
# A testing scenario for probabilistic automata



Marielle Stoelinga UC Santa Cruz Frits Vaandrager University of Nijmegen

#### **Characterization of process equivalences**



- trace (language) equivalence
- bisimulation equivalence
- ready trace equivalence

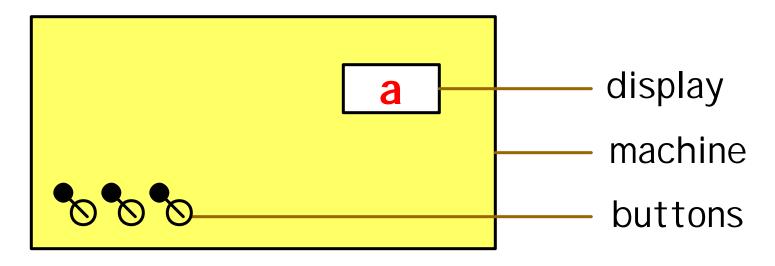
• • • • • • •

#### comparative concurrency semantics [DH...,Mil80,vGl01]

- compare various equivalences
- justify equiv via testing scenarios / button pushing experiments

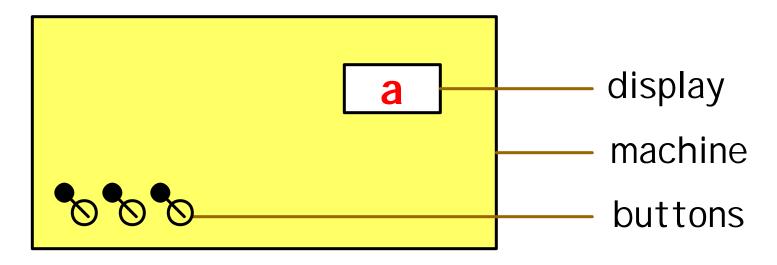
#### **Characterization of process equivalences**




- testing scenarios:
  - define intuitive notion of **observation**, fundamental
  - processes that cannot be distinguished by observation are deemed to be equivalent
  - justify process equivalence ´
    - $P \land Q \text{ iff Obs}(P) = Obs(Q)$
  - does not distinguish too much/too little

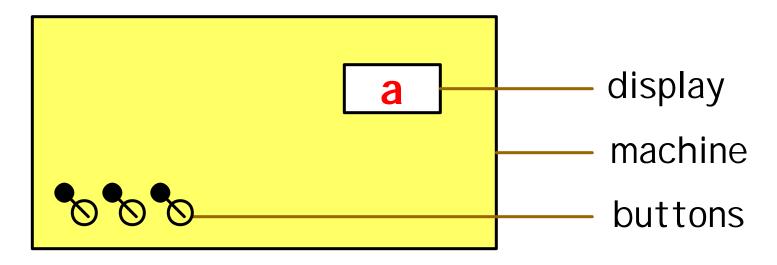
#### **Testing scenario**

#### • testing scenario's in non-probabilistic case


- trace equivalence
- bisimulation
- ...
- we define
  - observations of a PA
  - observe probabilities through statistical methods (hypothesis testing)
- main result
  - Obs(P) = Obs(Q) iff trd(P) = trd(Q), P, Q fin branching
    - trd(P) extension of traces for PAs. [Segala]
    - justifies trace distr equiv in terms of observations

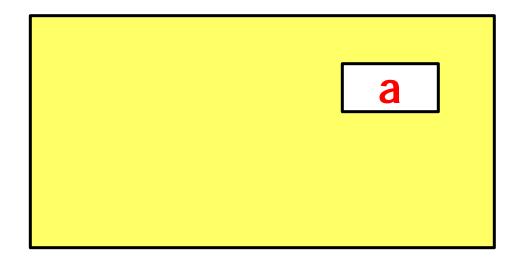
# Model for testing scenarios




- machine M
  - a black box
  - inside: process described by LTS P
- display
  - showing current action
- buttons
  - for user interaction

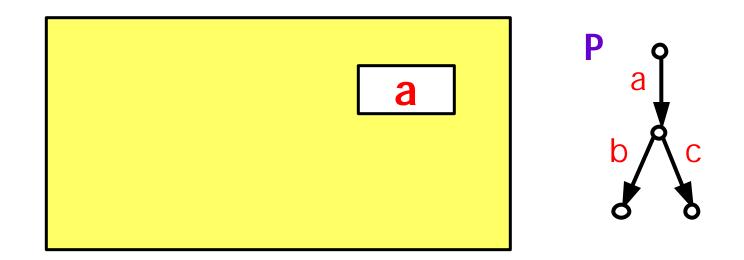
# Model for testing scenarios




- an observer
  - records what s/he sees (over time) + buttons
- define Obs<sub>M</sub>(P):
  - observations of P
  - = what observer records, if LTS P is inside M

# Model for testing scenarios



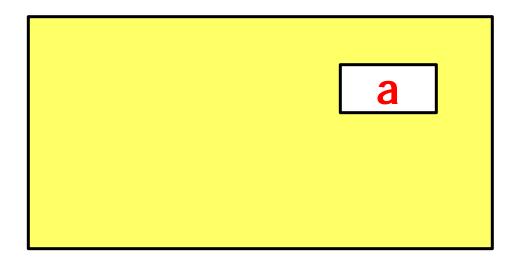

- processes (LTSs) with same observations are deemed to be equivalent.
- characterization results:
   Obs (P) Obs (O) if
  - $Obs_{M}(P) = Obs_{M}(Q)$  iff  $P \land Q$
- does not distinguish too much/too little

# Trace Machine (TM)

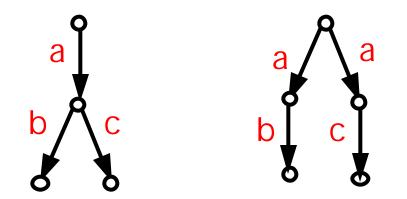


- no buttons for interaction
- display shows current action

# Trace Machine (TM)

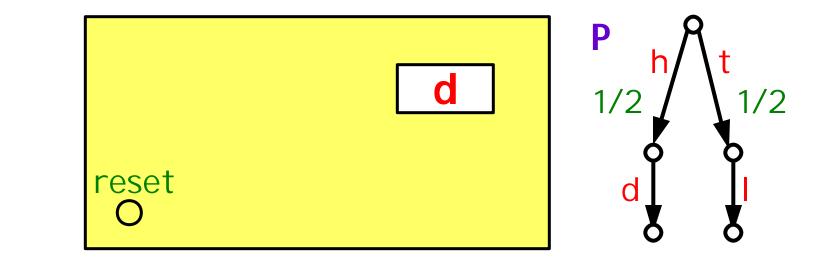



- no buttons for interaction
- display shows current action
- with P inside M, an observer sees either of


ε, a, ab, ac

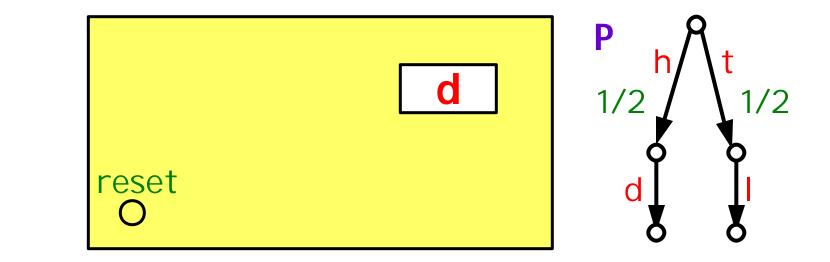
- Obs<sub>TM</sub>(P) = traces of P
- testing scenario for trace (language) equivalence

# Trace Machine (TM)




no distinguishing observation between

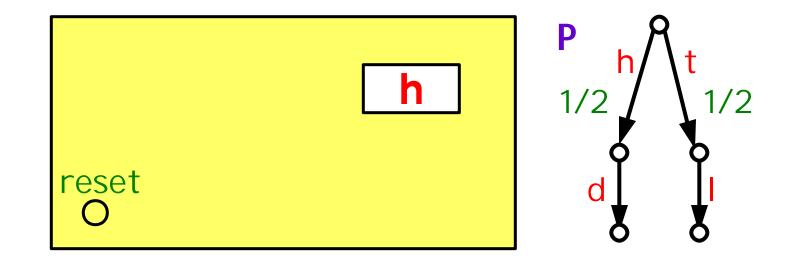




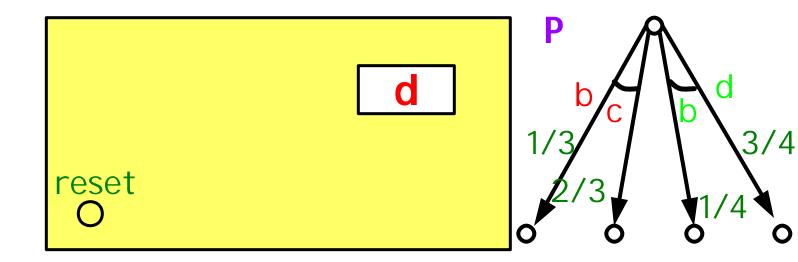

- reset button: start over
- repeat experiments
- each experiment yields trace of same length k
- observe frequencies of traces



- 9 experiments, length 2
  - tl
  - hd
  - hd
  - tl
  - CI.
  - hd
  - hd
  - . .
  - hd
  - tl

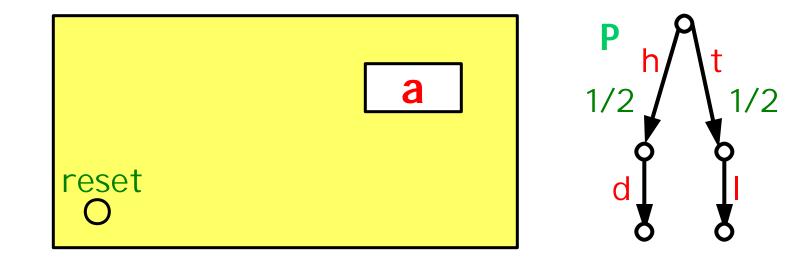

  - tl




- 9 experiments, length 2
  - tl hd
  - hd
  - ...
  - tl
  - hd
  - hd
  - . .
  - hd
  - tl

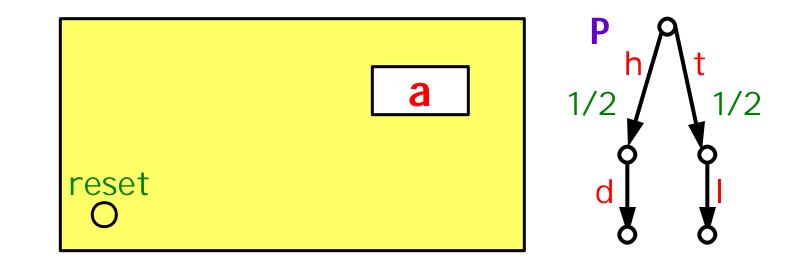
  - tl

frequencieshd4tl5other0




- with many experiments: #hd ¼ # tl
- use statistics: (m=100, k = 2)
  - hd,hd,hd,...,hd 2 Obs(P) freqs too unlikely to be an obsv
  - hd,tl,tl,hd,...tl,hd 2 Obs(P) freqs likely, is an observ of P



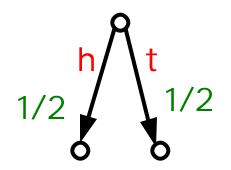

- nondeterministic choice
- choose one transition probabilistically
- in large outcomes:  $\frac{1}{2} \#c + \frac{1}{3} \#d \#b$
- use statistics:
  - b,b,b,....b 2 Obs(P) freqs too unlikely to be an obs
    b,d,c,b,b,b,c,... 2 Obs(P) freqs likely, is an observ of P

#### **Observations TDM**

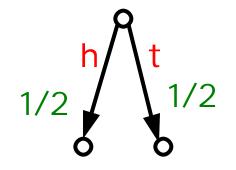


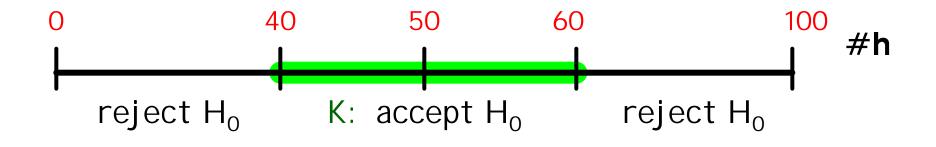
Obs<sub>TDM</sub>(P) =
 { σ | σ is likely to be produced by P}

# **Observations TDM**

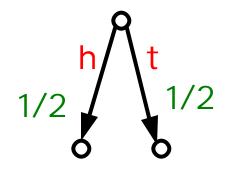


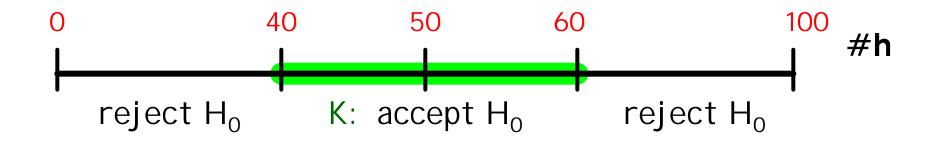

- perform m experiments (m resets)
- wlog: each experiment: trace of length k
- sample σ2 (Act<sup>k</sup>)<sup>m</sup>
- Obs(P) =


{ $\sigma^2 (Act^k)^m \mid \sigma$  is likely to be produced by P}


• what is likely? use hypothesis testing

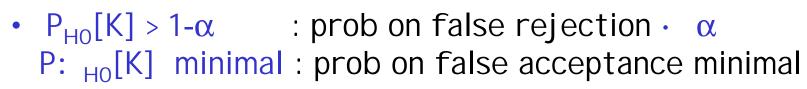
- I have a sequence  $\sigma = h_1 t_1 t_1 t_1 h_1 t_1 \dots 2 \{h_1 t_1\}^{100}$
- I claim: generated  $\sigma$  with automaton P.
- do you believe me
  - if  $\sigma$  contains 15 h's?
  - if  $\sigma$  contains 42 h's?

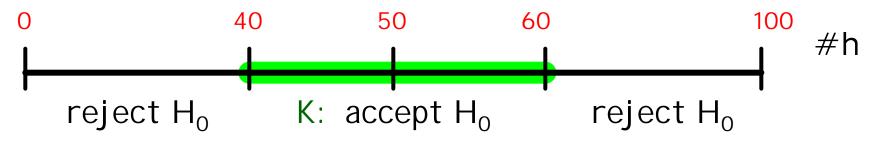




- I have a sequence  $\sigma = h,t,t,t,h,t,... 2 \{h,t\}^{100}$
- I claim: generated  $\sigma$  with automaton P.
- do you believe me
  - if  $\sigma$  contains 15 h's?
  - if  $\sigma$  contains 42 h's?
- use hypothesis testing:
- fix confidence level  $\alpha 2$  (0,1)
- $H_0$  null hypothesis =  $\sigma$  is generated by P

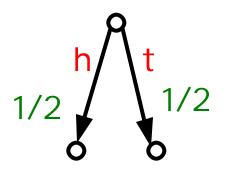


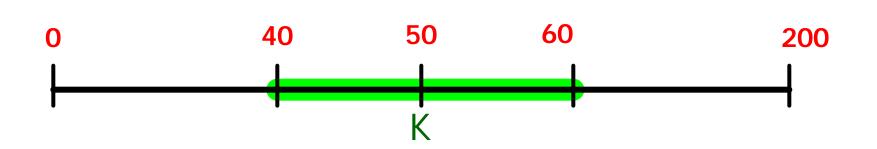



- I have a sequence  $\sigma = h_1t_1t_1h_1t_1... 2 \{h_1t\}^{100}$
- I claim: generated  $\sigma$  with automaton P.
- do you believe me
  - if  $\sigma$  contains 15 h's? NO
  - if  $\sigma$  contains 42 h's? YES
- use hypothesis testing:
- fix confidence level  $\alpha 2$  (0,1)
- $H_0$  null hypothesis =  $\sigma$  is generated by P





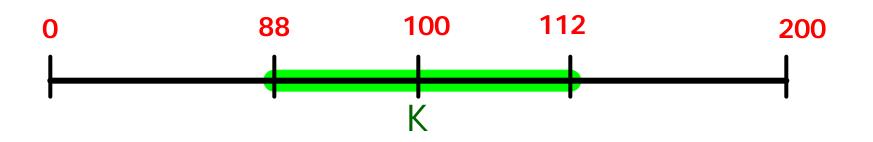


h/ t 1/2 1/2


- I have a sequence  $\sigma = h,t,t,t,h,t,...$  2 {h,t}<sup>100</sup>
- I claim: generated  $\sigma$  with automaton P.
- do you believe me
  - if  $\sigma$  contains 15 h's? NO
  - if  $\sigma$  contains 42 h's? YES
- use hypothesis testing:
- fix confidence level  $\alpha 2$  (0,1)
- $H_0$  null hypothesis =  $\sigma$  is generated by P



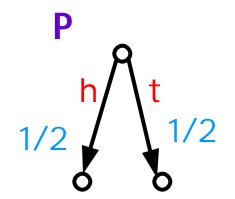


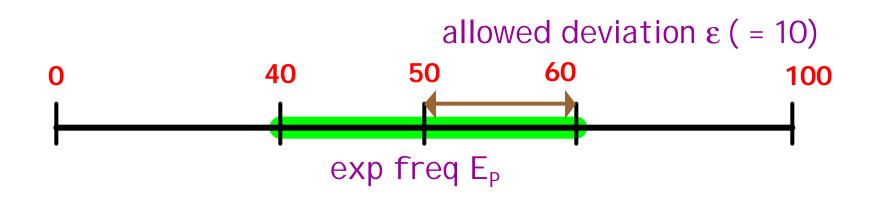
- Obs(P) = {σ2 (Act<sup>k</sup>)<sup>m</sup> | accept H<sub>0</sub> for σ, }
- for k = 1 and m = 100,  $\sigma 2 (Act)^{100}$  is an observation iff  $40 \cdot \text{freq}_{\sigma}(h) \cdot 60$



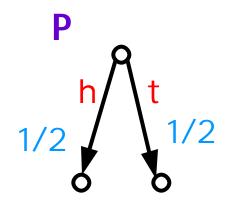



- Obs(P) = {σ2 (Act<sup>k</sup>)<sup>m</sup> | σ is likely to be produced by P}
- for k = 1 and m = 100, σ2 (Act)<sup>100</sup> is an observation iff 40 · freq<sub>σ</sub> (hd) · 60
- for k = 1 and m = 200  $\sigma 2 (Act)^{200}$  is an observation iff  $88 \cdot freq_{\sigma}(h) \cdot 112$


h/t 1/2

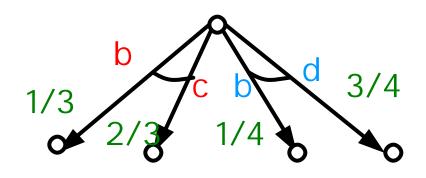

• etc....



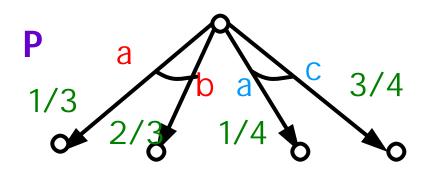

- Obs(P) = {σ2 (Act<sup>k</sup>)<sup>m</sup> | σ is likely to be produced by P}
- for k = 1 and m = 99  $\sigma^2$  (Act)<sup>100</sup> is an observation iff

 $40 \cdot \text{freq}_{\sigma} (\text{hd}) \cdot 60$ 

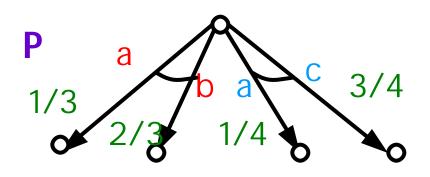




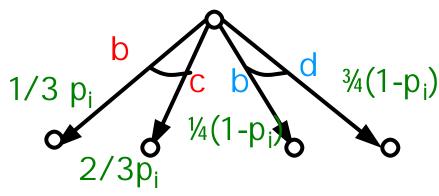

- Obs(P) = {σ2 (Act<sup>k</sup>)<sup>m</sup> | σ is likely to be produced by P}
- for k = 1 and m = 99
   σ2 (Act)<sup>100</sup> is an observation iff
   40 · freq<sub>σ</sub> (hd) · 60
   60




- $K = sphere_{\epsilon} (E_{P})$ 
  - = points within distance  $\epsilon$  from exp val  $E_P$
- $\epsilon$  is minimal with P[K] > 1- $\alpha$



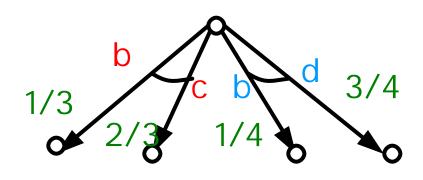




- σ = b,c,c,d,b,d,...,c 2 Obs(P) ??
- to compute expected frequencies and K, resolve notdet first
  - what is expected freq of b ?



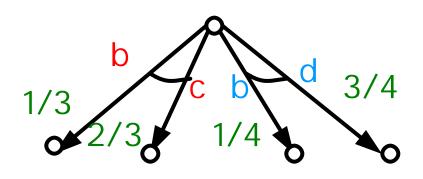
- σ = b,c,c,d,b,d,...,c 2 Obs(P) ??
- if we fix scheduler sequence: p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>... p<sub>100</sub>
   p<sub>i</sub> = P[take left trans in experiment i]
   1 p<sub>i</sub> = P[take right trans in experiment i]




- σ = b,c,c,d,b,d,...,c 2 Obs(P) ??
- if we fix adversaries:  $p_{1'}$ ,  $p_{2'}$ ,  $p_{3...}$ ,  $p_{100}$ 
  - p<sub>i</sub> = P[take left trans in experiment i]
  - 1 p<sub>i</sub> = P[take right trans in experiment i]
- critical section K<sub>p1,...,p100</sub>
  - $H_0$ :  $\sigma$  is generated by **P** under  $p_1$ ,  $p_2$ ,  $p_3$ ...  $p_{100}$
- $\sigma 2 \text{ Obs(P)}$  iff  $\sigma 2 \text{ K}_{p1,...,p100}$  for some  $p_{1'}, p_{2'}, p_{3...}, p_{100}$



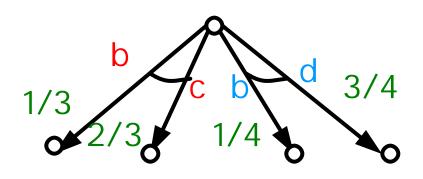
- fix  $p_1, p_2, p_3... p_{100}$
- compute  $P_{p1, p2, p3... p100}[\sigma]$  for every  $\sigma$ - e.g  $p_i = \frac{1}{2}$ ,  $P_{p1, p2, p3... p100}[c,c...c] = (\frac{1}{2}*2/3)^{100}$
- expected frequency  $E_{p1,\dots,p100}$  for
  - $c = \sum_{i} 2/3 p_{i}$
  - $d = \sum_{i} 3/4 (1-p_{i})$


$$- b = \sum_{i} 1/3 p_{i} + \frac{1}{4} (1-p_{i})$$

• as before: critical section K<sub>p1,...,p100</sub>



- fix  $p_1$ ,  $p_2$ ,  $p_3$ ...  $p_{100}$ 
  - compute P\_{p1, p2, p3... p100}[  $\sigma]$  for every  $\sigma$
- expected frequency E
- as before: critical section K<sub>p1,...,p100</sub>
  - $H_0$ :  $\sigma$  is generated by P under  $p_1$ ,  $p_2$ ,  $p_3$ ...  $p_{100}$
  - allow observations to deviate <  $\epsilon$  from E
  - $K_{p1,...,p100} = P_{p1, p2, p3... p100}[sphere_{\epsilon}(E)]$
  - with  $\epsilon$  minimal with  $\mathsf{P}_{\text{p1, p2, p3... p100}}[\mathsf{sphere}_{\epsilon}(\mathsf{E})] > \alpha$


#### **Observations**



Observations for k = 1, m = 100.

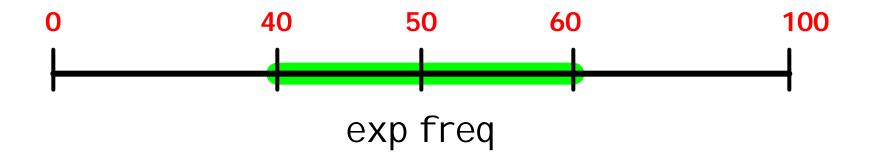
- $\sigma$  contains a, b only with 54 · freq<sub> $\sigma$ </sub> (c) · 78
  - take p<sub>i</sub> = 1 for all i
- $\sigma$  contains b,d only with 62 · freq<sub> $\sigma$ </sub> (d) · 88
  - take  $p_i = 0$  for all i

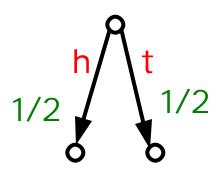
#### **Observations**



Observations for k = 1, m = 100.

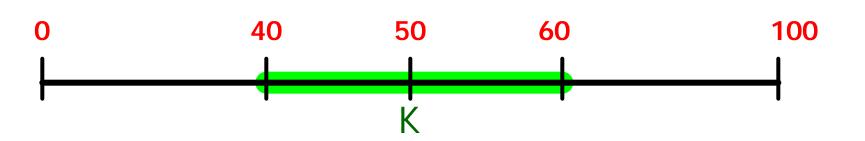
- $\sigma$  contains a, b only with 54 · freq<sub> $\sigma$ </sub> (c) · 78
  - take p<sub>i</sub> = 1 for all i
- $\sigma$  contains b,d only with 62 · freq<sub> $\sigma$ </sub> (d) · 88
  - take  $p_i = 0$  for all i
- m = 200
- 61 · freq<sub> $\sigma$ </sub> (c) · 71 and 70 · freq<sub> $\sigma$ </sub> (d) · 80
  - $p_i = \frac{1}{2}$  for all i
  - (these are not all observations; they form a sphere)


#### Main result


• TDM characterizes trace distr equiv:

 $Obs_{TDM}(P) = Obs_{TDM}(Q)$  iff trd(P) = trd(Q)

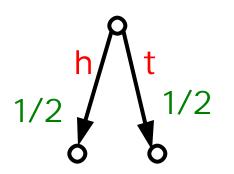
if P, Q are fin branching


 justifies trace distribution equivalence in an observational way





- Obs(P) = { $\sigma 2$  (Act<sup>k</sup>)<sup>m</sup> |  $\sigma$  likely to be produced by P}
- Obs(P) = { $\sigma 2 (Act^k)^m$  | freq\_ $\sigma$  in K}


• for k = 1 and m = 100,  $\beta 2 (Act)^{100}$  is an observation iff  $40 \cdot freq_{\beta} (hd) \cdot 60$ 

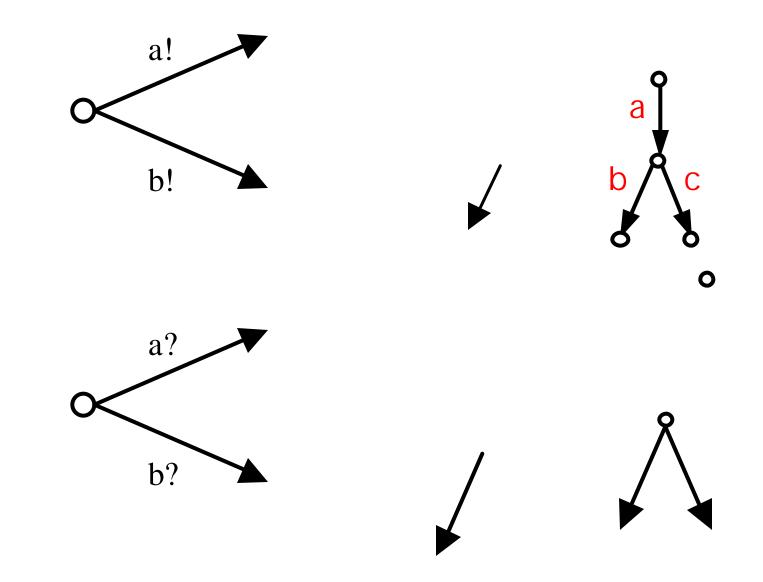


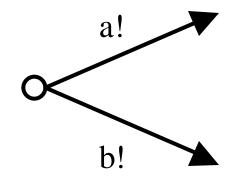
h/ t 1/2 1/2

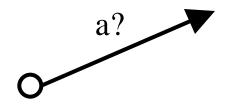
# Nondeterministic case

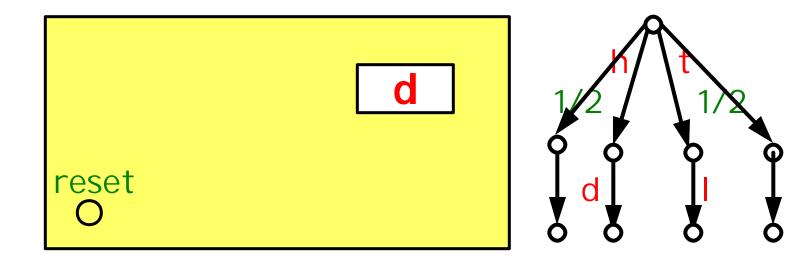
- \sigma = \beta\_1 ,...\beta\_m
- fixed adversaries
- take in
- expect\_freq




- for \gamma\in Act^k, freq\_\gamma(\beta)
   freq \in \
- we consider only frequency of traces in an outcome


# Main result

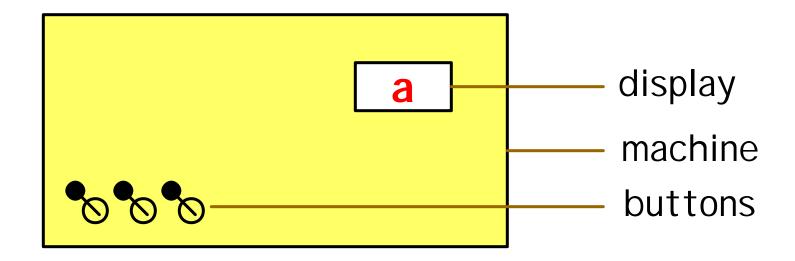

TDM characterizes trace distr equiv 1<sub>TD</sub>


 $Obs_{TDM}(P) = Obs_{TDM}(Q)$  iff trd(P) = trd(Q)

- "if" part is trivial, "only if"-part is hard.
  - find a distinguishing observation if P, Q have different trace distributions.
- I AP for P. Q fin branching
  - P, Q have the same infinite trace distrs iff
    - P, Q have the same finite trace distrs
- the set of trace distrs is a polyhedron
- Law of large numbers
  - for random vars with different distributions

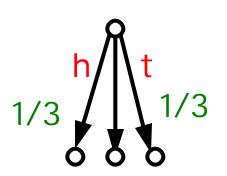









- reset button: start over
- repeat experiments: yields sequence of traces
- in large outcomes: #hd ¼ # tl
- use statistics:
  - hd,hd,hd,...,hd 2 Obs(P)
    - too unlikely
  - hd,tl,tl,hd,...tl,hd 2 Obs(P) likely




# **Testing scenario's**



- a black box with display and buttons
- inside: process described by LTS P
- display: current action
- what do we see (over time)? Obs<sub>M</sub>(P)
- P, Q are deemed equivalent iff Obs<sub>M</sub>(Q) = Obs<sub>M</sub>(Q)
- desired characterization:

- Obs(P) = {σ2 (Act<sup>k</sup>)<sup>m</sup> | σ is likely to be produced by P}
- for k = 1 and m = 99,
- expectation E = (33,33,33)
- Obs(P) = { $\sigma^2$  (Act)<sup>99</sup> | |  $\sigma E$  | < 15}

