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the opponent. Seond, a player should not be able to win the game by preventingtime from diverging [SGSAL98,AH97℄. We present a model of timed games thatpreserves the element of surprise and aounts for the need of time divergene.We study both the properties of the winning strategies and the algorithms fortheir onstrution.We onsider two-player timed games that are played over a possibly in�nitestate spae. In eah state, eah player hooses, simultaneously and independentlyof the other player, a move h�; ai, indiating that the player wants to play theation a after a delay of � 2 IR�0 time units. A speial ation, ?, signi�es theplayer's intention to remain idle for the spei�ed time delay. Of the moves hosenby the two players, the one with the smaller delay is arried out and determinesthe suessor state; if the delays are equal, then one of the hosen moves oursnondeterministially (this models the fat that, in real-time interation, trueontemporaneity annot be ahieved). This proess, repeated for in�nitely manyrounds, gives rise to a run of the game. Our de�nition of moves preserves theelement of surprise: a player annot antiipate when the opponent's ation willour in the urrent round. This ontrasts with many previous de�nitions oftimed games (e.g., [AH97,HHM99,dAHM01b,MPS95,AMPS98℄), where playersan only either play immediately an ation a, or wait for a delay �. Suh for-mulations may be simpler and more elegant for timed transition systems (i.e.,one-player games), but in the ase of two-player formulations, the element ofsurprise is lost, beause after eah delay both players have the opportunity topropose a new move. This allows a player to interept the opponent's move h�; aijust before the ation a is arried out. We show that the element of surprise givesa distint advantage to a player. In partiular, we prove that there are simplereahability games that an be won under our formulation of moves, but notunder the previous \no-surprise" versions.The objetive for a player is given by a set � of desired game outomes. Aplayer ahieves this goal if all game outomes belong to �. For a timed gameto be physially meaningful, a player should not be able to ahieve a goal bystopping the progress of time. For instane, if � onsists of the set of runs thatstay forever in a ertain set U of states, and if player 2 has an ation to leaveU only after a delay of 4, then player 1 should not be able to win by alwaysplaying h0;?i. Therefore, several onditions WC i(�) have been proposed in theliterature to express when player i 2 f1; 2g wins a timed game with goal �.In [SGSAL98,AH97℄ the winning ondition WC 1(�) is de�ned to be � \(td [ Blameless1), where td is the set of runs along whih time diverges, andBlameless1 is the set of runs along whih player 1 proposes the shorter delayonly �nitely often. Clearly, player 1 is not responsible if time onverges along arun in Blameless1. Informally, the ondition states that player 1 must ahievethe goal �, and moreover, either time diverges or player 1 is blameless for itsonvergene. This de�nition works if the goal � is a safety property, but not ifit is a reahability or, more general, a !-regular property. To see this, observethat player 1 must ahieve the goal even if player 2 stops the progress of time.Consider a game where the goal onsists of reahing a set U of states, and where



player 1 has an ation leading to U whih is always available one time advanesbeyond 1. Then, player 1 annot win: player 2 an stop time, preventing theation from ever beoming enabled, and ensuring that no run is in �.In [MPS95℄, the winning ondition �\td is proposed. This ondition requiresplayer 1 to guarantee time divergene, whih is not possible in models whereplayer 2 an blok the progress of time. In [dAHS02℄, this ondition is modi�ed toWC �i (�) = (�\td )[Blameless i for player i 2 f1; 2g. While this is appropriate inthe asymmetri setting onsidered there, the problem in our setting, where bothplayers are treated ompletely symmetrially, is that the two onditionsWC �1(�)and WC �2(:�) are not disjoint (here :� is the omplementary language of �).This means that there are games in whih both players an win: for instane,player 1 an ensure �\ td , and player 2 an ensure Blameless2. Other works ontimed games (e.g., [AMPS98,FLM02℄) have avoided the issue of time divergenealtogether by putting syntati onstraints on the game strutures.We de�ne timed games and their winning onditions in a ompletely sym-metri fashion, and in a way that works for all goals (in partiular for all !-regular goals) and ensures that players an win only by playing in a phys-ially meaningful way. The winning onditions we propose are WC i(�) =(� \ td) [ (Blameless i n td), for i 2 f1; 2g. These winning onditions implythat WC 1(�) \WC 2(:�) is empty, ensuring that at most one player an win.Note that there are runs that belong neither to WC 1(�) nor to WC 2(:�): thisontrasts with the traditional formulation of untimed games, where runs are ei-ther winning for a player with respet to a goal, or winning for the opponentwith respet to the omplementary goal. We argue that the lak of run-leveldeterminay is unavoidable in timed games. To see this, onsider a run �r alongwhih both players take turns in proposing moves with delay 0, thus stoppingthe progress of time. If we somehow assign this run to be winning for a player,say player 1, then it would be possible to onstrut games in whih the moveswith delay 0 are the only moves available, and in whih player 1 ould never-theless win. This would go against our intention that a player an win only in aphysially meaningful way. The lak of run-level determinay also implies thatthere are states from whih neither player an win.The form of the winning onditions for timed games have other importantimpliations. We show that to win with respet to a reahability goal, in ontrastto the untimed ase, strategies with memory may be required. For safety goals,however, memoryless strategies suÆe also in the timed ase. We prove severaladditional strutural properties of the winning strategies for timed games. Forinstane, we de�ne a lass of persistent strategies, in whih players do not hangetheir mind about the time of future moves when interrupted by a h�;?i moveof the opponent. We show that persistent strategies always suÆe to win games,for all possible goals.While we de�ne timed games at �rst semantially, we also o�er a timed-automaton-style [AD94℄ syntax for a spei� lass of timed games. We showthat for these timed automaton games the winning states with respet to any!-regular goal an be omputed by a symboli algorithm that iterates a ontrol-



lable predeessor operator on lok regions. In partiular, we prove that timedautomaton games an be won using region strategies, where the players need onlyremember the history of the game as a sequene of regions, rather than more pre-isely, as a sequene of states. Furthermore, the problem of solving these gamesis shown to be, as expeted [AH97℄, omplete for EXPTIME.2 Timed Games2.1 Timed Game StruturesA timed game struture is a tuple G = (S;Ats1;Ats2; �1; �2; Æ), where{ S is a set of states.{ Ats1 and Ats2 are two disjoint sets of ations for player 1 and player 2,respetively. We assume that ? =2 Atsi and write Ats?i = Atsi[f?g. Theset of moves of player i is given by Mi = IR�0 �Ats?i .{ For i = 1; 2, the funtion �i : S 7! 2Mi n ; is an enabling ondition, whihassigns to eah state s a set �i(s) of moves available to player i in that state.{ Æ : S � (M1 [M2) 7! S is a destination funtion that, given a state and amove of either player, determines the next state in the game.We require that the move h0;?i is always enabled and does not leave the state:h0;?i 2 �i(s) and Æ(s; h0;?i) = s for all s 2 S. Similarly to [Yi90℄, we requirefor all 0 � �0 � � and a 2 Ats?i , that (1) h�; ai 2 �i(s) if and only ifh�0;?i 2 �i(s) and h���0; ai 2 �i(Æ(s; h�0;?i)), and (2) if Æ(s; h�0;?i) = s0,and Æ(s0; h���0; ai) = s00, then Æ(s; h�; ai) = s00.Intuitively, at eah state s 2 S, player 1 hooses a move h�1; a1i 2 �1(s), andsimultaneously and independently, player 2 hooses a move h�2; a2i 2 �2(s). If�1 < �2, then the move h�1; a1i is taken; if �2 < �1, then the move h�2; a2iis taken. If �1 = �2, then the game takes nondeterministially one of the twomoves h�1; a1i or h�2; a2i. Formally, we de�ne the joint destination funtioneÆ : S �M1 �M2 7! 2S byeÆ(s; h�1; a1i; h�2; a2i) = 8><>: fÆ(s; h�1; a1i)g if �1 < �2,fÆ(s; h�2; a2i)g if �1 > �2,fÆ(s; h�1; a1i); Æ(s; (�2; a2))g if �1 = �2.The time elapsed when moves m1 = h�1; a1i and m2 = h�2; a2i are playedis given by delay(m1;m2) = min(�1; �2). For i 2 f1; 2g, the boolean predi-ate bl i(s;m1;m2; s0) holds if player i is responsible for the state hange froms to s0. Formally, denoting with �i = 3 � i the opponent of player i, we de-�ne bl i(s;m1;m2; s0) i� both �i � ��i and s0 = Æ(s;mi). Note that bothbl1(s;m1;m2; s0) and bl2(s;m1;m2; s0) may hold at the same time.An in�nite run (or simply a run) of the timed game struture G is a se-quene s0; hm11;m21i; s1; hm12;m22i; s2; : : : suh that sk 2 S, m1k+1 2 �1(sk),m2k+1 2 �2(sk), and sk+1 2 eÆ(sk;m1k+1;m2k+1) for all k � 0. A �nite run �r



is a �nite pre�x of a run that terminates at a state s; we then set last(�r) = s.We denote by FRuns the set of all �nite runs of the game struture, and by Runsthe set of its in�nite runs. A �nite or in�nite run �r = s0; hm11;m21i; s1; : : : induesa trae states(�r) = s0; s1; : : : of states ourring in �r. A state s0 is reahable fromanother state s if there exist a �nite run s0; hm11;m21i; s1; : : : ; sn suh that s0 = sand sn = s0.A strategy �i for player i 2 f1; 2g is a mapping �i : FRuns 7!Mi that assoiates with eah �nite run s0; hm11;m21i; s1; : : : ; sk the move�i(s0; hm11;m21i; s1; : : : ; sk) to be played at sk. We require that the strategyonly selets enabled moves, that is, �i(�r) 2 �i(last(�r)) for all �r 2 FRuns. Fori 2 f1; 2g, let �i denote the set of all player i strategies, and � = �1 [ �2the set of all strategies. For all states s 2 S and strategies �1 2 �1 and�2 2 �2, we de�ne the set of outomes Outomes(s; �1; �2) as the set of allruns s0; hm11;m21i; s1; : : : suh that s0 = s, and for all k � 0 and i = 1; 2, we have�i(s0; hm11;m21i; s1; : : : ; sk) = mik+1. Note that in our timed games, two strate-gies and a start state yield a set of outomes, beause if the players proposemoves with the same delay, a nondeterministi hoie between the two moves ismade. Aording to this de�nition, strategies an base their hoies on the entirehistory of the game, onsisting of both past states and moves. In Proposition 1we show that, to win the game, strategies need only onsider past states.2.2 Timed Goals and Timed Winning ConditionsWe onsider winning onditions given by sets of in�nite traes. A goal � is asubset of S!; we write [�℄r = f�r 2 Runs j states(�r) 2 �g. We write :� for theset S! n�. We often use linear-time temporal logi formulas to speify goals; thepropositional symbols of the formula onsist of sets of states of the timed game[MP91℄. We distinguish between the goal of a player and the orrespondingwinning ondition. The goal represents the ontrol objetive that the playermust attain; for instane, staying forever in a region of \safe" states. To winthe game, however, a player must not only attain this goal, but also make surethat this is done in a physially meaningful way: this is enoded by the winningondition. To this end, we de�ne the set of time divergent runs td as the setof all runs s0; hm11;m21i; s1; hm12;m22i; s2; : : : suh that P1k=1 delay(m1k;m2k) =1. For i 2 f1; 2g, we de�ne the set of player i blameless runs Blameless i asthe set of all runs in whih player i plays �rst (proposes a shorter delay) only�nitely many times. Formally, Blameless i onsists of all runs s0; hm11;m21i; s1; : : :suh that there exists an n 2 N with :bl i(sk;m1k+1;m2k+1; sk+1) for all k � n.Corresponding to the goal �, we de�ne the following winning ondition:WC i(�) : (td \ [�℄r) [ (Blameless i n td):Informally, this ondition states that if time diverges, the goal must be met, andif time does not diverge, the player must be blameless.Given a goal � and a state s 2 S, we say that player i wins from s thegame with goal �, or equivalently, wins from s the game with winning ondition



WC i(�), if there exists a player i strategy �i 2 �i suh that for all opposingstrategies ��i 2 ��i, we have Outomes(s; �1; �2) � WC i(�). In that ase,�i 2 �i is alled a winning strategy. Given a goal �, we let hii� be the states fromwhih player i an win the game with goal �. A state s is well-formed if for everystate s0 reahable from s, and eah player i 2 f1; 2g, we have s0 2 hiiS!. Statesthat are not well-formed are \pathologial": if a player annot win the goal S!,then he annot ensure that the game outomes are physially meaningful.3 Timed Automaton GamesIn this setion, we introdue timed automaton games, a syntax derived fromtimed automata [AD94℄ for representing timed games. As in timed automata, a�nitely spei�ed timed automaton game usually represents a timed game within�nitely many states. A lok ondition over a set C of loks is a booleanombination of formulas of the form x �  or x � y � , where  is an integer,x; y 2 C, and � is either < or �. We denote the set of all lok onditions overC by ClkConds(C). A lok valuation is a funtion � : C 7! IR�0, and we denoteby K(C) the set of all lok valuations for C.A timed automaton game is a tuple A = (Q;C;Ats1;Ats2; E; �; �; Inv1;Inv2), where:{ Q is a �nite set of loations.{ C is a �nite set of loks whih inludes the unresettable lok z, whihmeasures the time sine the start of the game.{ Ats1 and Ats2 are two disjoint, �nite sets of ations for player 1 andplayer 2, respetively.{ E � Q� (Ats1 [ Ats2)�Q is an edge relation.{ � : E 7! ClkConds(C) is a mapping that assoiates with eah edge a lokondition that spei�es when the edge an be traversed. We require that forall (q; a; q1); (q; a; q2) 2 E with q1 6= q2, the onjuntion �(q; a; q1)^�(q; a; q2)is unsatis�able. In other words, the game move and lok values determineuniquely the suessor loation.{ � : E 7! 2Cnfzg is a mapping that assoiates with eah edge the set of loksto be reset when the edge is traversed.{ Inv1; Inv2 : Q ! ClkConds(C) are two funtions that assoiate with eahloation an invariant for player 1 and 2, respetively.Given a lok valuation � : C 7! IR�0 and � 2 IR�0, we denote by � +� thevaluation de�ned by (� + �)(x) = �(x) + � for all loks x 2 C. The lokvaluation � : C 7! IR�0 satis�es the lok onstraint � 2 ClkConds(C), written� j= �, if the ondition � holds when the loks have the values spei�ed by�. For a subset D � C of loks, �[D := 0℄ denotes the valuation de�ned by�[D := 0℄(x) = 0 if x 2 D, and by �[D := 0℄(x) = �(x) otherwise.The timed automaton game A indues a timed game struture [[A℄℄, whosestates onsist of a loation of A and a lok valuation over C. The idea is thefollowing. A player i move h�;?i is enabled in state hq; �i if either � = 0 or



the invariant Invi(q) holds ontinuously when we let � time units pass, thatis, � + �0 j= Invi(q) for all �0 � �. Taking the move h�;?i leads to thestate hq; � + �i. For a 2 Atsi, the move h�; ai is enabled in hq; �i if (1) theinvariant Invi(q) holds ontinuously when we let � time units pass, (2) there isa transition (q; a; q0) in E whih is enabled in the state hq; � +�i, and (3) theinvariant Invi(q0) holds when the game enters loation q0. The move h�; ai leadsto the state hq0; �0i, where �0 is obtained from � +� by resetting all loks in�(q; a; q0).Formally, the timed automaton game A = (Q;C;Ats1;Ats2; E; �; �; Inv1;Inv2) indues the timed game struture [[A℄℄ = (S;Ats1;Ats2; �1; �2; Æ). Here,S = Q�K(C) and for eah state hq; �i 2 S, the set �i(hq; �i) is given by:�i(hq; �i) = fh�; ai 2Mi j 8�0 2 [0; �℄ : �+�0 j= Invi(q) ^(a 6= ? ) 9q0 2 Q : ((q; a; q0) 2 E ^ (�+�) j= �(q; a; q0) ^(�+�)[�(q; a; q0) := 0℄ j= Invi(q0)))g [ fh0;?ig:The destination funtion Æ is de�ned by Æ(hq; �i; h�;?i) = hq; � + �i, and fora 2 Ats1 [ Ats2, by Æ(hq; �i; h�; ai) = hq0; �0i, where q0 is the unique loationsuh that (q; a; q0) 2 E and (�+�) j= �(q; a; q0), and �0 = (�+�)[�(q; a; q0) := 0℄.A state, a run, and a player i strategy of A are, respetively, a state, a run, anda player i strategy of [[A℄℄. We say that player i wins the goal � � S! from states 2 S in A if he wins � from s in [[A℄℄. We say that s is well-formed in A if it isso in [[A℄℄.Regions. Timed automaton games, similarly to timed automata, an be analyzedwith the help of an equivalene relation of �nite index on the set of states. Givena timed automaton game A, for eah lok x 2 C, let x be the largest onstantin the guards and invariants of A that involve x, where x = 0 if x does notour in any guard or invariant of A. Two lok valuations �1; �2 are lokequivalent if (1) for all x 2 C, either b�1(x) = b�2(x) or both b�1(x) > xand b�2(x) > x, (2) the ordering of the frational parts of the lok variablesin the set fzg [ fx 2 C j �1(x) < xg is the same in �1 and �2, and (3) for allx 2 (fzg [ fy 2 C j �1(y) < yg), the lok value �1(x) is an integer if and onlyif �2(x) is an integer. A lok region is a lok equivalene lass, and we write[�℄ for the lok equivalene lass of the lok valuation �. Two states hq1; �1iand hq2; �2i are region equivalent, written hq1; �1i � hq2; �2i, if (1) q1 = q2 and(2) �1 and �2 are lok equivalent. A region is an equivalene lass with respetto �; we write [s℄ for the region ontaining state s.4 Strutural Properties of Winning StrategiesWe now onsider struture theorems for strategies in timed automaton games.Throughout this setion, a1 is an ation for player 1, and a2 one for player 2.For a loation p in a timed automaton game A with lok set C, we let 3p =



3fhp; �i j � 2 K(C)g and 2p = 2fhp; �i j � 2 K(C)g.4 Moreover, 0 denotes thevaluation that assigns 0 to all loks in C.Determinay. A lass C of timed game strutures is strongly determined (re-spetively, weakly determined) for a lass F of goals if the following holds forevery struture G 2 C, every goal � 2 F , all well-formed states s, and eahplayer i 2 f1; 2g: if player i annot win WC i(�) from s, then there exists aplayer �i strategy ��i 2 ��i suh that for all player i strategies �i 2 �i, wehave Outomes(s; �1; �2) \WC�i(:�) 6= ; (respetively, Outomes(s; �1; �2) 6�WC i(�)). Note that this ondition is trivially false for non-well-formed states,beause one player annot win the goal S!, and the other player surely annotwin the goal ;. We let the lass of reahability goals be all goals of the form 3T .Theorem 1 The timed automaton games (and hene, the timed game stru-tures) are neither weakly, nor strongly, determined for the lass of reahabilitygoals.The following example exhibits a timed automaton game and a goal � suhthat player 1 annot win h1i�, but player 2 does not have a strategy to enforeWC 2(:�) (strong) or :WC 1(�) (weak), even if player 2 an use the nondeter-ministi hoies to his advantage.Example 1 Consider Figure 1(a). It is lear that player 1 does not have awinning strategy for WC 1(3q) from state hp;0i. To prove that this game is notstrongly determined, we show that no matter whih strategy �2 is played byplayer 2, player 1 always has a strategy �1 suh that Outomes(hp;0i; �1; �2) \WC 2(:3q) = ;. If �2 proposes a delay �2 > 1, then �1 plays the move h�1; a1ifor �1 = 1+ (�2 � 1)=2; if �2 proposes a delay �2 � 1, then �1 proposes moveh1;?i. Let �r 2 Outomes(hp;0i; �1; �2). Then, either �r ontains a player 2 movewith a positive delay, in whih ase q is reahed, or player 2 plays h0;?i movesforever and is not blameless, i.e., �r =2 Blameless2. In either ase, �r =2WC 2(:3q).In a similar way, one shows that the game is not weakly determined.Memoryless Strategies. Memoryless strategies are strategies that only dependon the last state of a run. Formally, a strategy � 2 � is memoryless if, for all�r; �r0 2 FRuns, we have that last(�r) = last(�r0) implies �(�r) = �(�r0). For i 2 f1; 2g,we often treat a memoryless strategy �i for player i as a funtion in S 7!Mi bywriting �i(last(�r)) instead of �i(�r). In the untimed ase, memoryless strategiesare suÆient to win safety and reahability games. In timed games, memorylessstrategies suÆe to win safety games, i.e., goals of the form WC i(2T ); however,winning strategies in reahability games (goals of the formWC i(3T )) in generaldo require memory.4 We use the standard LTL operators 3T and 2T to denote, respetively, the set oftraes that eventually reah some state in T , and the set of traes that always stayin T [MP91℄.



a1p qx > 1a2; x > 1; x := 0(a) Undetermined. x = 0 a1a1x = 0 Inv1 : x � 0 qp (b) Memory needed.
a1a2; x := 00 < x < 1p q() Surprise needed.Fig. 1. Games with winning ondition WC 1(3q), where a1 2 Ats1 and a2 2 Ats2.Theorem 21. For every well-formed state s of a timed game struture G, and every setT of states of G, if player i has a strategy to win WCi(2T ) from s, thenplayer i has a memoryless strategy for winning WCi(2T ) from s.2. There exists a timed automaton game A, a state s of A, and a set T ofstates of A suh that player i has a strategy to win WCi(3T ) from s, but nomemoryless strategy for winning WCi(3T ) from s.The following example proves part 2.Example 2 Consider the game in Figure 1(b). Player 1 has a winning strat-egy for WC 1(3q) from hp;0i, but not a memoryless one: to win, he needs toremember whether q has been visited already. If so, then he has to let time pass,and if not, a visit to q has to be made before letting time pass. Let � : S 7!M1be a memoryless strategy for player 1. It is easy to see that, if �(hp;0i) = h�;?i,then q will never be reahed, and otherwise, if �(hp;0i) = h0; a1i, then time willnot progress, while � does not ensure that player 1 is blameless. Hene, player1 annot win WC 1(3q) with a memoryless strategy.No-Surprise Strategies. A no-surprise strategy is a strategy that plays only twokinds of moves: either time steps (ation ?, with any delay), or ations withdelay 0. Formally, a strategy � 2 � is no-surprise if for all �r 2 FRuns either�(�r) = h0; ai with a 2 Ats, or �(�r) = h�;?i with � 2 IR�0. The followingtheorem shows that there are ases where surprise is neessary to win, evenwhen the goal is a reahability property, and player 2 is restrited to no-surprisestrategies as well.Theorem 3 There is a timed automaton game A, a state s of A, and a goal� suh that player 1 has a strategy to win WC1(�) from s, but there is no no-surprise strategy �1 2 �1 suh that for all no-surprise strategies �2 2 �2, wehave Outomes(s; �1; �2) �WC1(�).The proof is given by the following example.Example 3 Consider Figure 1(). Player 1 has a strategy to win WC 1(3q)from state hp;0i. For instane, he an play �1(�r) = h 12n+1 ; a1i if �r ontains n visits



to p and it ends in hp; �i with �(x) + 12n+1 < 1; and play �1(�r) = h1;?i in allother ases. Let �2 2 �2 and �r be a run in Outomes(hp;0i; �1; �2). If one of hismoves h 12n ; a1i is taken in �r, then player 1 learly wins, that is, �r 2 WC 1(3q).Otherwise, if none of these moves is ever arried out in �r, then player 1 isblameless and, as P1i=1 12i = 1, time does not diverge, so �r 2WC 1(3q) as well.However, player 1 does not have a no-surprise strategy to win WC 1(3q)from hp;0i. All no-surprise player-1 strategies �1 lose against player 2 playingthe no-surprise strategy �2 de�ned by �2(�r) = h0; a2i if �r = �r0hm1;m2is andm1 = h�;?i; and �2(�r) = h1;?i otherwise. This is beause, in order to enablea1, player 1 has to inrease x by taking some move h�;?i �rst. However, imme-diately after he does so, player 2 plays h0; a2i, thus resetting x. As a result, q isnever reahed, and both players play in�nitely often, so �1 annot ensure thatplayer 1 is blameless.Move Independene. A strategy � 2 � is move independent if, for all �r; �r0 2FRuns, we have that states(�r) = states(�r0) implies �(�r) = �(�r0). We show thatmove independent strategies suÆe to win a timed automaton game. Note that,for !-regular goals, this result follows immediately from the strategies derivedfrom the �-alulus solution for these games; see Setion 5.Proposition 1. Let A be a timed automaton game and s be a state of A. Forevery goal �, if player i has a strategy to win WCi(�) from s, then player i hasa move independent strategy for winning WCi(�) from s.Persistene. Persistent strategies are strategies that stik with their hoies, evenif they are interrupted by a move h�;?i (or another move with the same e�et)of the opponent. Formally, a persistent player 1 strategy is a strategy � 2 �1 suhthat for all �nite runs �r = �r0shm1;m2is0 with m1 = h�1; a1i, m2 = h�2; a2i, ands0 = Æ(s; h�2;?i), we have (1) if �2 < �1, then �(�r) = h�1��2; a1i, and (2) ifa1 6= ? and �1 = �2, then �(�r) = h0; a1i. The persistent player 2 strategies arede�ned symmetrially. Consider a �nite run �r = �r0shm1;m2is0. Assume that, in�r0s, player 1 likes to play the move �(�r0s) = h�1; a1i, but is interrupted beauseplayer 2 plays a move h�2;?i with �2 � �1. After h�2; a2i has been taken,a persistent strategy requires player 1 to play the portion of his previous moveh�1; a1i whih was not arried out; that is, player 1 must play h�1 � �2; a1i,unless �1 = �2 and a1 = ?. Persistent strategies suÆe to win timed games.Theorem 4 Let G be a timed game struture and s be a state of G. For everygoal �, if player i has a strategy to win WCi(�) from s, then player i has apersistent strategy for winning WCi(�) from s.5 Solving Timed Automaton GamesIn this setion, we show how timed automata games an be solved with respetto !-regular goals via the equational �-alulus. We onsider a goal that is spe-i�ed by an parity automaton over the set of loations of the timed automatongame, and based on this, we onstrut another parity automaton that enodes



the winning ondition. Finally, from the automaton that enodes the winningondition we obtain a �-alulus formula that, evaluated over the timed automa-ton game, de�nes the winning states of the game. Sine the �-alulus formulapreserves the regions of the timed automaton game, it provides an algorithm forsolving timed automaton games.5.1 Representing Goals and Winning ConditionsConsider a timed automaton game A with loations Q and loks C. A goal� � (Q � K(C))! of A is a loation goal if it is independent of lok val-uations; that is, if hq0; �0ihq1; �1i � � � 2 �, then for all �00, �01, : : :, we havehq0; �00ihq1; �01i � � � 2 �. Sine loation goals depend only on the sequene of loa-tions, we view, with abuse of notation, a loation goal to be a subset of Q!. Weonsider in this setion loation goals � that are !-regular subsets of Q! [Tho90℄.Suh loation goals an be spei�ed by means of deterministi parity automataover the alphabet Q [EJ91℄. A parity automaton (also known as Rabin-hain au-tomaton) of order k over the alphabet � is a tuple H = (P; P0; �; �; `; 
), whereP is the set of loations of the automaton, P0 � P is the set of initial loations,� : P 7! 2P is the transition relation, ` : P 7! � assigns to eah loation p 2 Pa symbol `(p) of the alphabet �, and 
 : P 7! f0; : : : ; 2k � 1g assigns to eahloation p 2 P an index 
(p).An exeution of H from a soure loation p0 2 P is an in�nite sequenep0; p1; p2; : : : of automaton loations suh that pj+1 2 �(pj) for all j � 0; ifp0 2 P0, then the exeution is initialized. The exeution � = p0; p1; p2; : : : gener-ates the trae `(�) = `(p0); `(p1); `(p2); : : : of symbols of �. Given an exeution� = p0; p1; p2; : : :, we denote by MaxIndex (
;�) the largest j 2 f0; : : : ; 2k � 1gsuh that 
(pi) = j for in�nitely many i. The exeution � is aepting ifMaxIndex (
;�) is even. The language L(H) is the set of traes � 2 �! suhthat H has an initialized aepting exeution � that generates �. The automa-ton H is deterministi and total if (1a) for all loations p1; p2 2 P0, if p1 6= p2,then `(p1) 6= `(p2); (1b) for all symbols � 2 �, there is a loation p 2 P0 suhthat `(p) = �; (2a) for all loations p1 2 P and p2; p3 2 �(p1), if p2 6= p3, then`(p2) 6= `(p3); (2b) for all loations p1 2 P and all symbols � 2 �, there is aloation p2 2 �(p1) suh that `(p2) = �. If H is deterministi and total, thenwe write �(p1; �) for the unique loation p2 with `(p2) = �. Deterministi andtotal parity automata suÆe for reognizing all !-regular languages [Tho90℄.We denote by jH j = jP j the size of the automaton, measured as its number ofloations, and by jH j� its order k.Let A be a timed automaton game with the set Q of loations, and let � bea goal that is spei�ed by means of a deterministi and total parity automatonH� = (P; P0; Q; �; `; 
) over the alphabet Q suh that L(H�) = �. The �rststep towards deriving a �-alulus formula for omputing the winning states ofA with respet to � represents the onditions td and Blameless1 as !-regularonditions. To this end, we onsider an enlarged state spae bS = S � ft; fg2,and an augmented transition relation bÆ : bS �M1 �M2 7! 2bS. Intuitively, inan augmented state hs; tik ; bli 2 bS, the omponent s 2 S is a state of the



original game struture [[A℄℄, tik is true if in the last transition the global lokz has rossed an integer boundary, and bl is true if player 1 is to blame for thelast transition. Preisely, we let hhq0; �0i; tik 0; bl 0i 2 bÆ(hhq; �i; tik ; bli;m1;m2)i� hq0; �0i 2 Æ(hq; �i;m1;m2), tik 0 = t i� there is n 2 IN suh that �(z) � n <�0(z), and bl 0 = t i� bl1(hq; �i;m1;m2; hq0; �0i). The set td orresponds to theruns along whih tik is true in�nitely often, and the set Blameless1 orrespondsto the runs along whih bl is true only �nitely often. One time divergene andblame are thus enoded, the winning ondition WC 1(�) an be spei�ed by aparity automaton HWC 1(�) with the alphabet b� = Q� ft; fg2 and languageL(HWC 1(�)) = 8<: hq0; tik0; bl0i;hq1; tik1; bl1i;: : : ���� (q0; q1; : : : 2 L(H�) ^ 8k 2 N : 9j � k : tik j)_9k 2 N:8j � k : (:bl j ^ :tik j) 9=;(1)The automaton HWC 1(�) = ( bP ; bP0; b�; b� ; b̀; b
) is derived from the automa-ton H� as follows. Let k be the order of H�. We have bP = P � ft; fg2 �f0; : : : ; 2k � 1g; intuitively, a loation hp; tik ; bl ; hi 2 bP is omposed of a lo-ation p 2 P , of two boolean symbols representing the value of tik and blat the loation, and of an integer h that keeps trak of the maximum in-dex of the loations of H� that have been visited between two ourrenes oftik = t. For hp; tik ; bl ; hi 2 bP , we de�ne b̀(hp; tik ; bl ; hi) = h`(p); tik ; bli,and we let hp; tik ; bl ; hi 2 bP0 i� p 2 P0. For all p 2 P , bl 2 ft; fg, andh 2 f0; : : : ; 2k � 1g, we have hp0; tik 0; bl 0; h0i 2 b� (hp; f; bl ; hi) i� p0 2 �(p)and h0 = maxfh;
(p0)g, and we have hp0; tik 0; bl 0; h0i 2 b� (hp;t; bl ; hi) i�p0 2 �(p) and h0 = 
(p0). The index funtion b
 : bP 7! f0; : : : ; 2k + 1gis de�ned, for all p 2 P , all bl 2 ft; fg, and all h 2 f0; : : : ; 2k � 1g, byb
(hp; f; f; hi) = 0, b
(hp; f;t; hi) = 1, and b
(hp;t; bl ; hi) = h+2. For all exeu-tions b� = hp0; tik 0; bl0; h0i; hp1; tik 1; bl1; h1i; hp2; tik2; bl2; h2i; : : : ofHWC 1(�),let � = p0; p1; p2; : : : be the orresponding exeution in H�. We an show that(a) if there are in�nitely many j suh that tik j = t, then MaxIndex ( b
;�) =MaxIndex (
;�)+2; (b) if there is k 2 IN suh that tik j = bl j = f for all j � k,then MaxIndex ( b
;�) = 0; and () in all other ases (i.e., when tik j holds foronly �nitely many values of j, but bl j holds for in�nitely many values of j), wehave MaxIndex ( b
;�) = 1. Together, these fats lead to (1).Lemma 1 Given H�, we an onstrut a deterministi and total parity au-tomaton HWC1(�) satisfying (1) suh that jHWC1(�)j = 4 � jH�j � jH�j� andjHWC1(�)j� = jH�j� + 1.5.2 A �-alulus Formula for the Winning StatesFor all hp; tik ; bl ; hi 2 bP , we let b̀Q(hp; tik ; bl ; hi) = `(p) 2 Q,b̀t(hp; tik ; bl ; hi) = tik , and b̀b(hp; tik ; bl ; hi) = bl . The �xpoint formula  �that solves the game with goal � is onstruted as follows [dAHM01a℄. Theformula  � is omposed of bloks B0; : : : ;B2k+1, where B0 is the innermost



blok and B2k+1 the outermost blok. The formula uses the set of variablesfxbpj j bp 2 bP; j 2 f0; : : : ; 2k + 1gg [ fyg, whih take values in 2S, where S is theset of states of the game struture A. The blok B0 is a �-blok whih onsistsof all equations of the formxbp0 = (b̀Q(bp)�K(C)) \ CPre1 _bp02�(bp)xbp0b
(bp) � b̀t(bp0)� b̀b(bp0)!for bp 2 bP , where C is the set of loks of A. For 0 < j < 2k + 1, the blok Bjis a �-blok if j is odd, and a �-blok if j is even; in either ase it onsists ofthe set of equations fxbpj = xbpj�1 j bp 2 bPg. The blok B2k+1 onsists of the set ofequations fxbp2k+1 = xbp2k j bp 2 bPg[ fy = Wbp2 bP0 xbp2k+1g. The output variable is y.The operator CPre1 : bS 7! S is the ontrollable predeessor operator, de�nedby 9m1 2 �1(s) :8m2 2 �2(s) : eÆ(s;m1;m2) 2 X . Intuitively, for s 2 S andbX � bS, we have that s 2 CPre1( bX) if player 1 an fore the augmented game tobX in one move. As an example, onsider the set bX = (X1 �ffg � ftg) [ (X2 �ffg � ffg) for some X � S. Then, s 2 CPre1( bX) if player 1 has a move suhthat, whatever the move played by player 2: either (a) the game proeeds to X1,the global lok z does not advane beyond an integer boundary (tik = f), andplayer 1 is blamed (bl = t); or (b) the game proeeds to X2, the global lok zdoes not advane beyond an integer boundary, and player 1 is not blamed. Theimplementation and properties of operator CPre1 are disussed below. Note thatthe formula  � depends only on H�, but not on the timed game struture overwhih it is evaluated (exept trivially via the produt withK(C), whih is simplythe set of all lok valuations). Denote by [[y℄℄ �A � S the �xpoint valuation ofy over the timed game struture [[A℄℄. Lemma 2 enables the omputation of thewinning states of the game with respet to player 1; the winning states withrespet to player 2 an be omputed in a symmetrial fashion.Lemma 2 We have h1i� = [[y℄℄ �A .5.3 The Controllable Predeessor OperatorThe operator CPre1 an be omputed as follows. For X � bS, write X = (Xt �ftg)[(Xf�ffg), for Xt; Xf � S�ft; fg. Intuitively, Xt (resp. Xf) representsthe portion of X that orresponds to the ase where bl is t (resp. f). Then,s 2 CPre1(X) if and only if:9 h�1; a1i 2 �1(s) :8 h�2; a2i 2 �2(s) :��2 � �1 =) �Æ(s; h�2; a2i); tik(s;�2)� 2 Xf�^��Æ(s; h�1; a1i); tik(s;�1)� 2 Xt _ 8 h�2; a2i 2 �2(s) : �2 < �1�;where tik (hq; �i; �) is t i� �(z) � n < �(z) +�, for some integer n. In words,the above formula states that there is a player 1 ation that, played with delay



�1, leads to Xt; moreover, all ations of player 2, if played with delay up to�1, lead to Xf. The following lemma states that the ontrollable predeessoroperator preserves regions for timed automaton games.Lemma 3 For n � 0, onsider X = Snj=1(Xj � ftik jg � fbljg), where for1 � j � n, the set Xj is a region, and tik j ; blj 2 ft; fg. Then, CPre1(X) is aunion of regions.5.4 Putting It All TogetherFrom the onstrutions of the previous subsetions, we obtain the following de-idability result for timed automaton games with !-regular loation goals.Theorem 5 Consider a timed automaton game A with the set Q of loations,and a parity automaton H� that spei�es a loation goal � � Q!. Let C be theset of loks of A, let m = jCj, and let  = maxfx j x 2 Cg. Then, the set ofwinning states h1i� an be omputed in time O((jQj �m! � 2m � (2+ 1)m � jH�j �jH�j�)(jH�j�+1)).Corollary 1. The problem of solving a timed automaton game for a loationgoal spei�ed by a parity automaton is EXPTIME-omplete.EXPTIME-hardness follows from the EXPTIME-hardness for alternating reah-ability on timed automata [HK99℄. Membership in EXPTIME is shown by theexponential-time algorithm outlined above. The algorithm for solving timed au-tomaton games an also be used to simultaneously onstrut a winning strategyfor player 1, as in [dAHM01b℄. The winning strategies thus onstruted havethe following �nitary struture. Two �nite runs �r = s0; hm11;m21i; s1; : : : ; sk and�r0 = s00; hm011 ;m021 i; s01; : : : ; s0k of the same length are region equivalent, written�r � �r0, if for all 0 � j � k, we have [sj ℄ = [s0j ℄. A strategy is a region strat-egy if, for region equivalent �nite runs, it presribes moves to the same region.Formally, a strategy � 2 � is a region strategy if for all �r; �r0 2 FRuns, we havethat �r � �r0 implies Æ(last(�r); �(�r)) � Æ(last(�r); �(�r0)). Sine the CPre1 opera-tor preserves regions, we an show that the strategy onstruted by the abovealgorithm does not distinguish between region equivalent runs, and hene, theonstruted strategy is a region strategy.Theorem 6 Let A be a timed automaton game and s a state of A. For every!-regular loation goal �, if player i has a strategy to win WCi(�) from s, thenplayer i has a region strategy for winning WCi(�) from s.Referenes[AD94℄ R. Alur and D.L. Dill. A theory of timed automata. Theor. Comp. Si.,126:183{235, 1994.[AdAHM99℄ R. Alur, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Automatingmodular veri�ation. In Conurreny Theory, Let. Notes in Comp. Si. 1664, pages82{97. Springer, 1999.
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