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its interfae to the outside world (1) a display showing the name of the ationthat is urrently arried out by the proess, and (2) some buttons via whihthe observer may attempt to inuene the exeution of the proess. A proessautonomously hooses an exeution path that is onsistent with its position inthe labeled transition system ontained in the blak box. Trae semantis, forinstane, is explained in [Gla01℄ with the trae mahine, depited in Figure 1on the left. As one an see, this mahine has no buttons at all. A slightly less
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...Fig. 1. The trae mahine (left) and the failure trae mahine (right).trivial example is the failure trae mahine, depited in Figure 1 on the right,whih, apart from the display, ontains as its interfae to the outside world aswith for eah observable ation. By means of these swithes, an observer maydetermine whih ations are free and whih are bloked. This situation may behanged at any time during a run of a proess. The display beomes empty if(and only if) a proess annot proeed due to the irumstane that all ationsare bloked. If, in suh a situation, the observer hanges her mind and allowsone of the ations the proess is ready to perform, an ation will beome visibleagain in the display. Figure 2 gives an example of two labeled transition sys-
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Fig. 2. Trae equivalent but not failure trae equivalent.tems that an be distinguished by the failure trae mahine but not by the traemahine. Sine both transition systems have the same traes (", a, ab, a, af ,ad and ae), no di�erene an be observed with the trae mahine. However,via the failure trae mahine an observer an see a di�erene by �rst bloking2



ations  and f , and only unbloking ation  if the display beomes empty. Inthis senario an observer of the left system may see an e, whereas in the rightsystem the observer may see a d, but no e. We refer to [Gla01℄ for an overviewof testing senarios for labeled transition systems.Probabilisti automata have beome a popular mathematial framework forthe spei�ation and analysis of probabilisti systems. They have been devel-oped by Segala [Seg95b,SL95,Seg95a℄ and serve the purpose of modeling andanalyzing asynhronous, onurrent systems with disrete probabilisti hoie ina formal and preise way. We refer to [Sto02b℄ for an introdution to probabilistiautomata, and a omparison with related models. In this paper, we propose andstudy a simple and intuitive testing senario for probabilisti automata: we justadd a reset button to the trae mahine. The resulting trae distribution mahineis depited in Figure 3. By resetting the mahine it returns to its initial state and
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resetFig. 3. The trae distribution mahine.starts again from srath. In the non-probabilisti ase the presene of a resetbutton does not make a di�erene1, but in the probabilisti ase it does: we anobserve probabilisti behavior by repeating experiments and applying methodsfrom statistis. Consider the two probabilisti automata in Figure 4. Here the
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bFig. 4. Probabilisti automata representing a fair and an unfair oin.ars indiate probabilisti hoie (as opposed to the nondeterministi hoie inFigure 2), and probabilities are indiated next to the edges. These automatarepresent a fair and an unfair oin, respetively. We assume that the trae dis-tribution mahine has an \orale" at its disposal whih resolves the probabilisti1 For this reason a reset button does not our in the testing senarios of [Gla01℄. Anobvious alternative to the reset button would be a on/o� button.3



hoies aording to the probability distributions spei�ed in the automaton. Asa result, an observer an distinguish the two systems of Figure 4 by repeatedlyrunning the mahine until the display beomes empty and then restart it usingthe reset button. For the left proess the number of ourrenes of trae ab willapproximately equal the number of ourrenes of trae a, whereas for the rightproess the ratio of the ourrene of the two traes will onverge to 1 : 2. El-ementary methods from statistis allow one to ome up with preise de�nitionsof distinguishing tests.The situation beomes more interesting when both probabilisti and nonde-terministi hoies are present. Consider the probabilisti automaton in Figure5. If we repeatedly run the trae distribution mahine with this automaton in-
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b dFig. 5. The ombination of probabilisti and nondeterministi hoie.side, the ratio between the various traes does not need to onverge to a �xedvalue. However, if we run the mahine suÆiently often we will observe that aweighted sum of the number of ourrenes of traes a and ad will approxi-mately equal the number of ourrenes of traes ab. Restriting attention tothe ases where the left transition has been hosen, we observe 12#[a℄ � #[ab℄.Restriting attention to the ases where the right transition has been hosen,we observe 13#[ad℄ � #[ab℄. Sine in eah exeution either the left or the righttransition will be seleted, we have:12#[a℄ + 13#[ad℄ � #[ab℄:Even though our testing senario is simple, the ombination of nondeterminis-ti and probabilisti hoie makes it far from easy to haraterize the behav-ioral equivalene on probabilisti automata whih it indues. The main teh-nial ontribution of this paper is a proof that the equivalene (preorder) onprobabilisti automata indued by our testing senario oinides with the traedistribution equivalene (preorder) proposed by Segala [Seg95a℄. A result thatwe need to establish on the way is an Approximation Indution Priniple (AIP)(f. [BK86,BBK87℄) for probabilisti proesses. This priniple says that if two�nitely branhing proesses are equivalent up to any �nite depth, then they areequivalent.Being a �rst step, this paper limits itself to a simple lass of probabilistiproesses and to observers with limited apabilities. First of all, only sequential4



proesses are investigated: proesses apable of performing at most one ationat a time. Furthermore, we only study onrete proesses in whih no internalations our. Finally, observers an only interat with mahines in an extremelylimited way: apart from observing termination and the ourrene of ations, theonly way in whih they an inuene the ourse of events is via the reset button2.It will be interesting to extend our result to riher lasses of proesses and morepowerful observers, and to onsider for instane a probabilisti version of thefailure trae mahine desribed earlier in this introdution.Related work Several testing preorders and equivalenes for probabilisti pro-esses have been proposed in the literature [Chr90,Seg96,GN98,CDSY99,JY01℄.All these papers study testing relations (i.e. testing equivalenes or preorders)in the style of De Niola and Hennesy [DNH84℄. That is, they de�ne a test as a(probabilisti) proess that interats with a system via shared ations and thatreports suess or failure in some way, for instane via suess states or suessations. When a test is run on a system, the probability on suess is omputed,or if nondeterminism is present in either the test or the system, a set of these. Byomparing the probabilities on suess, one an say whether or not two systemsare in the testing equivalene or preorder. For instane, two systems A and Bare in the testing preorder of [JY01℄ if and only if for all tests T the maximalprobability on suess in A k T is less than or equal to the maximal probabilityon suess in B k T . The di�erent testing relations in the mentioned papers ariseby onsidering di�erent kinds of probabilisti systems, by studying tests withdi�erent power (purely nondeterministi tests, �nite trees or any probabilistiproess) and by using di�erent ways to ompare two systems under test (e.g. maytesting versus must testing). All of the mentioned papers provides alternativeharaterizations of their testing relation in terms of trae{based relations.Thus, these testing relations are button pushing experiments in the sensethat a test interats with a system via synhronization on shared ations. How-ever, in our opinion these relations are not entirely observational, beause it isnot desribed how the probability on suess an be observed. In our view, this isan undesirable situation: in the end, the behavior of an automaton is what an ex-ternal observer pereives. Therefore, we believe that any behavioral equivaleneshould either be haraterized via some plausible testing senario, or be stritly�ner than suh an equivalene and be justi�ed via omputational arguments.The only other paper ontaining a onvining testing senario for probabilis-ti systems is by Larsen & Skou [LS91℄. They de�ne a notion of tests for reativeprobabilisti proesses, that is, proesses in whih all outgoing transitions of astate have di�erent labels. Furthermore, the observer is allowed to make arbitrarymany opies of any state. For those tests, a fully observable haraterization ofprobabilisti bisimulation based on hypothesis testing is given. (We note thatopies of tests an both serve to disover the branhing struture of a system {2 This ensures that our testing senario truly is a \button pushing experiment" in thesense of Milner [Mil80℄! 5



as in the nondeterministi ase { and to repeat a ertain experiment a numberof times.)More preisely, eah test T in [LS91℄ gives rise to a set of observations OT .Tests allow ertain properties to be tested with arbitrary on�dene � 2 [0; 1℄,the so{alled level of signi�ane. More preisely, a property � is said to betestable if for every level of signi�ane �, there is a test T and a partition ofobservations OT into (E�; OT nE�) suh that (1) if � holds in a state s and T isrun in s, then it is likely that we observe an element from E�, i.e. P�[E�℄ � 1��and (2) if � does not hold, then the probability to observe an element in E� issmall: P:�[E�℄ � �. Thus, by heking whether the outome of the test is in E�or not, we an �nd out whether s satis�es � and probability that the judgmentis wrong is less than �. Using the terminology from hypothesis testing, � is thenull hypothesis and E� is the ritial setion.Then is it shown that two states in a system that satis�es the minimal deriva-tion assumption are probabilistially bisimilar if and only if they satisfy exatlythe same testable properties. Here the minimal derivation assumption requiresthat any probability ourring in the system is an integer multiple of some value". Thus, although not expliitly phrased in these terms, one an say Larsen &Skou present a button pushing senario for probabilisti proesses.Our work di�ers from the approah in [LS91℄ in the following aspets.{ We present our results in the more general PA model, whereas [LS91℄ onsid-ers the reative model. As a onsequene, the omposition of a system anda test in [LS91℄ is purely probabilisti, that is, it does not ontain nonde-terministi hoies, and theory from lassial hypothesis testing applies. Inontrast to this, the probabilisti automata that we onsider do ontain non-deterministi hoies. To distinguish between likely and unlikely outomes inthese automata, we have to extend (some parts of) hypothesis testing withnondeterminism, whih is tehnially quite involved.{ The main result of this paper, whih is the haraterization of trae distri-bution inlusion as a testing senario, is established for all �nitely branhingsystems, whih is muh more general than the minimal derivation assump-tion needed for the results in [LS91℄.{ The possibility in the testing senario of Larsen & Skou to make opies ofproesses in any state (at any moment), is justi�ed for instane in the aseof a sequential system where one an make ore dumps at any time. But formany distributed systems, it is not possible to make opies in any but theinitial state. Therefore, it makes sense to study senarios in whih opyingis not possible, as done in this paper.Overview Even though readers may not expet this after our informal introdu-tion, the rest of this paper is atually quite tehnial. We start in Setion 2 withsome mathematial preliminaries onerning funtions, sequenes and probabil-ity theory. In Setion 3 we reall the de�nitions of probabilisti automata andtheir behavior. Setion 4 is entirely devoted to the proof of the AIP for proba-bilisti proesses. Setion 5, �nally, presents the haraterization of the testing6



preorder indued by the trae distribution mahine as trae distribution inlu-sion.2 PreliminariesFuntions If f is a funtion, then we denote the domain of f by Dom(f).The range of f , notation Ran(f), is the set ff(u) j u 2 Ug. If U is a set,then the restrition of f to U , notation f � U , is the funtion g with Dom(g) =Dom(f)\U satisfying g(u) = f(u) for eah u 2 Dom(g). We say that a funtionf is a subfuntion of a funtion g, and write f � g, if Dom(f) � Dom(g) andf = g � Dom(f). A funtion f is alled �nite if Dom(f) is �nite.Sequenes Let U be any set. A sequene over U is a funtion � from a downwardlosed subset of the natural numbers to U . So the domain of a sequene is eitherthe set N of natural numbers, or of the form f0; : : : ; kg, for some k 2 N, or theempty set. In the �rst ase we say that the sequene is in�nite, otherwise wesay it is �nite. The sets of �nite and in�nite sequenes over U are denoted byU� and U1, respetively. We will sometimes write �n rather than �(n). Thesymbol " denotes the empty sequene, and the sequene ontaining one elementu 2 U is denoted by u. Conatenation of a �nite sequene with a �nite or in�nitesequene is denoted by juutaposition. We say that a sequene � is a pre�x ofa sequene �, denoted by �v�, if � = � � Dom(�). Thus �v� if either � = �,or � is �nite and � = ��0 for some sequene �0. If � is a nonempty sequenethen �rst(�) denotes the �rst element of � and, if � is also �nite, then last(�)denotes the last element of �. Finally, length(�) denotes the length of a �nitesequene �. A subsequene of an in�nite sequene � is an in�nite sequene � thatis obtained by removing �nitely or in�nitely many elements from �. Formally, �is a subsequene of � if there is an index funtion, that is a funtion � : N ! Nsuh that (a) � is stritly monotone (i.e., n < m implies �(n) < �(m)), and (b)� = � Æ �.An elementary (but fundamental) result from Analysis is the following the-orem from Bolzano{Weierstra�.Theorem 1 (Bolzano{Weierstra�). Every bounded in�nite sequene in Rnhas a onvergent subsequene.Let f0, f1, f2; : : : be an in�nite sequene of funtions in U ! [0; 1℄, where Uis a �nite set. Then this sequene an be seen as a sequene over [0; 1℄n, wheren is the ardinality of U . Applying the Bolzano{Weierstra� Theorem to f0, f1,f2 : : : yields that this sequene has a onvergent subsequene, i.e. there existsan index funtion � suh that f�(0), f�(1), f�(2); : : : has a limit (in [0; 1℄n).Probability Theory We reall a few basi notions from probability theory andintrodue some notation. 7



De�nition 1. A probability distribution over a set U is a funtion � : U ![0; 1℄ suh that Pu2U �(u) = 1. We de�ne the support of � by supp(�) = fu 2U j �(u) > 0g. It follows straightforwardly from the de�nitions that this isa ountable set. We denote the set of all probability distributions over U byDistr(U).We denote a probability distribution � on a ountable domain by enumeratingit as a set of pairs. So, if Dom(�) = fu1; u2 : : :g then denote � by fu1 7!�(u1); u2 7! �(u2) : : :g. If the domain of � is known, then we often leave outelements of probability 0. For instane, the probability distribution assigningprobability 1 to an element u 2 U is denoted by fu 7! 1g, irrespetive of U .Suh distribution is alled the Dira distribution over u.De�nition 2. A probability spae is a triple (
;F ;P), where{ 
 is a set, alled the sample spae,{ F � 2
 is �-�eld, i.e. a olletion of subsets of 
 whih is losed underountable3 union and omplement, and whih ontains 
,{ P : F ! [0; 1℄ is a probability measure on F , whih means that P[
℄ = 1and for any ountable olletion fCigi of pairwise disjoint subsets in F wehave P[[i Ci℄ =PiP[Ci℄.3 Probabilisti AutomataNow, we reall the notion of a probabilisti automaton from Segala and Lynh[Seg95a,SL95℄. Basially, a probabilisti automaton is a non-probabilisti au-tomaton with the only di�erene that, rather than a single state, the target ofa transition is a probability distribution over next states. We onsider systemswith only external ations, taken from a given, �nite set At . For tehnial rea-sons, we assume that At ontains a speial element Æ, referred to as the haltingation.De�nition 3. A probabilisti automaton (PA) is a triple A = (S; s0; �) with{ S a set of states,{ s0 2 S the initial state, and{ � � S �At �Distr(S) a transition relation.We write s a! � for (s; a; �) 2 � and sa;� t if s a�! � and �(t) > 0. We refer tothe omponents of A as SA; s0A; �A.For the remainder of this setion, we �x a PA A = (S; s0; �) and assumethat � ontains no transition labeled with Æ.De�nition 4. A PA A is �nitely branhing if for eah state s, the set f(a; �; t) jsa;� tg is �nite.3 In our terminology, ountable objets inlude �nite ones.8



Thus, eah state in a �nitely branhing PA has �nitely many outgoing tran-sitions and the target distribution of eah transition has a �nite support. Asin the non-probabilisti ase, an exeution of A is obtained by resolving thenondeterministi hoies in A. This hoie resolution is desribed by an adver-sary, a funtion whih in eah state of the system determines the next transitionto be taken. Adversaries an be randomized, i.e. make hoies probabilistially,history-dependent, i.e. make hoies depending on on the path leading to the ur-rent state, and partial, i.e. they may hoose to halt the exeution at any pointin time. Sine we want adversaries to produe in�nite sequenes only, even whenthe exeution is halted, we de�ne adversaries of a PA via its halting extention.De�nition 5. A path of A is an alternating, �nite or in�nite sequene� = s0a1�1s1a2�2s2 : : :of states, ations, and distributions over states suh that (1) � starts with the ini-tial state,4 i.e. s0 = s0, (2) if � is �nite, it ends with a state, (3) siai+1;�i+1 si+1,for eah non�nal i. We set the length of �, notation j�j, to the number of a-tions ourring in it and denote the set of all �nite paths of A by Path�(A). Forn 2 N [f1g, the set of all paths of A of length n by Pathn(A). We de�ne theassoiated trae of �, notation trae(�), by trae(�) = a1a2a3 : : :.De�nition 6. The halting extension of A is the PA ÆA = (S [ f?g; s0; �0),where �0 is the least relation suh that1. s Æ�!ÆA f?7! 1g,2. s a�!A � =) s a�!ÆA (� [ f?7! 0g).Here we assume that ? is fresh. The transitions with label Æ are referred to ashalting transitions.De�nition 7. A (partial, randomized, history-dependent) adversary E of A isa funtion E : Path�(ÆA)! Distr(At �Distr(SÆA))suh that, for eah �nite path �, if E(�)(a; �) > 0 then last(�) a�!ÆA �.We say that E is deterministi if, for eah �, E(�) is a Dira distribution.An adversary E halts on a path � if it extends � with the halting transition, i.e.,E(�)(Æ; f?7! 1g) = 1:For k 2 N, we say that the adversary E halts after k steps if it halts on all pathswith length greater than or equal to k. We denote by Adv(A; k) the set of alladversaries of A that halt after k steps and by Dadv(A; k) the set of deterministiadversaries in Adv(A; k). Finally, we all E �nite if E 2 Adv(A; k), for somek 2 N.4 Here we deviate from the standard de�nition, as we do not need paths starting fromnon-initial states. 9



The probabilisti behavior of an adversary is summarized by its assoiatedprobability spae. First we introdue the funtion QE , whih yields the proba-bility that E assigns to �nite paths.De�nition 8. Let E be an adversary of A. The funtion QE : Path�(ÆA) ![0; 1℄ is de�ned indutively byQE(s0) = 1;QE(�a�s) = QE(�) �E(�)(a; �) � �(s):De�nition 9. Let E be an adversary of A. The probability spae assoiated toE is the probability spae given by1. 
E = Path1(ÆA),2. FE is the smallest �-�eld that ontains the set fC� j � 2 Path�(ÆA)g, whereC� = f�0 2 
E j �v�0g,3. PE is the unique measure on FE suh that PE [C�℄ = QE(�), for all � 2Path�(ÆA).The fat that (
E ;FE ;PE) is a probability spae follows from standard measuretheory arguments, see for instane [Coh80℄. Note that 
E and FE do not dependon E but only on A, and that PE is fully determined by the funtion QE. For E 2Adv(A; k), PE is fully determined by QE � Pathk(A), i.e., the weight funtionrestrited to paths of length k.As for non-probabilisti automata, the visible behavior of A is obtained byremoving the non-visible elements (in our ase, the states) from an exeution(adversary). This yields a trae distribution of A, whih assigns a probability to(ertain) sets of traes.De�nition 10. The trae distribution H of an adversary E, denoted trd(E ),is the probability spae given by1. 
H = At1,2. FH is the smallest �-�eld that ontains the sets fC� j � 2 At�g, whereC� = f�0 2 
H j �v�0g,3. PH is the unique measure on FH suh that PH [X ℄ = PE [trae�1(X)℄.Standard measure theory arguments [Coh80℄ ensure again that that trd(E ) iswell-de�ned. Note that 
H and FH do not depend on A. This means that traedistributions are fully haraterized by their probability measure. The set of traedistributions of adversaries of A is denoted by trd(A). We write A �TD B iftrd(A) = trd(B) and A vTD B if trd(A) � trd(B). The set of trae distributionsof that arise from adversaries of A that halt after k steps is denoted trd(A; k).If trd(A; k) � trd(B; k) then we write A vkTD B.Lemma 1. Let X and Y be non-empty sets and f : X ! Distr(Y ) a funtion.If X is �nite then Xg:X!Y Yx2X f(x)(g(x)) = 1:10



Proof: By indution on #X = n. Let x0 2 X and write X1 = X n fx0g.{ If n = 1, then Pg:X!Y Qx2X f(x)(g(x)) = Py2Y f(x0)(y) = 1 beausef(x0) is a distribution funtion.{ Assume that the proposition holds for all X 0 with #X 0 = n and let #X =n+ 1. Then Xg:X!Y Yx2X f(x)(g(x)) =Xg:X!Y f(x0)(g(x0)) � Yx2X1 f(x)(g(x)) =Xg1:X1!Y Xy2Y f(x0)(y) � Yx2X1 f(x)(g(x)) =Xg1:X1!Y 1 � Yx2X1 f(x)(g(x)) = 1:� The following lemma shows that eah �nite adversary in a �nitely branhingPA an be written as a onvex ombination of deterministi adversaries.Lemma 2. Let k 2 N, let A be a �nitely branhing PA and let E be an adversaryin Adv(A; k).1. Then E an be written as a onvex ombination of deterministi adversariesin Dadv(A; k), i.e., there exists a probability distribution � over Dadv(A; k)suh that, for all �, a and �,E(�)(a; �) = XD2Dadv(A;k) �(D) �D(�)(a; �):2. If E = PD2Dadv(A;k) �(D) � D(�)(a; �) for some � 2 Distr(Dadv (A; k))then QE(�) = XD2Dadv(A;k) �(D) �QEi(�):Proof:1. First, observe that the set Dadv (A; k) is �nite, beause A is �nitely branh-ing.The idea in the proof is as follows. Let D 2 Dadv (A; k) be an adversary suhthat D(�)(a; �) = 1 =) E(�)(a; �) > 0; for all � (*)Then D an be seen as an adversary within E: among all the steps that Eshedules with a positive probability, D shedules one with probability one.11



Now, multiply all the probabilities E(�)(a; �) that E assigns to steps (a; �)taken in D, i.e. steps with D(�)(a; �) = 1. This yields a value pD and weshow that E an be obtained by seleting the adversary D with probabilitypD = �(D). Furthermore, note that pD = 0 if D does not meet (*). Hene,de�ne � by �(D) = Y�2Path�(A)E(�)(D(�));where, as before, we write D(�) = (a; �) for D(�)(a; �) = 1. Moreover, writeD for Dadv(A; k) and P for Path�(A). Then � 2 Distr(()DadvA; k) beauseXD2D �(D) = XD2D Y�2P E(�)(D(�)) = 1:Sine D is �nite, the last step is justi�ed by Lemma 1. For the same reasonwe have for all �, a, � thatXD2D �(D) �D(�)(a; �) =XD2D Y�2P E(�)(D(�)) �D(�)(a; �) =XD2D;D(�)=(a;�) Y�2P E(�)(a; �) � 1 =E(�)(a; �):2. By indution on the length of �.{ If � = s0 has length 0, thenQE(s0) = 1 =PD2D �(D) =PD2D �(D) �QD(s0):{ Let � = �0a�t, thenQE(�0a�t) = QE(�0) �E(�0)(a; �) ��(t) == XD2D �(D) �QD(�0) � XD02D �(D0) �D0(�0)(a; �) ��(t) == XD2D �(D) �QD(�0) � XD02D �(D0) �D(�0)(a; �) ��(t) == XD2D �(D) �QD(�0) �D(�0)(a; �) ��(t) == XD2D �(D) �QD(�0a�t) == XD2D �(D) �QD(�):� 12



4 The Approximation Indution PrinipleThis setion is entirely devoted to a proof of an Approximation Indution Prin-iple (AIP) (f. [BK86,BBK87℄) for probabilisti proesses. We need this resultto haraterize the equivalene on probabilisti automata indued by the traedistribution mahine in Setion 5.Theorem 2 (Approximation Indution Priniple). Let A and B be PAsand let B be �nitely branhing. Then8k[A vkTD B℄ =) A vTD B:Proof: Assume that A vkTD B, for all k. In order to prove A vTD B, let H bea trae distribution of A and let E be an adversary of A with H = trd(E ). Viaa number of sublaims, we prove that H 2 trd(B).For eah k 2 N, de�ne Ek byEk(�) = (E(�) if j�j < k,f(Æ; f?7! 1g) 7! 1g otherwise.Clearly, Ek 2 Adv(A; k), so trd(Ek ) 2 trd(A; k). By assumption, there is anadversary Fk of B suh that trd(Ek ) = trd(Fk ). We view Fk as a funtion inPath�(ÆB)�At �Distr(SÆB)! [0; 1℄:We will onstrut an adversary G of B with trd(G) = H from the sequene offuntions F = F0, F1, F2 : : :. The idea is that, sine only the paths of length kmatter, Fk is essentially a �nite funtion and we an use the Bolzano{Weierstra�Theorem to obtain G as the limit of a onvergent subsequene of F . However,this theorem annot be applied immediately, beause the �nite domains of thesefuntions are growing. Therefore, we will operate in several stages. The basiidea is to onstrut at stage n+1 a onvergent subsequene with index funtion�n+1 of Fn0 , Fn1 , F ;2n : : :, where Fnk is the restrition of Fk to paths of lengthn. This sequene onsists of �nite funtions with the same, �nite domain anda bounded range (viz. [0; 1℄) and has therefore a onvergent subsequene. Wede�ne Gn as the limit of �n. Thus, we will obtain a sequene of inreasingsubfuntions G1 � G2 � G3 : : : and we take G to be its limit. We will needseveral tehnial lemmas to ensure that everything is as expeted and to prove�nally that trd(G) = trd(E ).Throughout this proof, we use the following notations.Pn = [��nPath i(ÆB)Dn = f� 2 Distr(SÆB) j � ours in some � 2 Pn+1gP = Path�(ÆB)D = Distr(SÆB) 13



Note that Pn � Pn+1, Dn � Dn+1, P = [nPn and D � [nDn. In fat, D mayontain distributions that are not ontained in any Dn. Observe also that � 2 Pnand � a;� s implies � 2 Dn. Sine B is �nitely branhing, there are only �nitelymany paths of length at most n and hene Pn and Dn are both �nite. Reallthat At is �nite by de�nition. Therefore, the following funtion Fnk is �nite:Fnk : Pn �At �Dn ! [0; 1℄Fnk = Fk � Pn �At �Dn:Claim 1 Fnk � Fn+1k for all k; n.Proof: Easy veri�ation. �For eah n, let �n be the sequene�n = Fn0 Fn1 Fn2 Fn3 : : :and let �n be the index funtion de�ned indutively as follows:{ �0 is the identity funtion.{ Let � be the index funtion of a onvergent subsequene of �n Æ �n (suha subsequene exists by the Bolzano{Weierstra� Theorem). Then �n+1 =�n Æ �.We de�ne funtion Gn : Pn �At �Dn ! [0; 1℄ byGn = lim(�n Æ �n+1);i.e. , Gn is the limit of the onvergent subsequene just de�ned.Claim 2 Gn � Gn+1.Proof: Clearly, Dom(Gn) � Dom(Gn+1). Let (�; a; �) 2 Dom(Gn). ThenGn(�)(a; �) = limk!1Fn�n+1(k)(�)(a; �) fRan(�n+2) � Ran(�n+1g= limk!1Fn�n+2(k)(�)(a; �) fClaim 1g= limk!1Fn+1�n+2(k)(�)(a; �)= Gn+1(�)(a; �):� Let G0 = [nGn, i.e. for � 2 Pn, a 2 At and � 2 Dn, G0(�)(a; �) =Gn(�)(a; �). Then G0 is a funtion in [n Pn �At �Dn ! [0; 1℄. We extend G0to a funtion G in P �At �D ! [0; 1℄ as followsG(�)(a; �) = (G0(�)(a; �) if 9n:� 2 Pn ^ � 2 Dn,0 otherwise.14



The rest of this proof is onerned with showing that G is an adversary withtrd(G) = H , whih is exatly what we are after.Claims 3 and 4 together imply that G is an adversary of B. Claim 3 statesthat G respets the transition relation of ÆB, and Claim 4 establishes that G hasthe required type, i.e.G : Path�(ÆB)! Distr(At �Distr(SÆB)):Claim 3 Suppose � 2 P , a 2 At, � 2 D and G(�)(a; �) > 0. Then last(�) a�! �is a transition of ÆB.Proof: SineG(�)(a; �) > 0, it follows from the de�nition ofG thatG(�)(a; �) =G0(�)(a; �). Hene, by de�nition of G0, there is an n suh that G0(�)(a; �) =Gn(�)(a; �). Then0 < Gn(�)(a; �) fdef. Gng= limk!1Fn�n+1(k)(�)(a; �) fdef. Fni g= limk!1F�n+1(k)(�)(a; �)This implies that F�n+1(k)(�)(a; �) > 0 for large k. Sine F�n+1(k) is an adversaryof B, last(�) a�! � is a transition of B. �Claim 4 For all � 2 P , Pa2At;�2D G(�)(a; �) = 1.Proof: Choose � 2 P and let n = j�j. Then � 2 Pn andXa2At;�2DG(�)(a; �) fdef. Gg= Xa2At;�2DnG0(�)(a; �) fdef. G0g= Xa2At;�2DnGn(�)(a; �) fdef. Gng= Xa2At;�2Dn limk!1Fn�n+1(k)(�)(a; �) fdef. Fni g= Xa2At;�2Dn limk!1F�n+1(k)(�)(a; �) f�nite sumg= limk!1 Xa2At;�2Dn F�n+1(k)(�)(a; �) fdef. At , Dng= limk!1 Xa2At;�2D F�n+1(k)(�)(a; �) fFi adversaryg= limk!1 1= 1� 15



Note that the following laim onerns G and Fi, whih are adversaries. Inontrast, Gn and Fnk are just funtions, not adversaries.Claim 5 QG(�) = limk!1QF�(n+1)(k) (�) for all � 2 Path�(ÆB) with j�j = n.Proof: By indution on n.{ Then ase n = 0 follows immediately from the fat that QE(s0) = 1 for alladversaries E.{ Case n + 1. Let �0 be a path of length n + 1 and write �0 = � a;� s. Then� 2 Pn, a 2 At , � 2 Dn andQG(�0)= QG(� a;� s) fdef. Qg= QG(�) �G(�)(a; �) � �(s) fIH, j�j = ng= limk!1QF�(n)(k) (�) �Gn(�)(a; �) ��(s) fdef. Gng= limk!1QF�(n)(k) (�) � limk!1F�(n)(k)(�)(a; �) ��(s)= limk!1QF�(n)(k) (�) �F�(n)(k)(�)(a; �) ��(s) fdef. Qg= limk!1QF�(n+1)(k) (� a;� s)= limk!1QF�(n+1)(k) (�0)�Claim 6 QE(�) = limk!1QE�(n)(k) (�) for all n and �.Proof: Sine �(n) is an index funtion, we have limk!1 �(n)(k) = 1 andtherefore E�(n)(k)[�℄ = E[�℄ for �(n)(k) � j�j. So, limk!1QE�(n)(k) (�) =QE(�). �The following is an immediate onsequene of the previous laim.Claim 7 Ptrd(E)[C�℄ = limk!1Ptrd(E�(n)(k))[C�℄, for all �.Claim 8 trd(G) = trd(E ). 16



Proof: Let H1 = trd(G) and H2 = trd(E ). It suÆes to show that PH1 [C�℄ =PH2 [C�℄ for all � 2 At�. Let n = j�j.PH1 [C�℄ = X�jtrae(�)2C�PG[�℄= X�jtrae(�)=�^j�j=nPG[C�℄ fdef. C�g= X�jtrae(�)=�^j�j=nQG(�) fClaim 5, j�j = ng= X�jtrae(�)=�^j�j=n limk!1QF�(n)(k) (�) f�nite sumg= limk!1 X�jtrae(�)=�^j�j=nQF�(n)(k) (�) fdef. C�, PFig= limk!1PF�(n)(k) [C�℄= limk!1PE�(n)(k) [C�℄ fClaim 7g= PE [C�℄ftrd(Fi) = trd(Ei )gNote that the set f� j trae(�) = � ^ j�j = ng is �nite, beause A is �nitelybranhing and hene the summations above are all �nite. ��5 Charaterization of Testing PreorderThe operational behavior of a trae distribution mahine desribed in Setion 1 isspei�ed aurately by the notion of a (partial, randomized, history-dependent)adversary, introdued in De�nition 7. Hene, when operating, the trae distri-bution mahine hooses an exeution path within some probabilisti automatonA, using some adversary E.De�ne a sample O of depth k and width m to be an element of (Atk)m, i.e.,a sequene onsisting of m sequenes of ations of length k. A sample desribeswhat an observer potentially may reord when running m times an experimentof length k on the trae distribution mahine. Note that if, during a run, themahine halts before k observable ations have been performed, we an stillobtain a sequene of k ations by attahing a number of Æ ations at the end.We write freq(O) for the funtion in Atk ! Q that assigns to eah sequene� in Atk the frequeny with whih � ours in O. That is, for O = �1�2; : : : ; �mfreq(O)(�) = # fi j �i = �; 1 � i � mgm :Note that freq(O) is a probability distribution over (Atk)m. We base our sta-tistial analysis on freq(O) rather than just O. This means we ignore some of17



the information ontained in samples, whih more advaned statistial methodsmay want to explore. If, for instane, we onsider the sample O of depth oneand width 2000 that onsists of 1000 head ations followed by 1000 tail ations,then it is quite unlikely that this will be a sample of a trae distribution mahineimplementing a fair oin. However, the frequeny funtion freq(O) an very wellbe generated by a fair oin.For a trae distribution H 2 trd(A; k), we denote by �H : Atk ! [0; 1℄the probability distribution given by �H(�) = PH [C� ℄. Sine H halts after ksteps, �H(�) yields the probability that � is piked when we generate a sequeneaording to H . In other words, �H(�) yields the probability that during a run,the trae distribution mahine produes the ation sequene �, when it resolvesits nondeterministi hoies aording to an adversary E with trd(E ) = H .Therefore, the probability that the sample O = �1�2; : : : ; �m is generated whenwe suessively and independently hoose sequenes �i aording to distributionsHi 2 trd(A; k), is given byPH1;:::;Hm [O℄ = mYi=1�Hi(�i):Finally, the probability that an element from a set O � (Atk)m is piked, equalsPH1;:::;Hm [O℄ = XO2OPH1;:::;Hm [O℄:Given H1; H2; : : : ; Hm, we want to distinguish between outomes that arelikely to be generated by H1; H2; : : : ; Hm, and those whih are not. To do so, we�rst �x an � 2 (0; 1) as the desired level of signi�ane. Our goal is to de�ne aset KH1;H2;:::;Hm , the likely outomes, suh that1. PH1;:::;Hm [KH1 ;H2;:::;Hm ℄ > 1� �,2. KH1;H2;:::;Hm is, in some sense, minimal.Condition (1) will ensures that the probability that we believe that O is notgenerated by H1; : : : ; Hm while it is so, is at most �. Condition (2) will ensurethat PH01 ;:::;H0m [KH1;H2;:::;Hm ℄ is as small as possible for sequenes (H 01; : : : ; H 0m)di�erent from (H1; : : : ; Hm). (How small this probability is highly depends onwhih H 0i 's we take.) Therefore, the probability that we onsider O to be anexeution while it is not, is as small as possible. In terminology from hypoth-esis testing: our null hypothesis states that O is generated by H1; : : : ; Hm andondition (1) bounds the probability on false rejetion and (2) minimizes theprobability on false aeptane. The set KH1;H2;:::;Hm is the omplement of theritial setion. Note that in lassial hypothesis testing all subsequent experi-ments �1; : : : �m are drawn from the same probability distribution, whereas inour setting, eah experiment is governed by a di�erent probability mehanismgiven by Hi. 18



The idea behind the de�nition of KH1;:::;Hm is as follows. The expeted fre-queny of a sequene � in a sample generated by H1; : : : ; Hm is given byEH1;:::;Hm(�) = 1m mXi=1 �Hi(�):Sine utuations around the expeted value are likely, we allow deviations ofat most " from the expeted value. Here, we hoose " as small as possible, butlarge enough suh that the probability on a sample whose frequeny deviates atmost " from EH1;:::;Hm is bigger than �. Then, onditions (1) and (2) above aremet. Formally, de�ne the "-sphere B"(�) around � asB"(�) = f� 2 Distr(Atk) j dist(�; �) � "g;where let dist is the standard distane on Distr(Atk) given by dist(�; �) =qP�2Atk j�(�) � �(�)j2.De�nition 11. For a sequeneH1; H2; : : :Hm of trae distributions in trd(A; k),we de�ne KH1;:::Hm as the smallest5 sphere B"(EH1;:::Hm) suh thatPH1;:::;Hm [fO 2 (Atk)m j freq(O) 2 B"(EH1;:::Hm)g℄ > 1� �:We say that O is an observation of A (of depth k and width m) ifO 2 KH1;:::;Hm :We write Obs(A) for the set of observations of A.Example 1. We take � = 0:05 as the level of signi�ane. First, onsider theleftmost PA in Figure 4 and samples of depth 2 and width 100. This means thatthe probabilisti trae mahine is run 100 times and eah time we get a trae oflength 2.Then any sample O1 in whih the sequene ab ours 42 times and a 58 timesis an observation of A; samples in whih ab ours 38 times and a 62 times arenot. Let E be the adversary that, in eah state, shedules with probability one theunique transition, if available, in that state and otherwise it shedules the haltingtransition with probability one. For H = trd(E ), we have �H(ab) = �H(a) = 12and �H(�) = 0 for all other sequenes. Let H100 = (H1; : : : H100) be sequeneof adversaries with Hi = H . Then EH100 = �H and, sine �H assigns a positiveprobability only to ab and a, we have that PH100 [B"(�H)℄ = PH100 [fO1 j 12 �" < freq(O1)(ab) < 12 + "g℄. One an show that then smallest sphere suh thatPH100 [B"(�H)℄ � 0:95 is obtained by taking " = 110 . Sine freq(O1) 2 B"(�H ),O1 is an observation.Then, a sample O2 ontaining with 20 ÆÆ's, 42 ab's and 58 a's is an obser-vation of depth 2 and width 120. It arises from taking 100 times adversary H asabove and 20 adversaries that halt with probability one on every path.5 This minimum exists, beause there �nitely many samples.19



Now, onsider the automaton in Figure 5. Consider the sheduler E3 that inthe initial state, shedules both a transitions with probability 12 ; with probabilityone the unique b,  or d transition whenever it is avaible and otherwise the haltingtransition with probability one. Let K120 be the sequene onsisting of 120 timesthe adversary K. The expeted frequeny of K120 is 724 for ab, 824 for a, and924 for ad and then KK120 = B 111 (EK100), so for instane, the sequene with 40ab's, 40 a's and 40 ad's is an observation of the mentioned PA.5.1 The haraterization theoremWe an now prove our main haraterization theorem, whih states that the pre-order indued by the testing senario oinides with trae distribution inlusion.Theorem 3. Obs(A) � Obs(B) () A vTD B.The following orollary is immediate.Corollary 1. Obs(A) = Obs(B) () A �TD B.Before presenting the proof of the main theorem, we introdue four auxilliaryresults and some notation.The �rst result states that, in a large number of Bernouilli trials (with dif-ferent parameters), the set of outomes with large deviations from the expetedfrequeny of the number of 1's has a small probability. In fat, by hoosing thenumber of trials large enough, we an get the probability on deviations of " ormore as small as we want.Proposition 1. Let � 2 (0; 1) and " > 0. Then there exists an m0 2 N suhthat the following holds. For all m � m0, and all sequenes X1; X2; : : : ; Xm ofm independent random variables, where Xi has a Bernouilli distribution withparameter pi, for some pi 2 [0; 1℄ (i.e. P[Xi = 1℄ = pi;P[Xi = 0℄ = 1� pi), wehave that P� jZm �E[Zm℄j � " � � �:Here, Zm = 1mPmi=1Xi yields the frequeny of the number of 1's that have beendrawn in (X1; : : : ; Xm).Proof: Take m � m0 � 14"2� and let X1; X2; : : : ; Xm be a sequene of m inde-pendent random variables, whereXi has a Bernouilli distribution with parameterpi 2 [0; 1℄. First note thatVar(Zm) = Var 1m mXi=1 Xi! = 1m2 mXi=1 Var(Xi) = 1m2 mXi=1 pi(1� pi)� 1m2 mXi=1 14 = 14m: 20



Hene, by Chebyhev's Inequality, we haveP�jZm �E[Zm℄j � "� � 1"2Var(Zm) � 1"2 14m � 4"2�4"2 = �:� The seond result reformulates the proposition above in terms of trae distri-butions rather than random variables: we an hoose the number of runs of thetrae distribution mahine large enough so that, with high probability (i.e. 1-�),for eah sequene �, the number of �'s in the sample we draw deviates no morethan " from its expeted value.Proposition 2. Let � 2 (0; 1), " > 0 and k 2 N. Then there exists an m0 2 Nsuh that for all m � m0, all trae distributions H1; H2; : : : ; Hm 2 trd(A; k) andall � 2 AtkPH1;:::;Hm� fO 2 (Atk)m j jfreq(O)(�) �EH1;:::;Hm(�)j � "g � � �:Proof: This statement is merely a reformulation of Proposition 1. Given asequene of trae distributionsH1; : : : ; Hm and an sequene � 2 Atk, we de�ne asequene of independent randoms variables X�1 ; : : : ; X�m, where X�i : (Atk)m !f0; 1g indiates whether the sequene � is drawn byHi. Then,Xi has a Bernouillidistribution with parameter �Hi(�). As before, we put Z�m = 1mPmi=1X�i . Wenote that{ freq(O)(�) = Z�m(O) yields the number of �'s in O.{ EH1;:::Hm(�) = 1mPmi=1 �Hi(�) = E[Z�m℄.{ P[Z�m = q℄ = PH1;:::Hm [fO 2 (Atk)m j freq(O)(�) = qg℄.Now, the desired result follows easily from Proposition 1. �Then, we onsider all sequenes � 2 Atk at the same time. Then, the prob-ability that the vetor of the frequenies freq(O) in a sample O deviates a lotfrom the expeted frequeny vetor EH1;:::;Hm is small.Proposition 3. Let � 2 (0; 1), " > 0 and k 2 N. Then there exists an m0 2 Nsuh that for all m � m0 and all trae distributions H1; H2; : : : ; Hm 2 trd(A; k)PH1;:::;Hm [fO 2 (Atk)m j freq(O) 2 B"(EH1;:::;Hm)℄ � 1� �:Proof: Let n = #Atk. By Proposition 2, there exists an m0 suh that for allm � m0 and all �PH1;:::;Hm�fO 2 (Atk)m j jfreq(O)(�) �EH1;:::;Hm(�)j � "n� � �n : (*)21



But thenPH1;:::;Hm�fO j freq(O) 2 B"(EH1;:::;Hm)g� = fdef B"gPH1;:::;Hm�fO j jfreq(O) �EH1;:::;Hm j < "g� � fsee belowgPH1;:::;Hm�fO j 8�:jfreq(O)(�) �EH1;:::;Hm(�)j < "ng� = fprob. th.g1�PH1;:::;Hm�fO j 9�:jfreq(O)(�) �EH1;:::;Hm(�)j � "ng� � fprob. th.g1� X�2Atk PH1;:::;Hm�fO j jfreq(O)(�) �EH1;:::;Hm(�)j � "ng� � ffrom (*)g1� n�n = 1� �:The inlusion fO j jfreq(O)�EH1;:::;Hm j < "g � fO j 8�:jfreq(O)(�)�EH1 ;:::;Hm(�)j <"ng is just another formulation of the fat that an n-dimensional sphere with ra-dius r and enter � ontains the n-diminsional hyperube with edge length r2nand enter �. �Finally, we need some elementary observations about the funtion �H .Proposition 4. 1. For all trae distributions H;K 2 trd(A; k), we have H =K () �H = �K .2. For all m and Hi 2 trd(A; k), E(H1;:::Hm) = �K , where K =Pmi=1Hi.Proof: Immediately from the de�nitions. �Proposition 5. For every H 2 trd(A; k), �H an be written as a onvex ombi-nation of distributions �Hi , where Hi is generated by a deterministi adversary.That is, there exists a probability distribution � over the set Dadv (A; k) suhthat, for all � 2 Atk, �K(�) =PD2D �(D) � �trd(D)(�):Proof: Immediately from Lemma 2. �We an now prove the main theorem.Proof: (of Theorem 1) The \(="-diretion follows immediately from the def-initions. To prove the \ =) "-diretion, assume that A 6vTD B. We show thatObs(A) 6� Obs(B).By Theorem 2, there exists a k suh that A 6vkTD B, i.e. trd(A; k) 6� trd(B; k).Let H be a trae distribution in trd(A; k) that is not a trae distribution intrd(B; k). We write Hm for the sequene (H1; H2; : : : ; Hm) with Hi = H . Then,Proposition 4(1) onludes that there is no K 2 trd(B; k) suh that �H = �K .Moreover, Proposition 5 states that the set f�K j K 2 trd(B; k)g is a polyhedron.Therefore, there is minimal distane d > 0 between �H and any �K with K intrd(B; k).Consider the trae distribution H . By Proposition 3, we an �nd mA suhthat for all m � mAPHm [fO 2 (Atk)m j freq(O) 2 B d3 (EHm )g℄ � 1� �:22
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