yields[[A�℄℄(�0;�0) 2 93:�. AsA imposes stronger bounds thanA�, also [[A℄℄(�0;�0) 293:�, i.e. [[A℄℄(�0;�0) j= 82�.2, (=: Let (�; �) be an extended valuation. Assume that [[A℄℄(�00;�00) j= 82�for all �00 > �, �00 < � and that � = s0a1s1a2 : : : aNsN is a run of [[A<℄℄(�;�).32



We have to show that sN j= �. Below, we onstrut �0 > � and �0 < � suhthat � is also a run of [[A℄℄(�0;�0). Then we are done: sine [[A℄℄(�0;�0) j= 82�,sN j= �.We use the following notation. For the run � = s0a1s1a2 : : : aNsN of A<,we write sk = (qk; wk), I(qk) = ^Ji=0Iik, Iik = xi �ik Eik, where J is thenumber of loks inA. As � is a run, we have that for all k, 0 � k < N , eitherak+1 2 R�0 or there exists a transition qk gk;ak+1;rk+1�������! qk+1 in A<. We writethe guard on this transition as gk = ^i;j�Jgijk with gijk = xi � xj �ijk eijk.If ak 2 R�0, then we put �ijk=< and eijk =1 for all i; j � J .If for all i, j, k neither the guard gijk nor the invariant Iik ontains aparameter, then we an take �0 and �0 arbitrarily and we have that � is arun of [[A℄℄(�0;�0). Therefore, assume that at least one of the guards gijk orinvariants Iik ontains a parameter. Then, by de�nition of A<, this guardor invariant ontains a strit bound. In this ase, we onstrut �0 > � and�0 < � suh that wk(x � y) < e[(�0; �0)℄ < e[(�; �)℄ for all k < N and allexpressions e ourring in the invariants Iik or guard gijk. Informally, weuse the minimum \distane" e[(�; �)℄�wk(x� y) ourring in � to slightlyinrease the lower bounds and slightly derease the upper bounds yielding� < �0 and � < �0.Formally, letT0 = mink�N;i�J fEik[(�; �)℄� wk(xi) j �ik=<g;T1 = mink�N;i;j�J feijk[(�; �)℄� (wk(xi)� wk(xj)) j �ijk=<g;0 < T < minfT0; T1g;with the onvention that min; = 1. At least one of the inequalities �ijkor �ik is strit, sine at least one of the guards or invariants ontains aparameter. Hene, either T0 <1 or T1 <1. Sine ((�; �); wk) j= Iik ^ gijk,we have that T0 > 0 and T1 > 0. Hene, 0 < minfT0; T1g < 1 and therequested T exists. The ruial property is that if gijk � xi � xj < eijkontains a parameter, thenwk(xi)� wk(xj) < eijk[(�; �)℄� T (7)and, similarly, if Iik � xi < Eik ontains a parameter, then wk(xi) <Eik[(�; �)℄� T .Now, we an distribute the value T over all parameters to obtain largervalues for the lower bounds and smaller ones for the upper bounds. Let T 0be the sum of the onstants that appear in front of a parameter in one ofthe guards gijk or the invariants Iik, i.e.T 0 = Xk�N;i�J sum of onst(Eik) + Xk�N;i;j�J sum of onst(eijk);where sum of onst(t0 + t1 �p1 + � � � + tn � pn) = jt1j + � � � + jtnj : Sine at33



least one of the guards or invariants ontains a parameter, we have T 0 > 0.Now, take �0 = �+ TT 0 and �0 = �� TT 0 . Let i; j � J , k � N and onsiderthe guard gijk � xi � xj �Aijk eijk in A, whih orresponds to the guardgijk � xi � xj �ijk eijk in A<. We prove below that ((�0; �0); wk) j= gijk.In a similar way, one an show that ((�0; �0); wk) j= Iik for the invariantorresponding to Iik. Then, � is a run of [[A℄℄(�0;�0) and we are done.ase 1: The expression gijk does not ontain any parameter. Sine ((�; �); wk) j=gijk, ((�0; �0); wk) j= gijk.ase 2: There exists a parameter ourring in gijk. Then gijk � xi � xj <eijk and we an write eijk = t0+t1 � u1+ � � �+tM �uM�t01 � l1�� � ��t0K � lK ,with ti � 0, t0i � 0 for i > 0. Theneijk[(�0; �0)℄ = (t0 + MXh=1 th �uh � KXh=1 t0h � lh)[(�+ TT 0 ; �� TT 0 )℄= t0 + MXh=1 th �(�h � TT 0 )� KXh=1 t0h �(�h + TT 0 )= t0 + MXh=1 th ��h � KXh=1 t0h ��h � TT 0 �( MXh=1 th + KXh=1 t0h)� eijk[(�; �)℄� TT 0 �T 0 (by 7)> wk(xi)� wk(xj):Thus, ((�0; �0); wk) j= xi � xj < eijk and then also ((�0; �0); wk) j= xi �xj �Aijk eijk.�The previous result onerns the automaton that is obtained when all thestrit inequalities in guards and invariants with parameters are hanged intononstrit ones (or the other way around). Sometimes, we want to \toggle"only some of the inequalities. Then the following result an be applied.Corollary 4.12 Let A be an L/U automaton and P 0 � P .(1) [[A�P 0℄℄(�;�) j= 93� =) 8�0 <P 0 �; � <P 0 �0 : [[A℄℄(�0;�0) j= 93�.(2) [[A<P 0℄℄(�;�) j= 82� () 8� <P 0 �0; �0 <P 0 � : [[A℄℄(�0;�0) j= 82�.Proof: Let (�; �) be an extended valuation. Let A0 be the automaton ob-tained fromA by substituting p by (�; �)(p) for every p =2 P 0. Then [[A<P 0℄℄(�;�) =[[A<0 ℄℄(�;�) and [[A�P 0℄℄(�;�) = [[A�0 ℄℄(�;�). Now the result follows by applying Propo-sition 4.11 to A0. �The following example shows that the onverse of Proposition 4.11(1) doesnot hold.Example 4.13 Consider the automaton A in Fig. 8. Reall that the loks34



q0 qx � maxx := 0y � 10x � 2
Fig. 8. The onverse of Proposition 4.11(1) does not hold.x and y are initially 0. Then A = A� and the loation q is reahable ifmax > 0 but not if max = 0. This is so beause if max = 0, then loky is never augmented. Thus, 8�0 < 0; 0 < �0 : [[A℄℄(�0;�0) j= 93�, but not[[A�℄℄(0;0) j= 93�.We believe that the lass of L/U automata an be very useful in pratie.Several examples known from the literature fall into this lass, or an bemodelled slightly di�erently to ahieve this. We mention the root ontentionprotool [IEE96℄, Fisher's mutual exlusion algorithm [Lam87℄, the (toy) railroad rossing example from [AHV93℄, the bounded retransmission protool(when onsidering �xed values for the integer variables) and the biphase markprotool (with minor adaptations). Moreover, the time onstrained automatamodels of [MMT91, Lyn96℄ an be enoded straightforwardly into L/U au-tomata.We expet that quite a few other distributed algorithms and protools anbe modelled with L/U automata, sine it is natural that the duration of anevent (suh as the ommuniation delay in a hannel, the omputation timeneeded to produe a result, the time required to open the gate in a rail roadrossing) lies between a lower bound and an upper bound. These bounds areoften parameters of the system.The next setion and Setion 5 show that the tehniques disussed in thissetion to eliminate parameters in L/U models redue the veri�ation e�ortsigni�antly and possibly lead to a ompletely non-parametri model.4.2 Veri�ation of Fisher's Mutual Exlusion ProtoolIn this setion, we apply the results from the previous setion to verify theFisher protool desribed in Setion 2.4. We establish the suÆieny of theprotool onstraints ompletely by non-parametri model heking and theneessity of the onstraints by eliminating three of the four parameters.We also tried to use the prototype to verify the protool model without anysubstitutions or hanging of bounds, but this did not terminate within 2035



hours. Sine we observed that the onstraint lists of the states explored kepton growing, we suspeted that this experiment would not terminate at all.(Reall that parametri veri�ation is undeidable.) Veri�ation of the reduedmodels took only 2 seonds.Now, onsider the Fisher protool model from Setion 2.4 again. In this se-tion, we analyze a system A onsisting of two parallel proesses P1 and P2. It islear that A is a fully parametri L/U automaton: min rw and min delay arelower bound parameters andmax rw andmax delay upper bound parameters.The mutual exlusion property is expressed by the formula �ME � 82:(P1:s^P2:s). In Setion 2.4 we laimed that, when assuming the basi onstraintsBME � 0�min rw<max rw ^ 0�min delay<max delay, mutual exlusionis guaranteed if and only if CME � max rw�min delay. To establish thisformally, we will prove that v j= BME =) ([[A℄℄v j= �ME () v j= CME ),for all valuations v.4.2.1 SuÆieny of the ConstraintsWe show that the onstraints assure mutual exlusion, that isif v j= CME ^ BME , then [[A℄℄v j= �ME .We perform the substitutionmin rw 7! 0;max delay 7! 1;min delay 7! max rwto obtain a fully parametri automaton A0 with one parameter, max rw . Wehave established by non-parametri model heking that A0[0℄ j= �ME andA0[1℄ j= �ME . Now Proposition 4.7 yields that [[A0℄℄v j= �ME for all valuationsv (where only the value of max rw matters). This means that [[A℄℄v j= �MEif v(min rw) = 0, v(max rw) = v(min delay) and v(max delay) = 1. ThenProposition 4.2(2) yields that the invariane property �ME also holds if weinrease the lower bound parameters min rw and min delay and if we de-rease the upper bound parameter max rw . More preisely, Proposition 4.2(2)implies that [[A℄℄v j= �ME for all v with 0 � v(min rw), v(max rw) �v(min delay) and v(max delay) � 1. Then, in partiular, [[A℄℄v j= �ME ifv j= CME ^ BME .Neessity of the Constraints:We show that v j= BME ^ :CME =) [[A℄℄v j= :�ME ;36



i.e. that if v j= min rw <max rw ^ min delay <max delay ^ min delay <max rw , then A[v℄ j= :�ME � 93(P1:s^P2:s). We onsider the automatonA� and proeed in two steps.Step 1 Let v0 be the valuation v0(min delay) = v0(max delay) = 0 andv0(min rw) = v0(max delay) = 1. By non-parametri model heking we haveestablished that A�[0℄ j= :�ME (8)A�[v0℄ j= :�ME : (9)We show that it follows that for all vv j= 0 = min delay = max delay � min rw = max rw =) A�[v℄ j= :�ME :(10)Assume v j= 0 = min delay = max delay � min rw = max rw . Considert = v(min rw). If v(min rw) = 0, then (8) shows that [[A�℄℄v j= :�ME .Therefore, assume v(min rw) > 0 and onsider vt � �x:v(x)t . It is not diÆultto see thatvt j= 0 = min delay = max delay � min rw = max rw = 1:Therefore, (9) yields [[A�℄℄ vt j= :�ME . Sine A� is a fully parametri PTA,Proposition 4.7 yields that [[A�℄℄v j= :�ME .Step 2 Let A0 be the automaton that is onstruted from A� by perform-ing the following substitution min delay 7! 1, max delay 7! 1, min rw 7!max rw . By parametri model heking we have establishedv j= 1 � max rw =) [[A0℄℄v j= :�ME : (11)This means that ifv j= min delay = max delay = 1 � min rw = max rw =) [[A�℄℄v j= :�ME :By a argument similar to the one we used to prove (10), (where now thease v(min delay) = 0 is overed by Equation (10) in Step 1.), we an useProposition 4.7 to show thatv j= min delay = max delay � min rw = max rw =) [[A�℄℄v j= :�ME :Now, Proposition 4.2(1) yields that the reahability property :�ME also holdsif the values for the lower bounds are dereased and the values for the upperbounds are inreased. Note that we may inrease max delay as muh as we37



want; v(max delay) may be larger than v(min rw). Thus we havev j= min rw�max rw ^ min delay�max delay ^ min delay�max rw=) [[A�℄℄v j= :�MEand then Proposition 4.11 yields thatv j= min rw<max rw ^ min delay<max delay ^ min delay<max rw=) [[A℄℄v j= :�ME :We have heked the result formulated in Equation (11) with our prototypeimplementation. The experiment was performed on a SPARC Ultra in 2 se-onds CPU time and 7.7 Mb of memory.The substitutions and tehniques used in this veri�ation to eliminate param-eters are ad ho. Probably, more general strategies an be applied in this ase,beause the onstraints are L/U{like (i.e. they an be written in the forme � 0 suh that every p ourring negatively in e is a lower bound parameterand every p ourring positively in e is an upper bound parameter).5 Experiments5.1 A Prototype Extension of UppaalBased on the theory desribed in Setion 3, we have built a prototype extensionof Uppaal. In this setion, we report on the results of experimenting withthis tool.Our prototype allows the user to give some initial onstraints on the param-eters. This is partiularly useful when explorations annot be �nished dueto lak of memory or time resoures, or beause a non-onverging series ofonstraint sets is being generated. Often, partial results an be derived by ob-serving the onstraint sets that are generated during the exploration. Basedon partial results, the atual solution onstraints an be established in manyases. These partial results an then be heked by using an initial set ofonstraints.5.2 The Root Contention ProtoolDesription The root ontention protool is part of a leader eletion protool38



in the physial layer of the IEEE 1394 standard (FireWire/i-Link), whih isused to break symmetry between two nodes ontending to be the root of atree, spanned in the network topology. The protool onsists of �rst drawinga random number (0 or 1), then waiting for some time aording to the resultdrawn, followed by the sending of a message to the ontending neighbor. Thisis repeated by both nodes until one of them reeives a message before sendingone, at whih point the root is appointed.Parametri Approah We use the Uppaal models of [SV99, SS01℄, turnthe onstants used into parameters, and experiment with our prototype im-plementation (see Fig. 9 for results 5 ). In both models, there are �ve on-stants, all of whih are parameters in our experiments. The delay onstant in-diates the maximum delay of signals sent between the two ontending nodes.The r fast min and r fast max onstants give the lower and upper boundto the waiting time of a node that has drawn 1. Similarly, the r slow minand r slow max onstants give the bounds when 0 has been drawn. It is rea-sonable to assume that initially, the onstraints r fast min � r fast max �r slow min � r slow max hold for eah experiment.We have heked for safety with the following property:82 : (:(Node1:root ^ Node2:root) ^ :(Node1:hild ^ Node2:hild))Safety for [SV99℄ The model in [SV99℄ onsists of 8 ommuniating pro-esses, varying from 3 loations with 6 transitions to 9 loations with 12 tran-sitions, and has 4 loks in total. It is shown in [SV99℄, that the safety propertyholds (through a re�nement relation), if the parameters obey the following re-lation: delay < r fast min. We have heked that the error states, expressedin the safety property, are indeed unreahable when this parameter onstraintis met. If we give no initial onstraints, our experiments do not terminate. Ifwe loosen the solution onstraint to delay � r fast min, we are able to hekthat no error states are reahable. In fat, it is argued in Remark 2 in [SV99℄,that the mentioned onstraint is not needed for the orretness of the proto-ol. Rather than heking this on the parametri model without any initialonstraints, whih is a large task, we experiment with a non-parametri ver-sion of the model without any timing onstraints. It turns out that this modelsatis�es the safety property, hene we dedue that the parametri model, inwhih guards and invariants have been added, satis�es the safety property forany valuation of the parameters.Safety for [SS01℄ A di�erent model of the root ontention protool is pro-5 All experiments were performed on a 366 MHz Celeron, exept the �rst exper-iment of safety for [SV99℄ and [SS01℄, and all the re�nement experiments. Thesewere performed on a 333 MHz SPARC Ultra Enterprise.39



posed in [SS01℄, in whih it is shown that the relation between the parametersfor the safety property to hold, should obey: 2�delay < r fast min. In fat,the model satis�es the safety property already when delay < r fast min, butthe stronger onstraint is needed for proper behavior of the onneting wires.This model also onsists of 8 ommuniating proesses, varying from 3 loa-tions with 6 transitions to 16 loations with 28 transitions, and has 6 loksin total. The neessity and suÆieny of these onstraints is shown in [SS01℄by applying standard Uppaal to several valuations for the parameters, andpresented as an experimental result.We have heked that the error states, expressed in the safety property, areindeed unreahable when either of these parameter onstraints are met. Wehave also experimented without these initial onstraints in an e�ort to generateonstraints. This experiment terminates with a number of reahable errorstates. The union of the onstraint sets of these states an be rewritten to theonstraint delay � r fast min.Safety for [SS01℄ with L/U automata Sine the model used for safetyis a L/U automaton, we an experiment with Proposition 4.2, as follows. Weshow that our invariant property is satis�ed by a more general model of rootontention, and dedue with part 2 of Proposition 4.2 that it holds for the on-straints we are after. We �rst identify the sets L = fr fast min; r slow mingand U = fdelay; r fast max; r slow maxg. We substitute in�nity for bothr fast max and r slow max, r fast min for r slow min. The new model, to-gether with either the initial onstraint delay < r fast min, or with 2�delay <r fast min, satis�es the invariant property. This allows us to onlude that theoriginal model satis�es the invariant property for any valuation of the param-eters where r fast min � r slow min, and the given initial onstraint are sat-is�ed. This inludes the speial ase r fast min � r fast max � r slow min� r slow max.We an do even better by applying Proposition 4.11, if we �rst hange eahguards or invariants for delay to a strit version, and then substitute in�n-ity for both r fast max and r slow max, and r fast min for both delay andr slow min. Now we have a model with only one parameter and no onstants,whih we an verify non-parametrially with standard Uppaal, for two valua-tions of the parameter r fast min, namely 0 and a non-zero value. The invari-ant property is satis�ed, hene, by Proposition 4.7, we an dedue that it holdsfor all valuations of r fast min, hene the original model satis�es the invariantproperty for any valuation of the parameters where r fast min � r slow min,and delay < r fast min. Likewise, we an substitute r fast min=2 for delay,and derive the other onstraint. As an be seen in Fig. 9, the speed-up interms of memory and time is drasti.Finally, we an ombine the results for initial onstraints delay < r fast min40



model from initial onstraints redued property Uppaal time memory[SV99℄ part of solution no safety param 18 h 339 Mb[SV99℄ solution no safety param 2.9 h 185 Mb[SV99℄ - yes safety std 1 s 800 Kb[SS01℄ no no safety param 40 m 38 Mb[SS01℄ solution no safety param 1.6 m 36 Mb[SS01℄ solution partly safety param 11 s 13 Mb[SS01℄ - ompletely safety std 1 s 800 Kb[SS01℄ part of solution no re�nement param 8 d 1.4 Gb[SS01℄ solution no re�nement param 2.6 h 308 MbFig. 9. Experimental results for the root ontention protooland delay = r fast min with the fat that our model is a L/U automaton,and derive the neessity of onstraint delay < r fast min, as follows. Supposethat a parameter valuation for delay and r fast min exists, suh that (1)the safety property holds, but (2) the onstraint delay < r fast min is notsatis�ed. Assume this valuation assigns d to delay and r to r fast min. Byour results, we know that d 6= r, so d > r. We now apply Proposition 4.2,and dedue that for eah parameter valuation that assigns a value to upperbound parameter delay whih is smaller than d, and a value to lower boundparameter r fast min whih is larger than r, the safety property must hold.This inludes valuations that satisfy onstraint delay = r fast min, whihontradits our results. We onlude that only for parameter valuations thatsatisfy onstraint delay < r fast min, the safety property holds.Re�nement for [SS01℄ In [SS01℄, it is also shown that a re�nement relationbetween the model of the most detailed level, and a model whih is a bit moreabstrat, holds when the following relations are obeyed: 2�delay < r fast min,and 2�delay < r slow min - r fast max. The re�nement relation is suh thatit preserves both safety and liveness properties for the root ontention pro-tool (whih is proved in [SS01℄). Again, the neessity and suÆeny of theonstraints is shown by experimenting with standard Uppaal for several val-uations for the parameters, and presented as an experimental result. Here, themost detailed model is put in parallel with a test automaton version of themore abstrat model, and with a forward reahability exploration it is hekedwhether error states are reahable. If this is not the ase, the re�nement re-lation holds. This model onsists of 6 ommuniating proesses, varying nowfrom 4 loations with 5 transitions to 11 loations with 87 transitions, andhas 7 loks in total. 41



model from initial onstraints property Uppaal time memory[DKRT97℄ yes safety1 param 1.3 m 34 Mb[DKRT97℄ no safety2 param 11 m 180 Mb[DKRT97℄ yes safety2 param 3.5 m 64 MbFig. 10. Experimental results for the bounded retransmission protoolWe have heked for a ompletely parametri version of the system with thedetailed model and the test automaton of the more abstrat model, that er-ror states in the test automaton are unreahable (i.e. the re�nement relationholds), given both onstraints initially. We have also experimented withoutthese initial onstraints in an e�ort to generate them. If we give no initialonstraints, the prototype takes a lot of time exploring and omputing, anddoes not terminate within reasonable time or memory limits. When given oneinitial onstraint: delay � r fast min, this experiment terminates suessfullywith a number of reahable error states. The union of the onstraint sets ofthese states an be rewritten to the onstraint 2�delay � r fast min _ 2�delay� r slow min - r fast max.Sine the models for re�nement use onstraints that fall outside the sope ofL/U automata, we annot apply Proposition 4.11 here.5.3 The Bounded Retransmission ProtoolDesription This protool was designed by Philips for ommuniation be-tween remote ontrols and audio/video/TV equipment. It is a slight alterationof the well-known alternating bit protool, to whih timing requirements anda bound on the retry mehanism have been added. In [DKRT97℄ onstraintsfor the orretness of the protool are derived by hand, and some instanesare heked using Uppaal. Based on the models in [DKRT97℄, an automatiparametri analysis is performed in [AAB00℄, however, no further results aregiven.Parametri approah For our analysis, we use the timed automata modelsfrom [DKRT97℄. These models typially onsist of 7 ommuniating proesses,varying from 2 loations with 4 transitions to 6 loations with 54 transitions,and has 5 loks and 9 non-lok variables in total. In [DKRT97℄ three di�erentonstraints are presented based on three properties whih are needed to satisfythe safety spei�ation of the protool. We are only able to hek two of thesesine one of the properties ontains a parameter whih our prototype versionof Uppaal is not able to handle yet.One of the onstraints derived in [DKRT97℄ is that TR � 2�MAX�T1+3�TD,42



where TR is the timeout of the reeiver, T1 is the timeout of the sender,MAX is the number of resends made by the sender, and TD is the delay of thehannel. This onstraint is needed to ensure that the reeiver does not time outprematurely before the sender has deided to abort transmission. The senderhas a parameter SYNC whih deides for how long the sender waits until itexpets that the reeiver has realized a send error and reated to it. In ourparametri analysis we used TR and SYNC as parameters and instantiatedthe others to �xed values. Using our prototype we did derive the expetedonstraint TR � 2�MAX�T1+3�TD. However, we also derived the additionalonstraint TR � 2 � SYNC whih was not stated in [DKRT97℄ for thisproperty. The neessity of this onstraint was veri�ed by trying models withdi�erent �xed values for the parameters. The full set of onstraints derived in[DKRT97℄ inludes a onstraint TR � SYNC whih is based on the propertywe annot hek. Therefore the error we have enountered is only present inan intermediate result, the omplete set of onstraints derived is orret. Theauthors of [DKRT97℄ have aknowledged the error and provided an adjustedmodel of the protool, for whih the additional onstraint is not neessary.The last onstraint derived in [DKRT97℄ arises from heking that the senderand reeiver are not sending messages too fast for the hannel to handle. Inthis model we treat T1 as a parameter and derive the onstraint T1 > 2 �TDwhih is the same as is derived in [DKRT97℄.
5.4 Other ExperimentsWe have experimented with parametri versions of several models from thestandard Uppaal distribution, namely Fisher's mutual exlusion protool, atrain gate ontroller, and a ar gear box ontroller.In the ase of Fisher's protool (whih is the version of the standard Uppaaldistribution, and not the one disussed in the rest of this paper), we param-eterized a model with two proesses, by turning the bound on the period theproesses wait, before entering the ritial setion, into a parameter. We wereable to generate the onstraints that ensure the mutual exlusion within 2seonds of CPU time on a 266 MHz Pentium MMX. Using these onstraintsas initial onstraints and heking that now indeed the mutual exlusion isguaranteed, is done even faster. Fisher's protool with two proesses was alsoheked in [AAB00℄, whih took about 3 minutes.43



5.5 DisussionOur prototype handles parametri versions of benh-mark timed automatarather well. In some ases, the prototype will not generate a onverging seriesof onstraints, but in all ases we were able to get suessful terminationwhen applying (onjetures of) solution onstraints as initial onstraints inthe exploration. The amount of time and memory used is then in many asesquite reasonable.From our results it is not easy to draw lear-ut onlusions about the typeof parametri model, for whih our prototype an suessfully generate on-straints. It seems obvious from the ase studies that the more ompliated themodel, the larger the e�ort in memory and time onsumption. So it is worth-while to have small, simple models. However, the danger of non-terminationis most present in models whih have a lot of behavioural freedom. The mostpromising diretion, therefore, will be to experiment with onjetured solutiononstraints, and to ombine this with the tehniques for L/U automata.6 ConlusionsThis paper reports on a parametri extension to the model heker Uppaal.This tool is apable of generating parameter onstraints that are neessary andsuÆient for a reahability or invariant property to hold for a linear parametritimed automaton. The semantis of the algorithms underlying the tool is givenin lean SOS{style rules. Although the work [AHV93℄ shows that parametersynthesis is undeidable in general, our prototype implementation terminateson many pratial veri�ation questions and the run time of the tool is a-eptable. Signi�ant redutions are obtained by parameter elimination in L/Uautomata.There are several relevant and interesting topis for future researh. First ofall, serious improvements in the appliability of the tool an be obtained byimproving the user interfae. Currently, the tool generates many parameterequations whose disjuntion is the desired onstraint. Sine the number ofequations are an be quite large, it would be more onvenient if the tool ouldsimplify these set of equations. This ould for instane be done with redutiontehniques for BDDs.Another relevant issue for parameter analysis is the theoretial investigationof the lass of L/U automata. It would for instane be interesting to get moreinsight whih types of problems are deidable for L/U automata and whihare not. Furthermore, it would be interested to investigate the use of L/U44
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A Notational Conventionsa ationb natural number onstraintd nonnegative real numbere linear expressionf simple guardg guardi; j indexk total number of ationsl lower bound parameterm total number of loksn total number of parametersp parameterq loationr reset sets statet; T integer or real numberu upper bound parameterv parameter valuationw lok valuationx; y lokz parametri zoneA set of ationsC set of onstraintsD parametri di�erene bound matrixE set of linear expressionsG set of guardsI invariant funtionK number of lower bound parametersL set of lower bound parametersM number of upper bound parametersP set of parametersQ set of loationsR set of reset setsS set of statesU set of upper bound parametersX set of loksA parametri timed automatonE unit PDBML labelled transition systemN the natural numbersR the real numbers 48



Z the integers�, � extended valuation of lower bound (upper bound) parameter, respetively� state formula system property
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