\mathcal{A} testing scenario for probabilistic automata

Marielle S toelinga
UC Santa Cruz
Frits Vaandrager University of $\mathfrak{N i j m e g e n}$

Characterization of process equivalences

??

- trace (language) equivalence
- bisimulation equivalence
- ready trace equivalence
- comparative concurrency semantics [DH. , Mil80,vG[01]
- compare various equivalences
- justify equiv via testing scenarios / Gutton pusfing experiments

Characterization of process equivalences

- testing scenarios:
- define intuitive notion of observation, fundamental
- processes that cannot be distinguished by observation are deemed to be equivalent
- justify process equivalence
$\mathcal{P}^{\prime} Q$ iff $O 6 s(\mathcal{P})=O \sigma s(Q)$
- does not distinguish too much/too little

Testing scenario

testing scenario's in non-probabilistic case

- trace equivalence
- bisimulation
- ...
we define
- observations of a PA
- observe probabilities througf statisticalmethods (fypothes is testing)
main result
$-O 6 s(\mathcal{P})=O 6 s(Q)$ iff $\operatorname{trd}(\mathcal{P})=\operatorname{trd}(Q), \quad$ P, Q fin Granching
- $\operatorname{trd}(\mathcal{P})$ extension of traces for PAs. [Segala]
- justifies trace distr equivin terms of observations

Model for testing scenarios

- machine \mathcal{M}
- a 6 lack box
- inside: process described by LIS P
- display
- showing current action
- buttons
- for user interaction

Model for testing scenarios

- an observer
- records what she sees (over time) + buttons
- define $O 反 s_{\mathfrak{M}}(\mathbb{P})$:
- observations of \mathbb{P}
$=$ what observer records, if $\mathcal{L I S} \mathbb{P}$ is inside \mathcal{M}

Model for testing scenarios

- processes (LIS) with same observations are deemed to be equivalent.
- characterization results:

$$
O \sigma s_{\mathcal{M}}(\mathcal{P})=O \sigma s_{\mathcal{M}}(Q) \quad \text { iff } \quad P^{\prime} Q
$$

- does not distinguish too mucfi/too little

Trace Maçine ($\mathcal{T} \mathcal{M}$)

- no buttons for interaction
- display shows current action

Trace Macfine ($\mathcal{T} \mathcal{M}$)

P 0

- no buttons for interaction
- display shows current action
- with P inside \mathcal{M}, an observer sees either of

$$
\varepsilon, a, a b, a c
$$

- Obs $\operatorname{ciM}(\mathcal{P})=$ traces of \mathbb{P}
- testing scenario for trace (language) equivalence

Trace Maçine ($\mathcal{T} \mathcal{M}$)

- no distinguisfing observation between

Trace Distribution Maçine ($\mathcal{T} \mathcal{D M}$)

- reset Gutton: start over
- repeat experiments
- eachexperiment yields trace of same lengtf K
- observe frequencies of traces

Trace Distribution Macfine ($\mathcal{T} \mathcal{D M}$)

9 experiments, lengtf 2
t/
hd
hd
tl
hd
hd
hid
tl
tl

Trace Distribution Machine ($\mathcal{T} \mathcal{D M}$)

9 experiments, length 2
tl
hd
hid
$t /$
hd
hd
hd
tl
ti
frequencies fid 4
$t l 5$
other 0

Trace Distribution Macfine ($\mathcal{T} \mathcal{D M}$)

with many experiments: \# fid $1 / 4$ \# t 1 use statistics: $(m=100, K=2)$

- fid,fd,fd,...fd $2 O b s(\mathbb{P})$ freqs too unlikely to be an obsv

Trace Distribution Machine ($\mathcal{T} \mathcal{D M}$)

- nondeterministic choice
- choose one transition probabilistically
- in large outcomes: $1 / 2 \# c+1 / 3$ \# $d^{1} / 4 \# 6$
- use statistics:
$-6,6,6, \ldots .6$
$206 s(P)$ freqs too unlikely to be an obs
$-6, a, c, 6, b, b, c, \ldots 2$ O $\sigma s(\mathcal{P})$ freqs like $(y$, is an observe of P

Observations $\mathcal{T D M}$

$O 6 s_{\text {ADM }}(\mathcal{P})=$

$$
\{\sigma \quad \mid \sigma \text { is likely to be produced by } \mathbb{P}\}
$$

Observations $\mathcal{T D M}$

- performmexperiments (mresets)
- wog: each experiment: trace of length
- sample $\sigma 2\left(\mathscr{A c} t^{k}\right)^{m}$
$O 反 s(\mathcal{P})=$

$$
\left\{\sigma 2\left(\mathfrak{A c} t^{k}\right)^{m} \mid \sigma \text { is likely to be produced by } \mathbb{P}\right\}
$$

- what is likely? use hypothesis testing

What outcomes are likely?

- I have a sequence $\sigma=\left\{r, t, t, t, 斤, t, \ldots 2\{\hbar, t\}^{100}\right.$
- I claim: generated σ with automaton \mathcal{P}.
- do you believe me
- if σ contains 15 f's?
- if σ contains 42 f 's?

What outcomes are likely?

- I have a sequence $\sigma=\left\{, t, t, t, r, t, \ldots 2\left\{\{, t\}^{100}\right.\right.$
- I claim: generated σ with automaton \mathcal{P}.
- do you believe me
- if σ contains 15 f's?
- if σ contains 42 f's?

- use hypothesis testing:
- fix confidence level $\alpha 2(0,1)$
- \mathcal{H}_{0} null hypothesis $=\sigma$ is generated by \mathcal{P}

What outcomes are likely?

- I have a sequence $\sigma=\left\{, t, t, t, r, t, \ldots 2\left\{\{i, t\}^{100}\right.\right.$
- I claim: generated σ with automaton \mathcal{P}.
- do you believe me
- if σ contains 15 f's? $N O$
- if σ contains 42 h's? DES

- use fypotfesis testing:
- fix confidence level $\alpha 2(0,1)$
- \mathcal{H}_{0} null fypothesis $=\sigma$ is generated by \mathcal{P}

What outcomes are likely?

- I have a sequence $\sigma=\left\{, t, t, t, f, t, \ldots 2\left\{\{i, t\}^{100}\right.\right.$
- I claim: generated σ with automaton P.
- do you believe me
- if σ contains 15 fr ? $\mathfrak{N} \mathrm{N}$
- if O contains 42 f's? DES
- use hypothesis testing:
- fix confidence level $\alpha 2(0,1)$
- \mathcal{H}_{0} null hypothesis $=\sigma$ is generated by \mathcal{P}
- $\mathcal{P}_{\mathcal{H} 0}[\mathcal{K}]>1-\alpha \quad$ prob on false rejection α
\mathcal{P} : $\mathcal{H}_{0}[\mathcal{K}]$ minimal : prob on false acceptance minimal

Observations $\alpha=0.05$

- $O 6 s(\mathcal{P})=\left\{\sigma 2(\mathfrak{A c t})^{\kappa}\right)^{m} \mid$ accept \mathscr{H}_{0} for σ, \}
- for $K=1$ and $m=100$, $\sigma 2(\mathfrak{A c t})^{100}$ is an observation of 40. freq. (\mathfrak{K}) 60

Observations $\alpha=0.05$

- $O \sigma s(\mathcal{P})=\left\{\sigma 2\left(\mathscr{A c} t^{k}\right)^{m} \mid \sigma\right.$ is likely to be produced by P \}
- for $K=1$ and $m=100$,
$\sigma 2(\operatorname{Act})^{100}$ is an observation tiff
$40 \cdot f r e q_{\sigma}(\hbar d) \cdot 60$

- for $k=1$ and $m=200$
$\sigma 2(\mathcal{A c t})^{200}$ is an observation tiff
88.freqo (r). 112
- etc....

Observations $\alpha=0.05$

- $O \sigma s(\mathcal{P})=\left\{\sigma 2\left(\mathscr{A c} t^{k}\right)^{m} \mid \sigma\right.$ is like $\{y$

P to be produced by P \}

- for $k=1$ and $m=99$
$\sigma 2(\mathcal{A c t})^{100}$ is an observation tiff
$40 \cdot f r e q_{\sigma}(f d) \cdot 60$

O6servations $\alpha=0.05$

- Obs $(\mathcal{P})=\left\{\sigma 2\left(\mathcal{A c} t^{k}\right)^{m} \mid \sigma\right.$ is likely

$40 \cdot f r e q_{\sigma}(f d) \cdot 60$
- K $=\operatorname{sphere}_{\varepsilon}\left(\mathcal{E}_{q}\right)$
$=$ points withindistance ε from exp val \mathcal{E}_{P}
- ε is minimal with $\mathcal{P}[\mathcal{K}]>1-\alpha$

Witf nondeterminism

- $\sigma=b, c, c, d, b, d, \ldots, c$ $2 O b s(P)$??
- to compute expected frequencies and \mathcal{K} resolve notdet first
- what is expected freq of 6 ?

Witf nondeterminism

- $\sigma=b, c, c, d, b, d, \ldots, c$ $2 O b s(P)$??
- if we fix scheduler sequence: $p_{1}, p_{2}, p_{3} \ldots p_{100}$

$$
\begin{array}{ll}
-p_{i} & =\mathcal{P}[\text { take left trans in experiment i] } \\
-1-p_{i} & =\mathcal{P}[\text { take rigft trans in experiment i] }
\end{array}
$$

Witf nondeterminism

- $\sigma=b, c, c, d, b, d, \ldots, c$ 2 Obs (\mathcal{P}) ??
- if we fix adversaries: $p_{1}, p_{2}, p_{3} \ldots p_{100}$

$$
\begin{array}{ll}
-p_{i} & =P \text { Plake left trans in experiment i] } \\
-1-p_{i} & =\mathcal{P}[\text { take rigft trans in experiment i] }
\end{array}
$$

- critical section $K_{\nmid 1, \ldots, p 100}$
$-\mathcal{H}_{0}: \sigma$ is generated by Punder $p_{1}, p_{2}, p_{3} \ldots p_{100}$
- $\sigma 2$ Obs (\mathcal{P}) iff $\sigma 2 \mathcal{K}_{\varphi 1, \ldots, p 100}$ for some $p_{1}, p_{2}, p_{3} \ldots p_{100}$

Witf nondeterminism

- fix $p_{1}, p_{2}, p_{3} \ldots p_{100}$
- compute $\mathscr{P}_{p 1, p 2, p 3 \ldots p 100} / \sigma /$ for every σ
$-e . g p_{i}=1 / 2, \mathscr{P}_{p 1, p 2, p 3 \ldots p 100}[c, c \ldots c]=\left(1 / 2^{*} 2 / 3\right)^{100}$
- expected frequency $\mathcal{E}_{p 1, \ldots, \ldots 100}$ for
$-c=\sum_{i} 2 / 3 p_{i}$
$-d=\sum_{i} 3 / 4\left(1-p_{i}\right)$
$-6=\sum_{i} 1 / 3 p_{i}+1 / 4\left(1-p_{i}\right)$
- as Gefore: criticalsection $\mathcal{K}_{p 1, \ldots p 100}$

Witf nondeterminism

- fix $p_{1}, p_{2}, p_{3} \ldots p_{100}$
- compute $P_{p 1, p 2, p 3 \ldots p 100}[\sigma]$ for every σ
- expected frequency E
- as Gefore: criticalsection $K_{p 1, \ldots p 100}$
$-\mathcal{H}_{0}: \sigma$ is generated by \mathcal{P} under $p_{1}, p_{2}, p_{3} \ldots p_{100}$
- allow observations to deviate $<\varepsilon$ from \mathcal{E}
$-\mathcal{K}_{p 1, \ldots, p 100-}=\mathcal{P}_{p 1, p 2, p 3 \ldots p 100}\left[\operatorname{sphere}_{\varepsilon}(\mathcal{E})\right]$
- with \& minimal with $\mathcal{P}_{p 1, p 2, p 3 \ldots p 100}\left[\operatorname{sphere}_{\varepsilon}(\mathcal{E})\right]>\alpha$

Observations

Observations for $k=1, m=100$.

- σ contains a, b only with 54 ' freq o (c). 78
- take $p_{i}=1$ for all i
- σ contains $6, d$ only with 62 . freq (d). 88
- take $p_{i}=0$ for all i

Observations

Observations for $K=1, m=100$.

- σ contains a, b only with 54 ' freq o (c). 78
- take $p_{i}=1$ for all i
- σ contains $6, d$ only with 62. freq (d). 88
- take $p_{i}=0$ for all i
$m=200$
- 61. freq o (c). 71 and $70 \cdot$ freq o (d). 80
- $p_{i}=1 / 2$ for all i
- (these are not all observations; they form a sphere)

Main result

- $\mathcal{T D M}$ characterizes trace distr equiv:

$$
O 反 s_{\mathcal{T D M}}(\mathcal{P})=O \sigma s_{\mathcal{T D M}}(Q) \quad \text { iff } \quad \operatorname{trd}(\mathcal{P})=\operatorname{tr} d(Q)
$$

if \mathcal{P}, Q are fin branching

- justifies trace distribution equivalence in an observational way
experer

$$
1 / 2 \int_{0}^{1 / 2}
$$

Observations $\alpha=0.05$

- Obs $(\mathcal{P})=\left\{\sigma 2\left(\mathscr{A c} t^{\kappa}\right)^{m} \mid \sigma\right.$ likely to be produced by $\left.\mathcal{P}\right\}$
- $O \sigma s(\mathcal{P})=\left\{\sigma 2\left(\mathscr{A c} t^{\kappa}\right)^{m} \mid\right.$ freq_ σ in $\left.\mathcal{K}\right\}$
- for $k=1$ and $m=100$,
$\beta 2(\mathcal{A c t})^{100}$ is an observation of
$40 \cdot$ freq $q_{\beta}(f d) \cdot 60$

\mathcal{N} nondeterministic case

- $\backslash \operatorname{sigma}=\backslash 6 e t a_{-} 1, \ldots \backslash 6 e t a_{-} m$
- fixed adversaries
- take in
- expect_freq

- for $\backslash \operatorname{gamma} \backslash i n \mathcal{A c} t^{\wedge} \mathcal{K}$ freq_ $\backslash \operatorname{gamma(\backslash beta)~}$
freq $\backslash i n \backslash$
- we consider only frequency of traces in an outcome

Main result
$\mathcal{T D M}$ characterizes trace distr equiv' ${ }^{\mathcal{D} \mathcal{D}}$

$$
O 反 s_{\mathcal{T D M}}(\mathcal{P})=O 反 s_{\mathcal{T D} \mathcal{M}}(Q) \quad \text { if } \quad \operatorname{trd}(\mathcal{P})=\operatorname{trd}(Q)
$$

- "if" part is trivial, "only if"-part is fard.
- find a distinguishing observation if P, Q have different trace distributions.
- I $\mathcal{A P}$ for \mathcal{P}. Q fin branching
- P, Q have the same infinite trace distrs tiff
\mathcal{P}, Q have the same finite trace distrs
- the set of trace distrs is a polyhedron
- Law of large numbers
- for random vars with different distributions

Trace Distribution Machine ($\mathcal{T} \mathcal{D M}$)

- reset button: start over
- repeat experiments: yields sequence of traces
- in large outcomes: \# fd $\mathbf{1} / \mathbf{4} \# t l$
- use statistics:

- fid, t l, t l, fd, ... tl,fd 2 Obs (P) liKely

Process equivalences

Testing scenario's

- a black 6 ox with display and buttons
- inside: process described by LIS P
- display: current action
- what do we see (over time)? $O 6 s_{M}(\mathcal{P})$
- P, Q are deemed equivalent of $O 6 s_{\mathcal{M}}(Q)=O 6 s_{M}(Q)$
- desired characterization:

O6servations $\alpha=0.05$

- Obs $(\mathcal{P})=\left\{\sigma 2\left(\mathscr{A c} t^{k}\right)^{m} \mid \sigma\right.$ is like 1 y to be produced by \mathcal{P} \}
- for $K=1$ and $m=99$,
- expectation $\mathcal{E}=(33,33,33)$

- $O 6 s(\mathcal{P})=\left\{\sigma 2(\mathcal{A c t})^{99}| | \sigma-\mathcal{E} \mid<15\right\}$

