
A Testing Senario for Probabilisti Automata?Mari�elle Stoelinga1 and Frits Vaandrager21 Dept. of Computer Engineering, University of California, Santa Cruzmarielle�soe.us.edu2 Nijmegen Institute for Computing and Information Sienes,University of Nijmegen, The Netherlandsfvaan�s.kun.nlAbstrat. Reently, a large number of equivalenes for probabilisti automata has beenproposed in the literature. Exept for the probabilisti bisimulation of Larsen & Skou, noneof these equivalenes has been haraterized in terms of an intuitive testing senario. In ourview, this is an undesirable situation: in the end, the behavior of an automaton is what anexternal observer pereives. In this paper, we propose a simple and intuitive testing se-nario for probabilisti automata and we prove that the equivalene indued by this senariooinides with the trae distribution equivalene proposed by Segala.1 IntrodutionA fundamental idea in onurreny theory is that two systems are deemed to be equivalent if theyannot be distinguished by observation. Depending on the power of the observer, di�erent notionsof behavioral equivalene arise. For systems modeled as labeled transition systems, this idea hasbeen thoroughly explored and a large number of behavioral equivalenes has been haraterizedoperationally, algebraially, denotationally, logially, and via intuitive \testing senarios" (alsoalled \button pushing experiments"). We refer to Van Glabbeek [Gla01℄ for an exellent overviewof results in this area of omparative onurreny semantis.Testing senarios provide an intuitive understanding of a behavioral equivalene via a mahinemodel. A proess is modeled as a blak box that ontains as its interfae to the outside world(1) a display showing the name of the ation that is urrently arried out by the proess, and (2)some buttons via whih the observer may attempt to inuene the exeution of the proess. Aproess autonomously hooses an exeution path that is onsistent with its position in the labeledtransition system sitting in the blak box. Trae semantis, for instane, is explained in [Gla01℄with the trae mahine, depited in Figure 1 on the left. As one an see, this mahine has no
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...Fig. 1. The trae mahine (left) and the failure trae mahine (right).buttons at all. A slightly less trivial example is the failure trae mahine, depited in Figure 1? Researh supported by PROGRESS Projet TES4199, Veri�ation of Hard and Softly Timed Systems(HaaST). A preliminary version of this paper appeared in the PhD thesis of the �rst author [Sto02a℄.



on the right. Apart from the display, this mahine ontains as its interfae to the outside world aswith for eah observable ation. By means of these swithes, an observer an determine whihations are free and whih are bloked and may be hanged at any time during a run of a proess.The display beomes empty if (and only if) a proess annot proeed due to the irumstane thatall ations are bloked. If, in suh a situation, the observer hanges her mind and allows one of theations the proess is ready to perform, an ation will beome visible again in the display. Figure2 gives an example of two labeled transition systems that an be distinguished by the failure trae
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Fig. 2. Trae equivalent but not failure trae equivalent.mahine but not by the trae mahine. Sine both transition systems have the same traes (", a,ab, a, af , ad and ae), no di�erene an be observed with the trae mahine. However, via thefailure trae mahine an observer an see a di�erene by �rst bloking ations  and f , and onlyunbloking ation  if the display beomes empty. In this senario an observer of the left systemmay see an e, whereas in the right system the observer may see a d, but no e. We refer to [Gla01℄for an overview of testing senarios for labeled transition systems.Probabilisti automata have beome a popular mathematial framework for the spei�ationand analysis of probabilisti systems. They have been developed by Segala [Seg95b,SL95,Seg95a℄and serve the purpose of modeling and analyzing asynhronous, onurrent systems with disreteprobabilisti hoie in a formal and preise way. We refer to [Sto02b℄ for an introdution to prob-abilisti automata, and a omparison with related models. In this paper, we propose and studya simple and intuitive testing senario for probabilisti automata: we just add a reset button tothe trae mahine. The resulting trae distribution mahine is depited in Figure 3. By resetting
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resetFig. 3. The trae distribution mahine.the mahine it returns to its initial state and starts again from srath. In the non-probabilistiase the presene of a reset button does not make a di�erene1, but in the probabilisti ase it1 For this reason, the reset button does not our in the testing senarios of [Gla01℄. An obvious alternativeto the reset button would be a on/o� button. 2



does: we an observe probabilisti behavior by repeating experiments and applying methods fromstatistis. Consider the two probabilisti automata in Figure 4. Here the ars indiate probabilisti
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bFig. 4. Probabilisti automata representing a fair and an unfair oin.hoie (as opposed to the nondeterministi hoie in Figure 2), and probabilities are indiatedadjaent to the edges. These automata represent a fair and an unfair oin, respetively. We assumethat the trae distribution mahine has an \orale" at its disposal whih resolves the probabilis-ti hoies aording to the probability distributions spei�ed in the automaton. As a result, anobserver an distinguish the two systems of Figure 4 by repeatedly running the mahine until thedisplay beomes empty and then restart it using the reset button. For the left proess the numberof ourrenes of trae ab will approximately equal the number of ourrenes of trae a, whereasfor the right proess the ratio of the ourrene of the two traes will onverge to 1 : 2. Elementarymethods from statistis allow one to ome up with preise de�nitions of distinguishing tests.The situation beomes more interesting when both probabilisti and nondeterministi hoiesare present. Consider the probabilisti automaton in Figure 5. If we repeatedly run the trae
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b dFig. 5. The ombination of probabilisti and nondeterministi hoie.distribution mahine with this automaton inside, the ratio between the various traes does notneed to onverge to a �xed value. However, if we run the mahine suÆiently often we will observethat a weighted sum of the number of ourrenes of traes a and ad will approximately equalthe number of ourrenes of traes ab. Restriting attention to the ases where the left transitionhas been hosen, we observe 12#[a℄ � #[ab℄. Restriting attention to the ases where the righttransition has been hosen, we observe 13#[ad℄ � #[ab℄. Sine in eah exeution either the left orthe right transition will be seleted, we have:12#[a℄ + 13#[ad℄ � #[ab℄:Even though our testing senario is simple, the ombination of nondeterministi and probabilistihoie makes it far from easy to haraterize the behavioral equivalene on probabilisti automata3



whih it indues. The main tehnial ontribution of this paper is a proof that the equivaleneon probabilisti automata indued by our testing senario oinides with the trae distributionequivalene proposed by Segala [Seg95a℄.Being a �rst step, this paper limits itself to a simple lass of probabilisti proesses and toobservers with limited apabilities. First of all, only sequential proesses are investigated: proessesapable of performing at most one ation at a time. Furthermore, we only study onrete proessesin whih no internal ations our. Finally, observers an only interat with mahines in an ex-tremely limited way: apart from observing termination and the ourrene of ations, the only wayin whih they an inuene the ourse of events is via the reset button2. It will be interesting toextend our result to riher lasses of proesses and more powerful observers, and to onsider forinstane a probabilisti version of the failure trae mahine desribed earlier in this introdution.Related work Several testing preorders and equivalenes for probabilisti proesses have been pro-posed in the literature [Chr90,Seg96,GN98,CDSY99,JY01℄. All these papers study testing relations(i.e. testing equivalenes or preorders) in the style of De Niola and Hennesy [DNH84℄. That is,they de�ne a test as a (probabilisti) proess that interats with a system via shared ations andthat reports suess or failure in some way, for instane via suess states or suess ations. Whena test is run on a system, the probability on suess is omputed, or if nondeterminism is presentin either the test or the system, a set of these. By omparing the probabilities on suess, onean say whether or not two systems are in the testing equivalene or preorder. For instane, twosystems A and B are in the testing preorder of [JY01℄ if and only if for all tests T the maximalprobability on suess in A k T is less than or equal to the maximal probability on suess inB k T . The di�erent testing relations in the mentioned papers arise by onsidering di�erent kindsof probabilisti systems, by studying tests with di�erent power (purely nondeterministi tests, �nitetrees or unrestrited probabilisti proesses) and by using di�erent ways to ompare two systemsunder test (e.g. may testing versus must testing). All of the mentioned papers provide alternativeharaterizations of their testing relation in terms of trae{based relations.Thus, these testing relations are button pushing experiments in the sense that a test interatswith a system via synhronization on shared ations. However, in our opinion these relations are notentirely observational, beause it is not desribed how the probability on suess an be observed.In our view, this is an undesirable situation: in the end, the behavior of an automaton is what anexternal observer pereives. Therefore, we believe that any behavioral equivalene should either beharaterized via some plausible testing senario, or be stritly �ner than suh an equivalene andbe justi�ed via omputational arguments.The only other paper ontaining a onvining testing senario for probabilisti systems is byLarsen & Skou [LS91℄. They de�ne a notion of tests for reative probabilisti proesses, that is,proesses in whih all outgoing transitions of a state have di�erent labels. Furthermore, the ob-server is allowed to make arbitrary many opies of any state. For those tests, a fully observableharaterization of probabilisti bisimulation based on hypothesis testing is given. (We note thatopies of tests an both serve to disover the branhing struture of a system { as in the nonde-terministi ase { and to repeat a ertain experiment a number of times.) Our work di�ers fromthe approah in [LS91℄ in the following aspets.{ We present our results in the more general probabilisti automaton model, whereas [LS91℄ on-siders the reative model. As a onsequene, the omposition of a system and a test in [LS91℄is purely probabilisti, that is, it does not ontain nondeterministi hoies, and theory fromlassial hypothesis testing applies. In ontrast to this, the probabilisti automata that we on-sider do ontain nondeterministi hoies. To distinguish between likely and unlikely outomes2 This ensures that our testing senario truly is a \button pushing experiment" in the sense of Milner[Mil80℄! 4



in these automata, we have to extend (some parts of) hypothesis testing with nondeterminism,whih is tehnially quite involved.{ The main result of this paper, whih is the haraterization of trae distribution inlusion as atesting senario, is established for all �nitely branhing systems, whih is muh more generalthan the minimal derivation assumption needed for the results in [LS91℄.{ The possibility in the testing senario of Larsen & Skou to make opies of proesses in anystate (at any moment), is justi�ed for instane in the ase of a sequential system where onean make ore dumps at any time. But for many distributed systems, it is not possible tomake opies in any but the initial state. Therefore, it makes sense to study senarios in whihopying is not possible, as done in this paper.Overview Even though readers may not expet this after our informal introdution, the rest ofthis paper is atually quite tehnial. Setion 2 realls the de�nitions of probabilisti automataand their behavior and Setion 3 presents the haraterization of the testing preorder indued bythe trae distribution mahine as trae distribution inlusion. Skethes of some of the proofs areinluded in Appendix A. For omplete proofs of all our results we refer to the full version of thispaper [SV03℄.2 Probabilisti AutomataWe �rst reall a few basi notions from probability theory and introdue some notation.De�nition 1. A probability distribution over a set X is a funtion � : X ! [0; 1℄ suh thatPx2X �(x) = 1. We denote the set of all probability distributions over X by Distr(X). The proba-bility distribution that assigns 1 to a ertain element x 2 X and 0 to all other elements, is alledthe Dira distribution over x and is denoted by fx 7! 1g.De�nition 2. A probability spae is a triple (
;F ;P), where{ 
 is a set, alled the sample spae,{ F � 2
 is �-�eld, i.e. a olletion of subsets of 
 whih is losed under ountable3 union andomplement, and whih ontains 
,{ P : F ! [0; 1℄ is a probability measure on F , whih means that P[
℄ = 1 and for any ountableolletion fCigi of pairwise disjoint subsets in F we have P[[i Ci℄ =PiP[Ci℄.Now, we reall the notion of a probabilisti automaton from Segala and Lynh [Seg95a,SL95℄.Basially, a probabilisti automaton is a non-probabilisti automaton with the only di�erene that,rather than a single state, the target of a transition is a probability distribution over next states.We onsider systems with only external ations, taken from a given, �nite set At . For tehnialreasons, we assume that At ontains a speial element Æ, referred to as the halting ation.De�nition 3. A probabilisti automaton (PA) is a triple A = (S; s0; �) with{ S a set of states,{ s0 2 S the initial state, and{ � � S � At �Distr(S) a transition relation.We write s a! � for (s; a; �) 2 � and sa;� t if s a�! � and �(t) > 0. We refer to the omponents ofA as SA; s0A; �A. Moreover, A is �nitely branhing if for eah state s, the set f(a; �; t) j sa;� tg is�nite, i.e. if every state in A has �nitely many outgoing transitions and the target distribution ofeah transition assigns a positive probability to �nitely many elements.3 In our terminology, ountable objets inlude �nite ones.5



For the remainder of this setion, we �x a PA A = (S; s0; �) and assume that � ontains notransition labeled with Æ.As in the non-probabilisti ase, an exeution of A is obtained by resolving the nondeterministihoies in A. This hoie resolution is desribed by an adversary, a funtion whih in eah stateof the system determines the next transition to be taken. Adversaries are (1) randomized, i.e.make their hoies probabilistially, (2) history-dependent, i.e. make hoies depending on thepath leading to the urrent state, and (3) partial, i.e. they may hoose to halt the exeution at anypoint in time. For tehnial simpliity, we prefer adversaries that only produe in�nite sequenes,even if the exeution is halted. Therefore, we de�ne the adversaries of a PA A via its haltingextension.De�nition 4. A path of A is an alternating, �nite or in�nite sequene� = s0a1�1s1a2�2s2 : : :of states, ations, and distributions over states suh that (1) � starts with the initial state,4 i.e. s0 =s0, (2) if � is �nite, it ends with a state, (3) siai+1;�i+1 si+1, for eah non�nal i. We set the lengthof �, notation j�j, to the number of ations ourring in it and denote the set of all �nite paths ofA by Path�(A). If � is �nite, then last(�) denotes its last state. We de�ne the assoiated trae of�, notation trae(�), by trae(�) = a1a2a3 : : :.De�nition 5. The halting extension of A is the PA ÆA = (S [ f?g; s0; �0), where �0 is the leastrelation suh that1. s Æ�!ÆA f?7! 1g,2. s a�!A � =) s a�!ÆA (� [ f?7! 0g).Here we assume that ? is fresh. The transitions with label Æ are referred to as halting transitions.De�nition 6. A (partial, randomized, history-dependent) adversary E of A is a funtionE : Path�(ÆA)! Distr(At �Distr(SÆA))suh that, for eah �nite path �, if E(�)(a; �) > 0 then last(�) a�!ÆA �.We say that E is deterministi if, for eah �, E(�) is a Dira distribution. An adversary Ehalts on a path � if it extends � with the halting transition, i.e.,E(�)(Æ; f?7! 1g) = 1:For k 2 N, we say that the adversary E halts after k steps if it halts on all paths with length greaterthan or equal to k. We denote by Adv(A; k) the set of all adversaries of A that halt after k stepsand by Dadv(A; k) the set of deterministi adversaries in Adv(A; k). Finally, we all E �nite ifE 2 Adv(A; k), for some k 2 N.The probabilisti behavior of an adversary is summarized by its assoiated probability spae.First we introdue the funtion QE , whih yields the probability that E assigns to �nite paths.De�nition 7. Let E be an adversary of A. The funtion QE : Path�(ÆA) ! [0; 1℄ is de�nedindutively by QE(s0) = 1 and QE(�a�s) = QE(�) �E(�)(a; �) � �(s).De�nition 8. Let E be an adversary of A. The probability spae assoiated to E is the probabilityspae given by4 Here we deviate from the standard de�nition, as we do not need paths starting from non-initial states.6



1. 
E = Path1(ÆA),2. FE is the smallest �-�eld that ontains the set fC� j � 2 Path�(ÆA)g, where C� = f�0 2 
E j� is a pre�x of �0g,3. PE is the unique measure on FE suh that PE [C� ℄ = QE(�), for all � 2 Path�(ÆA).The fat that (
E ;FE ;PE) is a probability spae follows from standard measure theory arguments,see for instane [Coh80℄.As for non-probabilisti automata, the visible behavior of A is obtained by removing the non-visible elements (in our ase, the states) from an exeution (adversary). This yields a trae distri-bution of A, whih assigns a probability to (ertain) sets of traes.De�nition 9. The trae distribution H of an adversary E, denoted trd(E ), is the probability spaegiven by1. 
H = At1,2. FH is the smallest �-�eld that ontains the sets fC� j � 2 At�g, where C� = f�0 2 
H j� is a pre�x of �0g,3. PH is the unique measure on FH suh that PH [X ℄ = PE [trae�1(X)℄.Standard measure theory arguments [Coh80℄ ensure again that that trd(E ) is well-de�ned. The setof trae distributions of adversaries of A is denoted by trd(A) and trd(A; k) denotes the set oftrae distributions that arise from adversaries of A halting after k steps. We write A �TD B iftrd(A) = trd(B); A vTD B if trd(A) � trd(B) and A vkTD B if trd(A; k) � trd(B; k).3 Charaterization of Testing PreorderThis setion haraterizes the observations of a trae distribution mahine. That is, we de�nethe set Obs(A) of sequenes of traes that are likely to be produed when the trae distributionmahine operates as spei�ed by the PA A. Then, our main haraterization theorem states thattwo PAs have the same observations if and only if they have the same trae distributions.De�ne a sample O of depth k and width m to be an element of (Atk)m, i.e., a sequene onsistingof m sequenes of ations of length k. A sample desribes what an observer may potentially reordwhen running m times an experiment of length k on the trae distribution mahine. Note thatif, during a run, the mahine halts before k observable ations have been performed, we an stillobtain a sequene of k ations by attahing a number of Æ ations at the end. We write freq(O)for the funtion in Atk ! Q that assigns to eah sequene � in Atk the frequeny with whih �ours in O. That is, for O = �1; �2; : : : ; �m letfreq(O)(�) = # fi j �i = �; 1 � i � mgm :Note that freq(O) is a probability distribution over (Atk)m. We base our statistial analysis onfreq(O) rather than just O. This means we ignore some of the information ontained in samples,whih more advaned statistial methods may want to explore. If, for instane, we onsider thesample O of depth one and width 2000 that onsists of 1000 head ations followed by 1000 tailations, then it is quite unlikely that this will be a sample of a trae distribution mahine imple-menting a fair oin. However, the frequeny funtion freq(O) an very well be generated by a fairoin.Assume that the proess sitting in the blak box is given by the PA A. This means that, whenoperating, the trae distribution mahine hooses a trae A aording to some trae distribution H7



of A. Thus, when running m experiments on the trae distribution, we obtain a sample O lengthm generated by a sequene of m trae distributions in trd(A; k).For a trae distribution H 2 trd(A; k), we denote by �H : Atk ! [0; 1℄ the probabilitydistribution given by �H(�) = PH [C� ℄. Sine H halts after k steps, �H(�) yields the probabilitythat the sequene � is piked when we generate a trae aording toH . In other words, �H(�) yieldsthe probability that during a run, the trae distribution mahine produes the ation sequene �,when it resolves its nondeterministi hoies aording to an adversary E with trd(E ) = H . Now,we generate a sample of width m by independently hoosingm sequenes aording to distributionsH1; : : :Hm respetively. Then, the probability to pik the sample O = �1; �2; : : : ; �m is given byPH1;:::;Hm [O℄ = mYi=1�Hi(�i):Finally, the probability that an element from the set O � (Atk)m is piked equalsPH1;:::;Hm [O℄ = XO2OPH1;:::;Hm [O℄:Given H1; H2; : : : ; Hm, we want to distinguish between samples that are likely to be generatedby H1; H2; : : : ; Hm, and those whih are not. To do so, we �rst �x an � 2 (0; 1) as the desired levelof signi�ane. Our goal is to de�ne the set KH1;H2;:::;Hm , of likely outomes in suh a way that1. PH1 ;:::;Hm [KH1;H2;:::;Hm ℄ > 1� �,2. KH1 ;H2;:::;Hm is, in some sense, minimal.Condition (1) will ensure that, most likely, H1; : : : ; Hm generate an element in KH1;H2;:::;Hm . Theprobability that we rejet O as a sample generated by H1; : : : ; Hm while it is so, is at most�. Condition (2) will ensure that PH01;:::;H0m [KH1;H2;:::;Hm ℄ is as small as possible for sequenesH 01; : : : ; H 0m di�erent from H1; : : : ; Hm. (How small this probability is highly depends on whihH 0i 's we take.) Therefore, the probability that we onsider O to be an exeution while it is not,is as small as possible. In terminology from hypothesis testing: our null hypothesis states thatO is generated by H1; : : : ; Hm and ondition (1) bounds the probability on false rejetion and(2) minimizes the probability on false aeptane. The set KH1;H2;:::;Hm is the omplement of theritial setion. Note that in lassial hypothesis testing all subsequent experiments �1; : : : ; �m aredrawn from the same probability distribution, whereas in our setting, eah experiment is governedby a di�erent probability mehanism given by Hi.The idea behind the de�nition of KH1;:::;Hm is as follows. The expeted frequeny of a sequene� in a sample generated by H1; : : : ; Hm is given byEH1;:::;Hm(�) = 1m mXi=1 �Hi(�):Sine utuations around the expeted value are likely, we allow deviations of at most " from theexpeted value. Here, we hoose " as small as possible, but large enough suh that the probabilityon a sample whose frequeny deviates at most " from EH1;:::;Hm is bigger than �. Then, onditions(1) and (2) above are met. Formally, de�ne the "-sphere B"(�) with enter � asB"(�) = f� 2 Distr(Atk) j dist(�; �) � "g;where dist is the standard distane on Distr(Atk) given by dist(�; �) =qP�2Atk j�(�)� �(�)j2.8



De�nition 10. For a sequene H1; H2; : : : Hm of trae distributions in trd(A; k), we de�ne KH1;:::Hmas the smallest5 sphere B"(EH1;:::Hm) suh thatPH1;:::;Hm [fO 2 (Atk)m j freq(O) 2 B"(EH1;:::Hm)g℄ > 1� �:We say that O is an observation of A (of depth k and width m) ifO 2 KH1;:::;Hm :We write Obs(A) for the set of observations of A.Example 1. We take � = 0:05 as the level of signi�ane. First, onsider the leftmost PA in Figure 4and samples of depth 2 and width 100. This means that the probabilisti trae mahine is run 100times and eah time we get a trae of length 2.Then any sample O1 in whih the sequene ab ours 42 times and a 58 times is an observationof A, but samples in whih ab ours 38 times and a 62 times are not. Let E be the adversarythat, in eah state of A, shedules with probability one the unique transition leaving that state,if there is suh a transition. Otherwise, E shedules the halting transition with probability one.For H = trd(E ), we have �H(ab) = �H(a) = 12 and �H(�) = 0 for all other sequenes. LetH100 = (H1; : : :H100) be sequene of adversaries with Hi = H . Then EH100 = �H and, sine �Hassigns a positive probability only to ab and a, we have that PH100 [B"(�H)℄ = PH100 [fO1 j 12�" �freq(O1)(ab) � 12 + "g℄. One an show that then smallest sphere suh that PH100 [B"(�H )℄ > 0:95is obtained by taking " = 110 . Sine freq(O1) 2 B"(�H ), O1 is an observation.Then, a sample O2 ontaining with 20 ÆÆ's, 42 ab's and 58 a's is an observation of depth 2 andwidth 120. It arises from taking 100 times adversary E as above and 20 adversaries that halt withprobability one on every path. Now, onsider the automaton in Figure 5. Consider the shedulerE3 that in the initial state, shedules both a transitions with probability 12 . In the other states,E3 shedules with probability one the unique outgoing transition if avaible and halts otherwise.Let H3 = trd(E3 ) and let H1203 be the sequene onsisting of 120 times the adversary H3. Theexpeted frequeny of H1203 is 724 for ab, 824 for a, and 924 for ad. Then KH1203 = B 111 (EH1203 ) andfor instane, the sequene with 40 ab's, 40 a's and 40 ad's is an observation of the mentioned PA.We an now state our main haraterization theorem.Theorem 1. For all �nitely branhing PAs A and BObs(A) = Obs(B) () A �TD B:Aknowledgement The ideas worked out in this paper were presented in preliminary form at theseminar \Probabilisti Methods in Veri�ation", whih took plae from April 30 { May 5, 2000, inShloss Dagstuhl, Germany. We thank the organizers, Moshe Vardi, Marta Kwiatkowska, ChristophMeinel and Ulrih Herzog, for inviting us to partiipate in this inspiring meeting.Referenes[BBK87℄ J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the onsisteny of Koomen's fair abstrationrule. Theoretial Computer Siene, 51(1/2):129{176, 1987.[BK86℄ J.A. Bergstra and J.W. Klop. Veri�ation of an alternating bit protool by means of proessalgebra. In W. Bibel and K.P. Jantke, editors, Math. Methods of Spe. and Synthesis of SoftwareSystems '85, Math. Researh 31, pages 9{23, Berlin, 1986. Akademie-Verlag.5 This minimum exists, beause there are �nitely many samples.9
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A AppendixThis appendix proves the main haraterization theorem of this paper, whih says that the testingequivalene indued by the trae distribution mahine oinides with the trae distribution equiva-lene. Our proof uses various auxiliary results whih are stated, but the reader is referred to [SV03℄for their proofs.The �rst result we need states that eah �nite adversary in a �nitely branhing PA an bewritten as a onvex ombination of deterministi adversaries.Lemma 1. Let k 2 N, let A be a �nitely branhing PA and let E be an adversary in Adv(A; k).Then E an be written as a onvex ombination of deterministi adversaries in Dadv(A; k), i.e.,there exists a probability distribution � over Dadv(A; k) suh that, for all �, a and �,E(�)(a; �) = XD2Dadv(A;k)�(D) �D(�)(a; �) and QE(�) = XD2Dadv(A;k)�(D) �QD(�):A ruial result needed to haraterize the testing equivalene is the Approximation IndutionPriniple (AIP) (f. [BK86,BBK87℄). This result is interesting in itself and was �rst observed in[Seg96℄. A proof an be found in [SV03℄.Theorem 2 (Approximation Indution Priniple). Let A and B be PAs and let B be �nitelybranhing. Then 8k: A vkTD B =) A vTD B:By Chebyhev's Inequality, one easily derives the following.Proposition 1. Let �; " > 0. Then there exists an m0 2 N suh that the following holds. For allm � m0, and all sequenes X1; X2; : : : ; Xm of m independent random variables, where Xi has aBernoulli distribution with parameter pi, for some pi 2 [0; 1℄ (i.e. P[Xi = 1℄ = pi;P[Xi = 0℄ =1� pi), we have that P[jZm �E[Zm℄j > "℄ � �:Here, Zm = 1mPmi=1Xi yields the frequeny of the number of times that a 1 has been drawn in(X1; : : : ; Xm).One an reformulate this proposition as follows.Corollary 1. Let �; " > 0 and k 2 N. Then there exists an m0 2 N suh that for all m � m0 andall trae distributions H1; H2; : : : ; Hm 2 trd(A; k)PH1;:::;Hm [fO 2 (Atk)m j freq(O) 2 B"(EH1;:::;Hm)℄ > 1� �:The following results are elementary. The seond part follows from Lemma 1.Proposition 2. 1. H = K () �H = �K .2. For every H 2 trd(A; k), �H an be written as a onvex ombination of distributions �Hi , whereHi is generated by a deterministi adversary. That is, there exists a probability distribution �over the set Dadv (A; k) suh that, for all � 2 Atk, �K(�) =PD2D �(D) � �trd(D)(�):Now, we an prove our main theorem. 11



Theorem 3. For all �nitely branhing PAs A and BObs(A) = Obs(B) () A �TD B:Proof: The \(=" follows immediately from the de�nitions. To prove \ =) " assume thatA 6vTD B. We show that Obs(A) 6� Obs(B).By Theorem 2, there exists a k suh that A 6vkTD B, i.e. trd(A; k) 6� trd(B; k). Let H be atrae distribution in trd(A; k) that is not a trae distribution in trd(B; k). Then, Proposition 2(1)onludes that there is no K 2 trd(B; k) suh that �H = �K . Moreover, Proposition 2(2) statesthat the set f�K j K 2 trd(B; k)g is a polyhedron. Therefore, there is minimal distane d > 0between �H and any �K with K in trd(B; k).We write Hm for the sequene (H1; H2; : : : ; Hm) with Hi = H for all 1 � i � m. By Corollary 1,we an �nd mA and mB suh that for all m � mA and m � mB and all trae distributionsK1;K2; : : : ;Km in trd(B; k)PHm [fO 2 (Atk)m j freq(O) 2 B d3 (EHm)g℄ > 1� �and PK1;:::;Km [fO 2 (Atk)m j freq(O) 2 B d3 (EK1;:::;Km)g℄ > 1� �:Hene, KHm � B d3 (EHm) = B d3 (�H). On the other hand, for 1 � i � m, let Ei 2 trd(B; k)be suh that Ki = trd(Ei ) and take K = trd(() 1mPmi=1 Ei). One easily shows that EK1;:::;Km =EKm = �mK . Therefore, KK1;:::;Km � B d3 (EK1;:::;Km) = B d3 (�K). Sine j�H ��K j � d > 0, we haveB d3 (�H)\B d3 (�K) = ;, and therefore, KHm \KK1;:::;Km = ;. Hene, none of the observations inKHm is an observation of B, i.e. Obs(A) 6� Obs(B). �
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