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Chapter 1

Introduction
�

his thesis is about analysis and efficient simulation of queueing models of tele-
communications systems. In this introductory chapter, some background and
motivation for this work is provided, and an outline of the thesis’ content presen-
ted.

1.1 Packet-switched telecommunication systems
The first electric and electronic telecommunications systems, such as the tele-
graph and telephone networks, were based on a concept known as circuit-
switching. In such a system, a separate “circuit” (e.g., a pair of wires or a slice
of radio spectrum) is reserved for each connection, and remains reserved until
that connection is no longer needed. This is a straightforward concept that fits
naturally to the notion of a (telephone) conversation, and that can be implemen-
ted on the basis of relatively simple technology, such as mechanical switches
and relays; see [vHK68] for an overview of such technologies. However, circuit
switching is not very efficient: in a typical telephone conversation only one of the
participants is speaking at a time, while the other is listening, so only half of
the two-way channel is actually used. Furthermore, modern computer telecom-
munication needs (such as e-mail and file transfer) are more “bursty” in nature:
they can use a large bandwidth but need it only for a short time, while circuit
switching would assign a relatively small bandwidth for a long time.

Starting in the 1960s, a different type of communication network was de-
veloped: the ARPANET, which evolved into the Internet (based largely on IP, the
Internet Protocol) known today. In the 1990s, the ATM (Asynchronous Transfer
Mode) network type was developed [Onv94]. These networks are based on the
concept of packet-switching. In a packet- (or cell-, in the case of ATM) switched
network, no wires or radio or cable bandwidth is reserved for a connection. In-
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stead, the network offers a packet-delivery service: information to be transmit-
ted is offered to the network in the form of packets, each containing some limited
number of characters (bytes) of information, as well as some additional informa-
tion (the “header”) which tells the network to what destination this packet must
be transported. Long messages can be split over several packets, and packets
are also used to acknowledge the correct receipt of information. Clearly, in such
a system no resources will be wasted for idle connections, since an idle connection
will not inject any packets into the network; thus, all available transmission ca-
pacity of the network links can be used for active connections. However, in such
a network it can easily happen that while a link is busy transmitting one packet,
another packet arrives which needs to be transmitted over the same link. In
that case, the newly arriving packet needs to be stored in a buffer memory, from
which it is read and transmitted when the link is available again. If the buffer
memory is already totally filled up with packets, the newly arriving packet needs
to be dropped. Thus, we see that the advantage of more efficient utilization of
the network links comes at a cost: the buffering introduces an uncertain amount
of delay, and a risk that packets are never delivered due to buffer overflow.

The consequences of varying delays and non-delivery depend very much on
the application the network is used for. Originally, packet-switched networks
were intended for data-communication; e.g., the transfer of e-mail messages and
files from one computer to another. A variable delay hardly hurts such an applic-
ation: it just takes a bit longer to transport the message. Packet loss would hurt
very much, if it would mean that part of an e-mail would simply disappear. How-
ever, protocols (such as TCP, the Transmission Control Protocol in the Internet)
are used which check whether all packets have arrived and, if necessary, make
sure a missing packet is retransmitted until it has finally arrived. Of course this
takes time and additional bandwidth, so the transport delay increases.

If one tries to use a packet-switched network for applications with more real-
time demands, such as telephony or a video stream, the variable delay caused
by the buffering can present a problem: if a packet of data arrives too late, it
is no longer useful. Also packet loss presents a problem, since a retransmission
is usually too time-consuming. If one packet of data (containing a fraction of a
second worth of telephone sound, for example) is lost or arrives too late, some
kind of interruption in the playback will occur. If this happens rarely, it is not
really a problem, but if it happens often it can be very disturbing for the usability
of the connection.

Packet loss and delay and their impact on the performance of the communic-
ation are known as Quality of Service (QoS) considerations. A major issue in the
design of modern packet-switched telecommunication systems is the prediction
of the QoS that the network’s user will get; or, conversely, how to engineer the
network such that the service offered will satisfy the user’s quality requirements
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while maintaining efficient usage of network resources.

1.2 Modelling and analysis

In order to mathematically investigate the packet loss and delay properties of a
telecommunication network or a component of such a network, a model of the
system must be formulated in which such phenomena are expressed. This can
be done using a branch of mathematics known as queueing theory. In queueing
theory, models are studied of systems in which “customers” (randomly) arrive at
a “service station” in order to be “served”; since there may be other customers
ahead of them, they may need to wait in a buffer or “queue”. Queueing models
are characterized by the probability distribution of the time between arrivals,
the probability distribution of the time needed to serve a customer, size of the
buffer space (if finite), queueing policy (e.g., first come first served), etc. One of
the original motivating applications for the development of queueing theory was
in fact the telephone network at the beginning of the 20th century: the waiting
time until a call could be handled by an operator, and the probability of a call
blocking due to the unavailability of free lines were among the first results by
A. K. Erlang [BHJ60].

Already at the start of the development of packet-switched telecommunica-
tion networks in the 1960s, queueing theory was applied to models of such net-
works [Kle64]. A queueing model of a communication network typically includes
one or more sources which send packets (cf. customers) into the network (cf. ser-
vice station); these packets are then transmitted (cf. served) over a network link
if the link is free, or stored temporarily in a buffer memory (cf. queue) if the link
is busy transmitting another packet.

Given such a queueing model, the question is how to evaluate performance
measures of interest, such as the buffer overflow (or packet loss) probability.
Ideally, one would like to do this using only analytical means, such as probability
theory and calculus, in order to arrive at closed-form expressions of the perform-
ance measure in terms of the parameters of the model. Indeed, for simple mod-
els this is often possible; see [Kle75a] for many examples. Such models typically
contain only one queue, and/or the distribution of the interarrival and service
times have nice properties (e.g., memoryless distribution), and/or the perform-
ance measure is simple (e.g., the average waiting time). In slightly more com-
plicated models, an explicit closed form expression may not be obtainable, but
results may still be found by a numerical evaluation (e.g., a recursion, a mat-
rix equation, or an inverse Laplace transform). Furthermore, in cases where an
exact solution is not possible, approximations may be used to simplify the cal-
culations; for example, limit behaviour for large buffer size may be calculated.
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An important approximation technique is large-deviations theory, which deals
with the behaviour of a system when it deviates far from its average behaviour.
An overview of large-deviations theory and its applications to telecommunication
systems is provided in [Wei95].

If analytical or numerical calculation is not possible and appropriate approx-
imations are not available, simulation can often be useful. Stochastic simulation
is the use of a computer program to sample (pseudo-random) values for the ran-
dom variables in the model, thus constructing a “sample path”: a sequence of
events that could happen in the model. By repeating this, many different and
independent sample paths are obtained. Then an estimate of the quantity of in-
terest can be obtained by taking the average of its value over all of the simulated
sample paths. Obviously, due to the randomness, this is only an approximation
of the quantity’s true value. Therefore, together with the estimate one also cal-
culates the variance of the estimator: a measure for how accurate the estimate
is likely to be (for more precise definitions, see, e.g., [KL91]); the more sample
paths are simulated, the smaller the variance becomes (unless the variance does
not exist (is infinite)). The big advantage of simulation is its generality: in con-
trast to most analytical and numerical methods, it poses no restrictions on the
probability distributions involved; also, given enough computer capacity, very
complicated models can be simulated and estimates can be obtained at any de-
sired accuracy.

Simulation also has some important problems, though. First of all, it can be
very time-consuming: in order to estimate the probability of an event of interest
accurately, one needs to collect many (almost) independent observations of it in
the simulation run. Furthermore, one such a simulation run in principle only
yields an estimate for one set of values of the model’s parameters (buffer size, ar-
rival rate, etc.). In practice, one frequently needs estimates at many parameter
values, for example to choose the buffer size such that the overflow probability
is sufficiently low; in such cases, the simulation needs to be repeated for many
values of the parameter. (It should be noted however, that using modern tech-
niques [RM98], one simulation run can be sufficient to obtain estimates for a
range of values of some of the model’s parameters.)

One class of problems for which (standard) simulation is rather unsuitable, is
those involving the estimation of probabilities of rare events, i.e., events which
have a very low probability of occurrence (e.g., 10 � 6 or less). Such events are
of much interest in queueing models of telecommunications systems, since these
are typically designed to have very low packet loss probabilities to guarantee
a good quality of service. These low probabilities imply that the system can
be simulated for a long time without the event occurring even once. As noted
above, an event needs to be observed many times during a simulation run for
the estimate of its probability to be accurate; therefore, the estimation of rare-
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event probabilities requires impractically long simulation runs if no specialized
techniques are used, such as those discussed in the next section.

1.3 Rare event simulation

Two classes of methods for rare event simulation are known: those based on im-
portance sampling, and those based on splitting. Both of these methods involve
modifying the simulation such that the rare event of interest occurs more fre-
quent than it would do otherwise, and then mathematically compensating for
the influence of these modifications to obtain the true probability. The methods
differ in the type of modification. In importance sampling, the probability dis-
tributions of the model are modified to make the occurrence of the target event
more frequent; in splitting methods, sample paths that reach an intermediate
levelset (between the starting state and the rare target levelset) are split into
several separate paths, thus also causing frequent observations of the target
event. Both methods are described in some more detail below.

1.3.1 Importance sampling simulation

As noted above, the basis of importance sampling is modifying the probability
distributions of the model. Formally, this is called a change of measure1. The
word tilting is also used often, either to refer to a specific form of change of meas-
ure, or as a short synonym for change of measure; we will use it in the latter
sense in this thesis.

Changing the probability distributions of the model implies that with any
sample path, two probabilities can be associated: one using the original probab-
ility distributions, and one using the alternative probability distributions. The
alternative distribution can (and should) be chosen such that in a simulation
based on that distribution the target event is not rare, and thus observed fre-
quently. To ensure a correct estimate of the target event’s probability, the sim-
ulation program needs to keep track of the likelihood ratio: the ratio between a
sample path’s probability using the original distribution and its probability us-
ing the alternative distribution. Every time the target event is observed in the
modified system, the likelihood ratio can be used to give a correct contribution to
the event’s probability estimate. For more details see, e.g., [Hei95] and [NSH00].

A crucial problem in importance sampling simulation is the proper choice of
the simulation distributions. If chosen incorrectly, the resulting estimator may
have a greater variance that the one from standard simulation; the variance can
even become infinite. In that case, the estimator may also appear to be biased

1this terminology is based on using measure theory for the description of probabilities.
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(i.e., its expectation may appear to be different from the true value) in a finite
simulation run, although it theoretically still is unbiased. No general method
exists to choose the optimal simulation distribution. It must be chosen such that
no sample path which actually reaches the event and has a non-zero probability
under the original distribution, gets a zero probability; otherwise, the estimator
will be biased. A practical guideline is that the paths that are made more likely
by the new distribution must not just be any paths to the event of interest, but
must be those paths which form the most typical way to reach the event in the
original system. In fact, it is known that if one chooses the new distributions
such that they are identical to the original distributions conditioned on the oc-
currence of the event of interest, one gets an importance sampling estimator
with zero variance. However, this knowledge cannot be applied in practice, since
if one could calculate these optimal distributions, one would already know the
probability of interest exactly. In practice, heuristics are often used: one tries to
find (e.g., using large-deviations theory) what the most likely paths to the event
of interest are in the original system, and then tries to modify the distributions
such that they favor this (and similar) paths.

Because of the difficulty of properly choosing the simulation distributions, a
substantial part of the literature on importance sampling consists of analytical
calculations of the performance of a given simulation distribution for a given
problem. Often, the asymptotic behaviour is discussed; i.e., how the variance of
the importance sampling estimator for a given number of sample paths (obser-
vations) changes when the event is made rarer, e.g., by increasing the buffer size
in the case of a buffer overflow model. A desired property is asymptotic efficiency,
meaning that the relative error (defined as the estimate’s standard deviation
divided by the estimate itself) increases at most polynomially in some “rarity”
parameter (e.g., the buffer size), while the probability of the event decreases ex-
ponentially.

As an alternative to the use of heuristics and/or formal mathematical proofs
to choose the change of measure, a number of adaptive methods have been de-
veloped recently. Such methods use a series of simulation runs to search for
the optimal change of measure and converge to it. Some examples of this are
[DT93b], [DT93a], [AQDT95], [RM98], and [Lie99]. The obvious advantage of
such methods is their general applicability: they can be used even if not enough
insight into (or analysis of) the model is available to decide what the typical paths
to the rare event are.

1.3.2 Splitting methods

In splitting simulation methods, which are perhaps best known under the name
RESTART (REpetitive Simulation Trials After Reaching Thresholds), every
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sample path that reaches a given intermediate levelset is split into several
sample paths, each of which gets a chance to reach the next intermediate level-
set. By properly choosing the intermediate levels, the complete sample path to
the rare overflow levelset can thus be broken down into many non-rare events,
namely reaching the next level after (re)starting from the previous level. Thus,
the estimation of the rare event probability decomposes into several estimations
of probabilities that can easily be performed by standard simulation, and a cal-
culation (multiplication) to combine them. However, computing the variance of
the resulting estimator is not always straightforward and depends on details of
the splitting method chosen; see, e.g., [Gar00].

Properly applying the splitting method involves deciding how many restart
levels to use, where to put them, how many restarts to perform at every level,
etc. In particular, the proper placement of the levels can be problematic in a
multi-dimensional model (e.g., a queueing model with several nodes); choosing
them wrong may lead to inefficient simulation.

The splitting method will not be considered further in this thesis; for more de-
tails, the reader is referred to [VAVA91], [VAVA99], [GF98], [GHSZ98], [Gar00],
and references therein.

1.4 Problems studied in this thesis

Two main problems are studied in this thesis, although some other related prob-
lems also get some attention. These main problems are: consecutive cell loss,
and overflows in networks of queues. They are introduced in the following.

1.4.1 Consecutive cell loss

Most research into loss models for ATM (and other queueing) systems has con-
centrated on the probability of the loss of an individual cell (packet, customer,
etc.). Evidently, this is an important characteristic of a system, but it does not
tell the whole story: the pattern of loss can also be important for the impact on
the QoS. Consider for example non-realtime traffic, such as file transfer. Typic-
ally, such traffic is generated as IP (Internet Protocol) packets, which are split
(because of their size) over several ATM cells. If at least one of the cells of the
packet gets lost, the entire packet is retransmitted by a higher-layer protocol,
such as TCP (Transmission Control Protocol). For this retransmission process it
does not matter whether one or multiple cells are lost, as long as they all belong
to the same packet. Compare this with the case of real-time traffic. Cell loss in
such traffic typically leads to interpolations or error-recovery using redundancies
at the receiving end; if several consecutive or close cells are lost, the interpola-
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tion or recovery will be less accurate or impossible, whereas loss of a single cell
would hardly give a noticeable QoS degradation.

Not much literature seems to exist on cell loss patterns, and consecutive
cell loss in particular. In [NH96], the consecutive cell loss probability is calcu-
lated analytically for M

�
M
�
1 queues, and an efficient (but heuristic) importance

sampling simulation method for the estimation of this probability in GI
�
GI
�
1

queues is described. In [LA96], policies to optimize the consecutive-cell loss per-
formance of a leaky-bucket admission system are studied. In [KS97], the con-
secutive cell loss probability in a queueing model of an ATM switch with bursty
arrivals is studied, using stochastic activity networks. Furthermore, [Bon91]
considers the loss (not necessarily consecutive) of a large fraction of a group
of consecutive arrivals. The models in the latter two papers contain multiple
sources, and the losses of cells from a given (“tagged”) source are considered. Fi-
nally, [RMV96] gives an approximation for the consecutive cell loss probability
in a model with bursty sources.

In the present thesis, the estimation of consecutive (cell) loss probabilities
is considered. Using analytical methods, the consecutive cell loss probability is
calculated for several simple queueing systems (M

�
G
�
1 and G

�
M
�
m), as well as

the per-stream consecutive cell loss probability in a multi-source M
�
M
�
1 queue.

Furthermore, an importance sampling simulation method is developed for estim-
ating the consecutive cell loss probabilities in M

�
G
�
1 queues, that is provably

asymptotically (for large numbers of consecutive cells) efficient. In the course of
this research we obtain a number of other interesting results (solutions of sub-
problems) that can also have applications in other contexts.

Obviously, consecutive cell loss is just one of many interesting loss patterns;
e.g., losing 6 out of 8 consecutive cells may in many cases have the same impact
on the QoS as losing 6 completely consecutive cells. Because of time limitations
and the complexities already encountered while studying just consecutive loss,
these more general (and useful) problems are not studied in this thesis.

1.4.2 Overflows in networks of queues

The other main problem considered in this thesis is the estimation of overflow
probabilities in networks of queues, in particular using importance sampling
simulation. Models of practical packet-switching communication systems typ-
ically contain more than one queue (with arbitrary routing), so the estimation of
overflow (and thus loss) probabilities of such networks has much practical relev-
ance.

In the literature, importance sampling estimation of overflow probabilities
in queueing networks has received much attention during the last decade. One
of the first publications is [PW89], in which a heuristically motivated change
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of measure is proposed for the importance sampling estimation of the overflow
probability of both a single queue, and of the total population in a network of
queues. For tandem2 Jackson3 networks, this change of measure boils down to
exchanging the arrival rate with the lowest (bottleneck) service rate; for other
networks, a numerical minimization is needed. Experimentally, this change of
measure is found to work well for single queues, but not always for networks con-
taining two or more queues. In [Sad91], the asymptotic efficiency of this method
for a single GI

�
GI
�
1 queue is proved. The complexity of determining the change

of measure is reduced significantly by [FLA91], where an analytical alternative
to the numerical minimization is demonstrated to find the change of measure for
Jackson and some other networks. The experimental observation that this heur-
istic change of measure does not always work well for models with more than
one queue is explained by [GK95], where the working of this heuristic for tan-
dem Jackson networks is studied analytically, resulting in the determination of
regions in the parameter space (arrival and service rates) in which the resulting
simulation is or is not asymptotically efficient.

The above papers all consider a change of measure that is “static”: it does
not depend on the state. In other words: the interarrival and service time dis-
tributions of the model are simply replaced by other distributions, but this re-
placement stays the same during the entire simulation. A different approach is
used in [KN99] for estimating the overflow probability of the second buffer in
a two-node tandem Jackson network: the change of measure used there makes
the arrival and service rates depend on the content of the first buffer, i.e., state-
dependent. Two other examples of this are [Hee98b] and [MR00].

Furthermore, in all of the above papers, the change of measure is determined
(often heuristically) on the basis of some mathematical calculation. Adaptive
methods, as mentioned in Section 1.3.1, have not been applied much to queueing
models; notable exceptions are [DT93a] and [RM98], where they have been used
for finding a state-independent change of measure for some queueing models.

In the present thesis, we focus on adaptive importance sampling methods for
the estimation of network overflow probabilities, using both state-independent
and state-dependent tiltings. Several such methods are developed and applied to
many queueing network examples, with good results in most cases. Particularly
noteworthy is the fact that the state-dependent tilting yields an efficient simula-
tion in the tandem networks for which the heuristic (state-independent) tilting
does not work well according to [GK95]. In order to help verify the correctness
of the simulations, also a simple and efficient numerical method is developed for
estimating overflow probabilities in small Jackson networks.

2i.e., the queues are arranged ”in series”, so a customer subsequently goes through all queues.
3i.e., the interarrival and service times are exponentially distributed.
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1.5 Outline of this thesis

As noted above, in the course of the work a number of interesting sub-problems
were identified and solved, the results of which can be useful in other contexts.
Therefore, the author has decided to structure the thesis according to the meth-
odology used (and thus the type of result): part I (Chapters 2 through 4) about
analytical methods and results; part II (Chapters 5 and 6) about “traditional”
importance sampling with asymptotic efficiency proofs; and part III (Chapters 7
and 8) about adaptive importance sampling methods. A more detailed descrip-
tion of the content of the chapters is as follows:

In Chapter 2 a simple procedure is described to calculate overflow probab-
ilities in small networks of queues with exponentially distributed interarrival
and service times. In principle, these can be calculated by standard Markov
chain theory, but we develop a procedure to significantly reduce the size of the
matrices involved by exploiting some properties of the structure of the Markov
chain for these queueing problems. The method is used to verify the correctness
of simulation results obtained in Chapters 7 and 8.

Chapter 3 describes the analytic calculation of consecutive cell loss probab-
ilities and frequencies for some simple queueing systems. These are the M

�
G
�
1

and G
�
M
�
m queues, and an M

�
M
�
1 queue where the losses of only one out of

many input streams are considered. The obtained results are either explicit
closed form expressions or can be easily evaluated numerically.

Chapter 4 demonstrates the calculation of the remaining service time distri-
bution when the content of an M

�
G
�
1 queue reaches some high level (e.g., full

buffer). Such remaining service times play a role in the consecutive cell loss
problem: if several cells are lost consecutively, they all must arrive within the
duration of a single full-buffer period, which is equal to this remaining service
time. This chapter provides asymptotic results, valid in the limit of an infin-
itely high level; however, we show numerically that these results are also a good
approximation at relatively low levels.

In both Chapters 5 and 6, asymptotically efficient importance sampling pro-
cedures are described for the estimation of certain probabilities involving sums
of independently and identically distributed random variables. These arise in
various problems, including the consecutive cell loss probability estimation. The
chapters differ in the type of change of measure used. The change of measure
used in Chapter 5 is less involved than the one in Chapter 6, but as a consequence
it yields efficient simulation for a smaller class of problems. In Chapter 5, the
consecutive cell loss problem is considered as an application example, while in
Chapter 6 some other examples are presented.

Chapter 7 introduces the adaptive importance sampling method. In this
chapter, only state-independent changes of measure are considered; i.e., the sim-
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ulation distributions do not depend on the state of the system. Several variants
of the method are proposed: a version which directly minimizes the variance, a
computationally more efficient version which works indirectly by minimizing a
cross-entropy function, and a version specific for problems that can be modelled
by a discrete-time Markov chain. The methods are experimentally shown to be
quite effective at finding a good change of measure for the simulation of several
queueing network models. However, a few counterexamples are also demon-
strated: cases in which no good state-independent change of measure can be
found.

In Chapter 8, the adaptive importance sampling method based on cross-
entropy is again applied to discrete-time Markov chains, but now the change
of measure is allowed to depend on the state of the system. Although this in
principle is a straight-forward extension, it poses several practical problems if
the state space is large, as is typically the case in queueing network models.
Some solutions to these problems are described in detail, followed by several ex-
periments and a mathematical explanation for some of the phenomena observed.
It is demonstrated experimentally that the method is asymptotically efficient in
cases in which the state-independent method of Chapter 7 fails.





Chapter 2

Overflow probabilities in
simple Jackson networks

�
his chapter describes a method for the calculation of (transient) overflow prob-

abilities in simple Jackson queueing networks. Such networks can be used to
model a packet switch in a telecommunications network (on the level of packets
or calls), a multi-tasking computer system, a manufacturing system, etc. The
main purpose of developing the method in this thesis is to provide reference
solutions for small networks, to be used for validating the simulation algorithms
developed in Chapters 7 and 8.

Although in this thesis the method is only applied to queueing network mod-
els, it can in fact handle a much larger set of discrete-time Markov chain models.
It calculates the probability that one state of a set of “overflow” states is reached,
starting from some initial state, and before reaching a set of absorbing states
(e.g., empty-buffer states in the case of a queueing system). Precise definitions of
this are given in the next section, together with a set of requirements the model
must satisfy for the method to be applicable.

In principle, such probabilities are not hard to calculate using standard
Markov chain theory. However, a straight-forward calculation typically involves
inverting a matrix with as many rows and columns as there are states. The
method described in the present chapter reduces the calulation to a large num-
ber of inversions of smaller matrices; thus, with the same computer capacity a
larger state space can be handled (note that in practice, these calculations are
only feasible numerically). For large enough models (e.g., models of networks
with many queues) the size of the matrices can still become prohibitively large.

The material in this chapter is an extension of the method used in Ap-
pendix A.2 of [GK99]. There are also some similarities with matrix-geometric
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methods (see [Neu81]), but these are typically used for calculating steady-state
probabilities, whereas the method discussed here calculates overflow probabilit-
ies of the type described above.

Section 2.1 describes the method in detail. Section 2.2 illustrates the method
by applying it to some simple queueing models. Section 2.3 contains a few con-
cluding remarks about the applicability of the method. No numerical results are
provided: those can be found in Sections 7.4 and 8.3, where the method is used
for the verification of simulation results.

2.1 The method

We begin by precisely specifying to what class of problems the method is applic-
able; it will become clear that the calculation of overflow probabilities in Jackson
networks fits this class quite naturally. First of all, the method only applies to
problems involving a discrete-time Markov chain (DTMC), in which the probab-
ility of interest is the probability that starting from some state (possibly only
specified stochastically, i.e., a probability distribution over all states) a state be-
longing to a set of “overflow” states is reached before a state belonging to the set
of absorbing states is reached. Furthermore, the state space of the DTMC is par-
titioned into (non-overlapping) level sets, where with every level set, an integer
called the “level” is associated. This partitioning and the assignment of the levels
must be done such that the following requirements are satisfied:

• Level 0 is the lowest level, and the corresponding level set is the set of the
absorbing states.

• Level sets k and higher together form the set of the “overflow” states.

• At every transition of the Markov chain, the level may increment by at
most 1. I.e., from a state at level i, only transitions to states at levels 0 �	�
� i �
1 can have a non-zero probability.

• All possible (i.e., having a non-zero initial probability) initial states must
be in one level set, whose level we denote by n0.

In fact, a trivial partitioning1 into three level sets is always possible that meets
all requirements; however, the method only simplifies the calculations signific-
antly (by reducing the size of the matrices involved) if the number of levels is

1The trivial level sets are as follows: level 0 contains all absorbing states, level 2 contains all
overflow states, and level 1 contains all other states (including the starting state). As can be verified
easily, this partitioning satisfies all requirements, with n0 � 1 and k � 2. Furthermore, it is also
clear that this partitioning can be applied to any DTMC for which a probability of reaching some
overflow state(s) before reaching some absorbing state(s) is sought.
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large and (consequently) the number of states per level is small, so this trivial
partitioning is not useful.

In queueing problems, it is usually quite easy to define (non-trivial) level sets
such that the above requirements are all satisfied; typically, the level corresponds
quite naturally to some observable quantity, like the total network population.
We will see some examples of this in Section 2.2.

Coordinate transformation

For reasons that will become clear later, we need a two-dimensional coordinate
system for the state space of the Markov chain. One of these coordinates must
be the “level” defined above. The other coordinate, henceforth referred to as the
auxiliary coordinate, must provide enough information to uniquely identify the
state within a level set. Since the auxiliary coordinate is used as a row or column
index in matrices, it needs to be a single integer. We will see some practical
examples of suitably defining the auxiliary coordinate in Section 2.2.

In the sequel, we will refer to the state at level n with auxiliary coordinate i
as simply “state i at level n”.

One-step transition matrices Am(n)

The one-step transition matrices Am(n) contain the one-step transitions probabil-
ities of the DTMC. The transitions are sorted according to the levels of the states
involved: the i  j element of Am(n) is the transition probability from state i at
level n to state j at level n � m. Because no transition increases the level by more
than 1, all Am(n) are 0 for m � 1.

Up-crossing matrices Q(n)

The i  j element of the up-crossing matrix Q(n) is defined as the probability that,
starting from state i at level n, level n � 1 will be reached before level 0, and the
entry state at level n � 1 will be the one with auxiliary coordinate j.

Before considering the general form of Q(n), first consider the slightly simpler
case in which in a single transition of the Markov chain, the level cannot change
by more than 1 (actually, this is true for many practical problems, including the
ones considered in Section 2.2). By inspection, one finds:

Q(n) � A � 1(n) � A0(n)Q(n) � A � 1(n)Q(n � 1)Q(n) �
Solving this for Q(n) yields

Q(n) ��� I � A0(n) � A � 1(n)Q(n � 1) � � 1
A � 1(n)  (2.1)
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where I is the identity matrix.

In the general case, we have

Q(n) � A � 1(n) � A0(n)Q(n) � � 1�
m � � (n � 1)

Am(n)Q(n � m)Q(n � m � 1) �
�
� Q(n) 
with solution

Q(n) ��� I � A0(n) � � 1�
m � � (n � 1)

Am(n)Q(n � m)Q(n � m � 1) �
�	� Q(n � 1) � � 1

A � 1(n) �
(2.2)

Note that the sum over m extends down to m ��� (n � 1); there is no need to
extend the sum further, since by definition Q(0) � 0.

For n � 1, equation (2.2) directly gives Q(1) in terms of A0(1) and A � 1(1), since
the sum over m becomes empty. Similarly, for n � 2, equation (2.2) expresses Q(2)
in terms of Q(1) and Am(2). This can be continued, allowing subsequent calcula-
tion of Q(n) for all n � 1.

Entrance probability vectors � � � (n)

The entrance probability vector � � � (n) at level n is defined as follows: its ith ele-
ment is the probability that the level n is reached before absorption (level 0) and
that it is first entered at state i. Normalizing � � � (n) such that its elements sum up
to 1 gives the entrance distribution of level n. On the other hand, summing the
elements of � � � (n) gives the total probability of reaching level n before reaching 0.

As mentioned at the beginning of Section 2.1, the starting state is given by its
level n0, and a probability distribution over the states within that level; clearly,
the latter is � � � (n0). From this, the entrance probability vectors for higher levels
can easily be calculated, as follows:� � � (n0 � 1) ���� � (n0)Q(n0)� � � (n0 � 2) ���� � (n0 � 1)Q(n0 � 1) ���� � (n0)Q(n0)Q(n0 � 1)

...� � � (k) ���� � (n0)Q(n0) �	�
� Q(k � 1) �
Summing the components of � � � (k) completes the calculation of the overflow prob-
ability of level k.
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2.2 A few simple queueing examples

2.2.1 The M � M � 1 queue

The first example concerns the most trivial Jackson network possible: a single
M
�
M
�
1 queue. The arrival rate is � and the service rate is � . We are interested

in the probability that the buffer content reaches a high level k during one busy
period (i.e., the time interval between two successive periods in which the buffer
is empty).

An obvious choice for the “level” is the number of customers in the queue.
Clearly, this choice satisfies all requirements: it is never incremented by more
than 1, it is � k in the overflow states, and it becomes zero at the end of the busy
period (i.e., in the absorbing state). The initial level n0 is 1: the level immediately
after the first arrival to the empty queue.

Since the level as defined above completely determines the state of the queue,
there is no need for the “auxiliary” coordinate. As a consequence, each of the A
and Q matrices reduces to a scalar, making the calculations simple and analytic-
ally feasible (as opposed to just numerically).

Thus, we find the following values for the one-step transition “matrices”, for
all n � 0:

A � 1(n) � �� ��� � ��!� 1
 A0(n) � 0  A � 1(n) � ��"��� � 1�!� 1


where (as usual) �#�$� � � . For the upcrossing “matrices” we find:

Q(n) �&%('' � 1 for n � 1'' � 1 � Q(n � 1) for n � 1.

As can be easily verified by substitution, the solution to the above recursion is

Q(n) � � � n � 1� � n � 1 � 1
�

Since there is no auxiliary coordinate, the entrance probability vectors � � � (n) also
reduce to scalars, and � � � (1) � 1. Thus, the overflow probability for level k is� � � (k) ���� � (1)Q(1)Q(2) �
�	� Q(k � 1) � � � 1 � 1� � k � 1

�
This result is nothing new; see, e.g., [NH96].

2.2.2 Two queues in tandem

As the next example, consider the overflow probability of the total population
in a (Jackson) network consisting of two queues in tandem, like the one depic-
ted in Figure 2.1. Customers arrive at the first queue according to a Poisson-
process with rate � . Both servers have exponentially-distributed service times,
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with rates � 1 and � 2. The state of the system at any time is given by the two
integers n1 and n2, which are the number of customers in the first and second
queues, respectively.

n1 n2 ) 2) 1�
Figure 2.1: Two queues in tandem.

The probability of interest is the probability that the total population of the
two queues reaches a given level L within a busy cycle. To be precise: we start
with the system in the state n1 � 1  n2 � 0 (i.e., immediately after the first
arrival of a busy cycle), and want to find the probability that n1 � n2 � L is
reached before n1 � n2 � 0.

Coordinates

A natural choice for the “level” is n1 � n2; it can easily be verified that this choice
fulfills all requirements.

For the auxiliary coordinate, many choices are possible. Since the complete
state of the system is given by the pair (n1  n2), and the sum n1 � n2 is already
known as the level, any linear combination of n1 and n2 that is not a multiple
of n1 � n2 would be suitable as the auxiliary coordinate. A practical choice is to
simply choose n1 as the auxiliary coordinate.

empty/absorbing state
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Figure 2.2: State space of two queues in tandem.
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Figure 2.2 shows the set of possible states in the coordinates as just defined:
the vertical axis shows the “level”, the horizontal axis shows the auxiliary co-
ordinate. Note that the latter (n1) can never exceed the former (n1 � n2); this
causes the set of possible states to have a triangular shape. The small arrows
show the possible transitions in three typical states of the DTMC, along with
their rates.

One-step transition matrices Am(n)

It can easily be verified that the one-step transitions matrices for the two queues
in tandem are as follows:

A � 1(n) �
,-----------------.

0 // �10 2
0

. . . 0 0 0 2	2
2
0 0 // �10 1 �10 2

. . . 0 0 0 2	2
2
. . . . . . . . . . . . . . . . . . . . . 2	2
2
0 0 0

. . . // �10 1 �10 2
0 0 2	2
2

0 0 0
. . . 0 // �10 1

0 2	2
2
0 0 0

. . . 0 0 0 2	2
2
...

...
...

...
...

...
...

. . .

354444444444444444467 8:9 ;
n � 1 columns



A0(n) �
,-----------------.

0
. . . 0 0 0 2
2	20 1/ �10 1 �<0 2

. . . 0 0 0 2
2	2
. . . . . . . . . . . . . . . 2
2	2
0

. . . 0 1/ �10 1 �10 2
0 0 2
2	2

0
. . . 0

0 1/ �10 1
0 2
2	2

0
. . . 0 0 0 2
2	2

...
...

...
...

...
. . .

354444444444444444467 8=9 ;
n � 1 columns

�
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and finally

A � 1(n) �
,-------------.
0 2/ �10 2

0
. . . 0 0 2	2
2

0
0 2/ �10 1 �<0 2

. . . 0 0 2	2
2
. . . . . . . . . . . . . . . 2	2
2
0 0

. . . 0 2/ �10 1 �10 2
0 2	2
2

0 0
. . . 0 0 2	2
2

...
... �
�	� ...

...
. . .

35444444444444467 8=9 ;
n � 1 columns

Rest of the calculation

The next step would be the calculation of the up-crossing matrices Q(n). Unfor-
tunately, the up-crossing matrices do not have a nice and simple form, due to the
matrix inversion involved. Therefore, this and the following steps are better left
to a numerical calculation in a computer program.

Table 2.1 shows the listing of an implementation of these calculations in the
Octave computer language (see [Oct]). Octave can directly manipulate vectors
and matrices, which makes the program quite straightforward. Additional ex-
planation is provided by the comments in the program: the text after # signs.
Note that the program given here is more optimized for clarity than for efficiency.

The inner loop may need some more explanation. This loop calculates the
one-step transition matrices Am(n) for level n, needed for the calculation of Q(n).
The loop constructs the matrices from scratch, in a way that can easily be gen-
eralised to more complicated systems. First, the three matrices Adown, Asame
and Aup are initialised to zero. Then the loop considers all possible values of
the auxiliary coordinate (called i in the program), in order to handle all states
at level n. For each of these states, the total rate t of all possible transitions
is calculated, after which the probabilities associated with those transitions are
written into the appropriate elements of the matrices. For example, an arrival
to the first queue increases both the level and the auxiliary coordinate i by one.
So its probability must be written into the matrix Aup (that is A � 1(n)), at the
position i+1,i+2. One might expect the position i,i+1 here, but in the Octave
language indices of matrices start from 1, whereas our auxiliary coordinate i

can also be 0; therefore, all indices are displaced by 1 (alternatively, one could
redefine the auxiliary coordinate to be n1 � 1 instead of n1).
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#! /home/kam/ptdeboer/bin/octave

# Calculation of the overflow probability of the total network
# population in a two-node (M)/M/1 tandem queue.

# The parameters:
lambda = 0.04; # arrival rate
mu1 = 0.48; # service rate of first queue

mu2 = 0.48; # service rate of second queue
L = 50; # highest overflow level of interest

N = L+1; # Nˆ2 is the size of the matrices; N must be at least L+1

# Initialize some variables:

n = 0; # the present value of the level
Qn = zeros(N,N); # this is Q(n), i.e. Q(0) initially
pi = [0, 1, zeros(1,N-2)]; # this is pi(n+1), i.e. pi(1) initially

# Loop over all values of n from 1 up to L-1

while (n<L-1)

# first increment n

n = n+1;

# now, calculate A_{-1}(n), A_0(n) and A_{+1}(n),
# which are called Adown, Asame and Aup in this program.
# first initialize them to 0:

Aup = Asame = Adown = zeros(N,N);
# then loop over all values of the auxiliary coordinate (number of
# customers in the first queue) and write all transition probabilities

# into the matrices:
for i=0:n

# t is the total rate of all possible transitions from the present state:
t = lambda;
if (i>0) t = t+mu1; endif

if (n-i>0) t = t+mu2; endif
# write into the matrices:
Aup(i+1,i+2) = Aup(i+1,i+2) + lambda/t; # arrival

if (i>0) Asame(i+1,i) = Asame(i+1,i) + mu1/t; endif # service at 1st
if (n-i>0) Adown(i+1,i+1) = Adown(i+1,i+1) + mu2/t; endif # service at 2nd

endfor

# next, apply (2.1) to calculate Qn (note that up to here, the matrix Qn

# is actually Q(n-1), since we’ve already incremented n):
Qn = inverse( eye(N) - Asame - Adown*Qn ) * Aup;

# then calculate pi(n+1) from pi(n):
pi = pi*Qn;

# finally, sum the components of pi(n+1) and print the result, which is the
# probability of reaching level n+1:

sum(pi)

endwhile

Table 2.1: Octave program for calculating the overflow probability of two queues
in tandem.
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2.2.3 More complicated networks

In both examples considered above, choosing the auxiliary coordinate was trivial:
it was non-existant in the first example, and identical to n1 in the second ex-
ample. As soon as more than two queues are involved, things become a bit more
complicated. Consider a network with three queues. The state of such a network
is completely described by the triplet (n1  n2  n3), where ni is the number of cus-
tomers in the ith queue. Assuming the event of interest is again the overflow of
the total network population, a suitable definition for the level is n1 � n2 � n3.
At first glance, the auxiliary variable would need to be two-dimensional, e.g., the
pair (n1  n2), in order to ensure that together with the level (a one-dimensional
quantity) it could uniquely determine a point in the three-dimensional state
space. However, the matrix formulation only allows a one-dimensional auxiliary
coordinate. A solution would be to define the auxiliary variable as n1 � (L � 1) 2 n2,
where L is the maximum possible value of n1; clearly, this assigns a unique
integer to each possible pair (n1  n2). Similarly, for four queues one could use
n1 � (L1 � 1) 2 n2 � (L1 � 1)(L2 � 1) 2 n3, where Li is the maximum possible value
of ni, etc.

In some problems, the choice of the level may also be non-trivial. Consider a
network with two queues, where one is interested in the probability that the con-
tent of the second queue reaches some level K before both queues become empty.
In this case, one cannot simply use the number of customers in the second queue
as the “level”: although this gives the correct set of overflow states (with k � K),
it does not give the correct set of absorbing states. The only absorbing state is
(n1 � 0  n2 � 0), whereas level 0 in this definition would also include states in
which the first queue in non-empty. A correct choice would be the following:

level �&% n2 � 1 if n1 � n2 � 0

0 if n1 � n2 � 0,

with overflow level k � K � 1, as can be easily verified.

2.3 Concluding remarks
In this short chapter, we have presented a simple method to efficiently calcu-
late overflow probabilities in Jackson networks. This method works by first par-
titioning the state space into level sets satisfying certain conditions, and then
performing some matrix calculations once for each level. Due to the state space
partitioning, the sizes of the matrices involved are reduced compared to a direct
calculation of these probabilities.

Below, a few remarks are given on the applicability of the method, also to
other models than Jackson queueing networks. There are two issues: whether a



2.3. Concluding remarks 23

given problem fits the structure required for the method to work, and whether
the computations needed are practically feasible.

2.3.1 Types of system

As stated in the beginning of this chapter, the method discussed is only applicable
to systems that can be modeled as a discrete-time Markov chain; this could of
course be an embedded Markov chain, thus extending the method in principle to
such queues as M

�
G
�
1 and G

�
M
�
1. However, being a DTMC is not enough: the

problem must also be such that a nontrivial2 “level” can be defined in accordance
with the requirements put forward in Section 2.1. In particular, the requirement
that the level never increases by more than 1 in one step of the Markov chain
may be hard to meet in certain problems, such as those involving overflows in
M
�
G
�
1 queues.

A nice property of the method is that it does not require any kind of regu-
larity in the DTMC (apart from the possibity of defining non-trivial level sets):
in principle, the number of states and the transition probabilities could depend
on the level. As a consequence, systems in which some buffers have a limited
capacity, or where a service rate depends on the number of customers (e.g., a
system with multiple servers in parallel) pose no problem. For comparison, the
matrix-geometric method needs a certain regularity in the system’s structure to
work (note that this is not really a fair comparison, since the matrix geometric
method computes different quantities than ours).

2.3.2 Practical limitations

Consider a network with K queues, each with an overflow level of N. In principle,
such a system has a K-dimensional state space (one integer per queue). Assum-
ing that the event of interest is overflow of one particular queue, the number of
customers in that queue would be chosen as the level. The auxiliary coordinate
must describe the number of customers in the remaining K � 1 coordinates: it
must distinguish between a total of NK � 1 different states. Consequently, each
Am(n) and Q(n) matrix has N2(K � 1) elements.

The above means that except for systems with very few queues, the size of
the matrices grows very rapidly with the overflow level. For example, in a sys-
tem with 4 queues, the size of the matrix grows with the 6th power of the over-
flow level; a relatively low overflow level like 25 already requires matrices with
about 244 million elements. Implemented straightforwardly, this requires lots of
memory; furthermore, calculating the inverse of such a matrix is quite demand-
ing in terms of CPU time.

2see footnote 1 on page 14.
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However, the Am(n) matrices are typically sparse: most of their elements are
zero. To some extent this also holds for the Q(n) matrices. This sparseness could
be exploited to save both memory and computational effort.

Finally, note what happens if the trivial partitioning described in the footnote
on page 14 would be used. In that case, most of the calculation reduces to solv-

ing (2.1) for n � 1, which is Q(1) � � I � A0(1) � � 1
A � 1(1), where A0(1) is a matrix

with as many rows and columns as there are states at level 1; since almost all
states are at level 1 if the trivial partitioning is used, this would be almost an
NK > NK matrix, i.e., a total of about N2K elements. So applying a non-trivial
partitioning reduces the size of the matrices by a factor of N2, or allows one to
handle one more queue (i.e., increase K by 1) with the same matrix size.



Chapter 3

Consecutive loss in simple
queues

?
n this chapter, one aspect of loss patterns will be studied: the probability of

losing several consecutive cells, which is of interest for QoS guarantees in tele-
communications systems. Not much literature seems to exist on this specific
problem; an overview is given in Section 1.4.1.

The present chapter contributes analytical calculations of the consecutive cell
loss probabilities and frequencies for three models. The first, in Section 3.1, is
the M

�
G
�
1
�
k queue (with a single source). These results will mostly be used in

Chapter 5 to verify simulation results. Next, the G
�
M
�
m
�
k queue is considered

in Section 3.2. Finally, in Section 3.3 an M
�
M
�
1 queue with multiple sources

(traffic streams) is considered, in which the consecutive cell loss probability for a
given traffic stream is calculated.

Note that throughout this chapter, we talk about consecutive cell loss, in view
of the application to models of ATM systems. However, the analysis is not ATM-
specific, so one could also read “customer” or “packet” instead of “cell”.

3.1 Consecutive loss in an M @ G @ 1 @ k queue

In this section, we calculate the probability that during one busy period (defined
as the time between an arrival which finds the system empty and the first time
the system becomes empty again after that), a group of n (or more) consecutive
arrivals is lost at least once. Such a loss event is referred to as an n-CCL event.

Consider the embedded Markov chain for this queue, with embedded points
immediately after every service completion. Since there is only room for k cells,
and service completion implies departure of the cell in service, the number of
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cells at the embedded point cannot exceed k � 1. We label the states according
to the number of cells in the queue, i.e., from 0 through k � 1. Figure 3.1 shows
the state space and all possible transitions out of one typical state. The symbol pi

used in the figure denotes the probability of i arrivals during one service interval.

k � 2 k � 1j0 j � 1 j � 1p2

pk � j � 1
pk � j

pk � j � n � 1

pk � j � n

p1

pk � j � n �BACACA
p0

n-CCL
event

Figure 3.1: The embedded Markov chain, showing all states, but only transitions
out of state j.

After a service completion (departure) there is at least one free place in the
queue, so the first arrival after a service completion will surely be accepted.
Therefore, in the above Markov chain the n-CCL event corresponds to a trans-
ition between two embedded points during which at least n � m cells arrive, with
m equal to the number of free places in the queue at the former embedded point.
In other words: if the system is in state j at some embedded point, then the prob-
ability that the n-CCL event happens before the next embedded point is equal to
the probability that at least n � (k � j) cells arrive during the next service interval.

Define � j as the probability that, starting from state j, the n-CCL event occurs
before the queue becomes empty (i.e., before state 0 is reached). Then � 0 � 0, and
the probability of interest is � 1. The following equality for � j is easily found by
inspection: � j � k � j�

i � 0

pi � j � i � 1 � k � j � n � 1�
i � k � j � 1

pi � k � 1 � D�
i � k � j � n

pi 2 1 �
The three sums together cover all possible numbers i of arrivals between two
embedded points. The first summation covers all cases in which so few cells
arrive, that none are lost. The second summation covers the cases in which more
cells arrive than can be accepted, so between 0 and n cells are lost; the n-CCL
event does not occur (yet). The third summation covers the remaining cases,
which are those in which the n-CCL event does occur before the next embedded
point.

The above equality expresses � j (left-hand side) in terms of � j � 1 E� j 
�	�
�F� k � 1

(right-hand side). By solving for � j � 1, we can express it in terms of � j �	�
�E� k � 1 as
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follows: � j � 1 � 1
p0 GH � j � k � j�

i � 1

pi � j � i � 1 � k � j � n � 1�
i � k � j � 1

pi � k � 1 � D�
i � k � j � n

pi 2 1 IJK� (3.1)

If we would know � k � 1, we could repeatedly apply the above equality, to first
calculate � k � 2 by substituting j � k � 1, then � k � 3, and so on all the way to � 1,
which is our probability of interest. Unfortunately, no boundary condition for� k � 1 is available; we only have a boundary condition at the opposite end, namely� 0 � 0. Thus, we need to use the above equality to express all � j, including � 0,
in terms of � k � 1; then the boundary condition � 0 � 0 can be be applied to find
the value of � k � 1, after which the value of the other � j’s follow. Note that (3.1) is
such that all � j will be of the form� j �ML j �ON j � k � 1  (3.2)

with L j and N j independent of � k � 1. Substituting this into (3.1) for � j � 1 gives us
the following recursions for L j and N j:L j � 1 � 1

p0 GH L j � k � j � 1�
i � 1

pi L j � i � 1 � D�
i � k � j � n

pi 2 1 IJ
and N j � 1 � 1

p0 GH N j � k � j � 1�
i � 1

pi N j � i � 1 � k � j � n � 1�
i � k � j

pi IJ �
To get the calculation of the L j and N j started, note that we have a boundary
condition for them at j � k � 1: from the trivial fact that � k � 1 � 0 � 1 2P� k � 1, we
find L k � 1 � 0 and N k � 1 � 1. Starting from this, L j and N j can be calculated for
all j down to 0. Then the original boundary condition � 0 � 0 can be applied, by
substitution into (3.2), yielding � k � 1 �Q�RL 0

� N 0. Thus, we find� j �SL j �TN j
L 0N 0


which in principle completes the calculation. In general, the form of the explicit
expressions for L j, N j and � j, and thus the quantity of interest � 1, will be com-
plicated, so this calculation is best done numerically. Example results of such a
numerical evaluation are shown in Table 5.1 in Chapter 5, where they are used
to validate simulation results.

Other quantities can also easily be calculated on the basis of the above. For
example, consider the expected number of n-CCL events per busy cycle. To calcu-
late this, note that immediately after any n-CCL event the system is in state k � 1.
Therefore, the probability that an n-CCL event is followed by another n-CCL
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10 jj � 1 j � 1 k � 1q2

q1

q0

kq1

q0

q0

q2

qk � j

qk � j

q0

1 � (q0 � q1 �U2	2
2V� qj)

1 � (q0 � q1 �U2	2
2V� qk � 1)

qj

q1

Figure 3.2: The embedded Markov chain for G
�
M
�
1
�
k, showing all states, but

only transitions out of and into states j (valid for 0 W j W k � 1) and state k.

event before the end of the busy period is � k � 1. Thus the expected number of
n-CCL events per busy cycle is� 1 2 (1 ��� k � 1 �X� 2

k � 1 �$2
2
2 ) � � 1

1 �Y� k � 1
�

3.2 Consecutive loss in a G @ M @ m @ k queue

In a G
�
M
�
m
�
k queue, the service time distribution is exponentially distributed.

Because of the memoryless property of the exponential distribution, the duration
of the full-buffer period (which equals the remaining service time at the moment
the full-buffer state is reached) always has this same exponential distribution.
Therefore, the probability that an n-CCL event happens in a given full-buffer
period is independent of how the full-buffer state was reached. This observation
simplifies the calculations below.

Consider the calculation of the probability that a given arrival happens to be
the first arrival of an n-CCL event (this can also be interpreted as the frequency
of the n-CCL event, see Section 3.3.4). A given arrival is the first arrival of an
n-CCL event if and only if the following conditions are met:

(a) The previous arrival has found k � 1 cells in the queue.

(b) No service completion occurs until after at least n � 1 more cells have ar-
rived (and thus been lost).

These are independent events, so we can just calculate their probabilities separ-
ately and multiply them.

(a) The probability of (a) is just the steady-state probability of state k � 1 in
the embedded Markov chain at arrival instants. This Markov chain is illustrated
in Figure 3.2 for the case m � 1; extending this to m � 1 involves a slightly more
complicated set of transition probabilities. The states are labelled according to
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the number of cells an arriving customer finds in the queue. The transition prob-
abilities qi are the probabilities of i service completions between two consecutive
arrivals, given by

qi �[Z D
0

e � 0 x ( � x)i

i!
dF(x) 

where F( 2 ) is the distribution function of the interarrival times. By subsequently
applying flow balance at the states of the Markov chain, one finds that the steady
state probabilities � j are given by� j � cj

c0 �U2	2
2V� ck


with
ck � 1  ck � 1 � 1 � q0

q0


and

cj � 1 � 1
q0 GH cj � k � j�

i � 1

ci � j � 1qi � ckqk � j IJ
for j � k � 1 
�
�	�
 1. The probability of (a) then equals � k � 1.

(b) This condition means that the sum of n interarrival times is less than the
remaining service time, which is distributed exponentially with rate m � (assum-
ing k � m; otherwise, set m � k). The probability is thus given by\ � n�

i � 1

Xi ] Z � �[Z D
0
Z z

0
dF ^ Xi(s) m � e � m 0 z dz �[Z D

0
Z D

s
m � e � m 0 zdz dF ^ Xi(s)� Z D

0
e � m 0 sdF ^ Xi(s) � F̃n

X (m � ) 
where Xi are the interarrival times, F ^ Xi is shorthand notation for the distribu-
tion function of _ n

i � 1 Xi, F̃X is the Laplace-Stieltjes transform of the interarrival
time distribution, and Z is the duration of the full-buffer period.

The consecutive cell loss frequency now follows as the product of the probab-
ilities of (a) and (b). Other probabilities of interest can be calculated from this.

Note: this section is a summary of material from [K � 95], included here for
completeness.

3.3 Per-stream consecutive loss in an M @ M @ 1
queue

In this section, an M
�
M
�
1
�
k queueing system with multiple (Poisson) input

streams will be analysed. One of these input streams (sources) is the foreground
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stream, and we are interested in the consecutive (cell) loss as experienced by this
foreground stream; therefore, the term n-CCL event now refers to losing n con-
secutive foreground arrivals. We will calculate the probability distribution of the
number of n-CCL events between two foreground arrivals that find the queue
empty, and (from this) the frequency of the n-CCL events.

3.3.1 Model and preliminaries

Consider a multiple input first-come first-served M
�
M
�
1
�
k queue. The arrival

rate for the “foreground” stream is � f. All other streams are combined into one
“background” stream, whose arrival rate is � b. Thus, the total arrival rate ���� f �`� b  and the fraction of foreground arrivals in the aggregate arrival stream is
given by f �S� f

� �<� The service rate is � , and the server utilization �#�$� � � .
Start by modeling this queue by a simple Markov chain (actually, a birth-

death process) where the states are labeled by the number of cells in the system;
so we have states 0 through k, with state 0 corresponding to an empty system
and state k being the full-buffer state.

Define:

• � i = probability of reaching state k from state i, without hitting state 0. In
[NH96], the analytical expression 'ba i � 1' a k � 1 was derived for � i.

• N i = probability of reaching state 0 from state i, without hitting state k;
obviously, N i � 1 �Y� i

• c = probability that after a full-buffer period (i.e., starting from state k �
1) a new full-buffer period (state k) will be reached before any foreground
arrivals. That is, no foreground cells are accepted between these full-buffer
periods.

• d i = probability of reaching state k from state i, without hitting state 0 and
without any foreground arrivals.

• e i = probability of reaching state 0 from state i, without hitting state k and
without any foreground arrivals.

• For convenience: fg�S� b ��� f ��� .

All of these quantities can be calculated relatively easily. Start by writing
down the obvious recursive relation for d i:d i � � f d i � 1 � � bf d i � 1 � � ff 2 0  for 1 W i W k � 1 � (3.3)
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Exactly the same recursion holds for e i, the only difference between d i and e i

being the boundary conditions, which ared 0 � 0 hd k � 1 and e 0 � 1 ie k � 0 �
In order to solve the recursion, try substituting d i � zi into (3.3), which yields
the following condition for z: �j�Yf z ��� bz2 � 0, with solutions

z kl� f mMn f 2 � 4 � b �
2 � b

� (3.4)

Observe that z � z � � 0/ b
. Taking the boundary conditions into account, one finds:d i � zi� � zi�

zk� � zk�
and e i � zk� zi� � zk� zi�

zk� � zk� �po �� b q i d k � i �
Finally, we can express c in terms of the d i and e i as follows:c#�Sd k � 1 ��e k � 1

� b� b ��� f
D�

i � 0

o e 1
� b� b ��� f q i d 1�Sd k � 1 ��e k � 1 d 1

� b� b ��� f

1

1 �Ye 1 / b/ b � / f�Sd k � 1 � � b d 1 e k � 1�#�Ye 1 � b
�

To see this, recall that c is the probability of reaching state k from state k � 1
without any foreground arrivals. This can happen either without reaching state 0
(probability d k � 1), or by first reaching state 0 (probability e k � 1), then having a
background arrival to go to state 1, then any number i (with i � 0) of returns
to state 0 each followed by a background arrival, and eventually reaching the
full-buffer state again (probability d 1).

3.3.2 The embedded Markov chain

To ease the further analysis of the problem, we define a new embedded Markov
chain. Its embedded points are those times at which a foreground cell arrives and
either finds the system full (and thus is rejected) or finds the system empty. The
latter event is defined to be the starting point of a new regeneration cycle. Note
that such a regeneration cycle can contain several busy periods of the queue,
which is necessary because the n-CCL event of one stream can be spread over
several busy periods. This embedded Markov chain has the following states (see
Figure 3.3):
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• ‘R’: a new regeneration cycle has been started.

• ‘i’: the last i foreground cells have been rejected, 1 W i W n.

1

R

nn � 1

s

r

llll
l

1 � s

r
r

rr

p p ppp 2 3 p

Figure 3.3: The embedded Markov chain.

Clearly, the occurrence of the loss of (at least) n consecutive foreground cells
corresponds to a transition from state n � 1 to state n. To find the distribution
of the number of times this happens in a regeneration cycle, we first need to find
the transition probabilities in this Markov chain.

The transition probability p

The probability p of going from state i to state i � 1, for i ] n, is the probability of
losing the next foreground arrival, starting in the full-buffer state. By inspection,
one easily finds that

p � � f� f ��� D�
j � 0

o �� f ��� 2Pc q j � � f� f ��� (1 �lc ) 
where j is interpreted as the number of times a full-buffer period ends and a new
full-buffer period is reached before the next foreground arrival. The resulting
expression for p can also be justified intuitively, by interpreting � (1 �Uc ) as an
“effective” departure rate: only a fraction (1 �rc ) of all departures are followed by
the acceptance of a foreground cell before full buffer is reached again.

The transition probabilities r and l

For r, similar reasoning as for p can be applied, although the result is a bit more
complicated:

r � �� f ��� D�
j � 0

o � k � 1 2 �� f ��� q j N k � 1 D�
j � 0

o � b� b ��� f
2sN 1 q j o � f� b ��� f

� � b� b ��� f
� 1r q �
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This is explained by noting that starting from a full-buffer period, the regenera-
tion is in general reached through the following steps:

1. the full-buffer period ends without any more foreground arrivals (probabil-
ity � � ( � f ��� ));

2. the full-buffer state is reached ( � k � 1) and left again without foreground
arrivals ( � � ( � f ��� )), a total of j times;

3. the buffer empties (N k � 1);

4. j (in general different from the j in step 2) cycles happen, each consisting of
a background arrival ( � b

�
( � b �X� f)) and subsequent emptying of the system

without reaching full-buffer (N 1);

5. either a foreground arrival occurs ( � f
�
( � b �U� f)), thus providing the regen-

eration, or a background arrival ( � b
�
( � b �t� f)) is followed by a climb to full

buffer ( � 1), followed by a repetition of this entire process finally leading to
regeneration (r).

The above expression for r can be rewritten (recall that N i � 1 �`� i):

r � 1/ f �100 �Y� k � 1

2uN k � 1 2 1

1 �TN 1 / b/ f � / b

2 1� f ��� b
( � f �X� b � 1r)� 1/ f0wv k a 1

� 1
2 1� f ��� 1 � b

2 ( � f ��� b � 1r) �
Solving this for r yields

r � � f� / f0xv k a 1
� 1 �r2 ( � f ��� 1 � b) �l� b � 1

� �yN k � 1� f ��� b � 1 ���zN k � 1
�

The transition probability l can now obviously be calculated from

l � 1 � p � r�
The transition probability s

First, define { as the probability of losing a foreground cell during one busy cycle.
One finds:{ �S� 1 D�

i � 0

o �� f ��� � k � 1 q i � f� f ��� � � f � 1� f ��� (1 �`� k � 1)
� � f � 1� f ���yN k � 1

�
Then s, which (see Figure 3.3) is the probability of losing a foreground cell during
one regeneration cycle, is given by:

s �M{|2}D�
i � 0

o (1 �Y{ ) � b� b ��� f q i � � b ��� f/ f �10xv k a 1~
1

��� b

� ( � b ��� f) � 1� f ��� b � 1 ���yN k � 1
�
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In the following, we will also need the ratio of s and r; based on the above, this is
simply

s
r
�S� � 1N k � 1

�$� ' a 1 � 1' a k � 1

1 � ' a (k a 1) � 1' a k � 1

�M� k �
This completes the calculation of the transition probabilities of the embedded
Markov chain.

3.3.3 Number of n-CCL events in a regeneration cycle

In order to calculate the probability distribution of the number of n-CCL events
in a regeneration cycle, it is convenient to first calculate the probabilities qn,
defined as the probability that starting from state 1, state n is reached before
regeneration. These probabilities can be calculated as follows:

qn � pn � 1 �K� 1 � p � p2 �U2	2
2V� pn � 2 � 2 l qn � pn � 1 � 1 � pn � 1

1 � p
2 l qn 

so

qn � pn � 1(1 � p)
1 � p � l(1 � pn � 1)

� pn � 1(1 � p)
r � lpn � 1

Looking at the Markov chain, one sees that the probability of having at least j
n-CCL events in one regeneration cycle is\

(On � j) � s 2 qn 2�o lqn

1 � p q j � 1 �
From this, we calculate the expected number of n-CCL events per regeneration
cycle: �

(On) ��D�
j � 1

s 2 qn 2 o l
1 � p

qn q j � 1 � s 2 qn 2 1

1 � lqn
1 � p� s

r
(1 � p)pn � 1 �M� k(1 � p)pn � 1 �

3.3.4 Consecutive cell loss frequency

In accordance with [NH96], we define the consecutive cell loss frequency � n as
the reciprocal of the average number of foreground arrivals between two sub-
sequent n-CCL events. Alternatively, this can be interpreted as the fraction of
foreground arrivals that happen to be the first (or alternatively, the n-before-last)
of a series of at least n consecutive foreground losses. From [NH96] we also have� n �

�
(On)

�
(N)
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where On is the number of n-CCL events in a regeneration cycle, and N is the
number of foreground arrivals during a regeneration cycle. Since

�
(On) has

already been calculated above, only the calculation of

�
(N) remains. For an

M
�
M
�
1
�
k queue, it is known (e.g., Section 3.6 in [Kle75a]) that the probabil-

ity that the server is found idle by an arriving cell (or an arriving foreground
cell) is given by pidle � 1 � '1 � ' k � 1 . Consequently, the expected number of foreground
arrivals in a regeneration cycle (which is delimited by foreground arrivals finding
the system empty) is

�
(N) � 1

pidle
� 1 �l� k � 1

1 �l� �
Thus, we find for the consecutive cell loss frequency� n �

�
(On)

�
(N)

� 1 �l�
1 �Y� k � 1

� k(1 � p)pn � 1 � pFB(1 � p)pn � 1  (3.5)

where pFB is the steady-state full buffer probability in an M
�
M
�
1
�
k queue, which

is given by

pFB � 1 �l�
1 �l� k � 1

� k �
Actually, (3.5) has a very simple interpretation: it is the probability that a given
(random) foreground cell finds the queue in the full-buffer state, that the next
n � 1 foreground arrivals do so too, and that the next foreground arrival does not,
thus ensuring that the present foreground loss was the n-before-last of a series of
at least n foreground losses; this probability is just � n, as noted at the beginning
of this section.

3.3.5 Asymptotic results

Low foreground traffic intensity

If the foreground arrival rate � f is much smaller than the background arrival rate
( � f � � b), one can assume that on average, many background arrivals and service
completions will happen between two foreground arrivals. As a consequence, the
foreground cells just see random and approximately independent “snapshots” of
the system. Under this assumption, the probability that a foreground cell is
lost can be approximated by the steady-state full-buffer probability of the queue,
which is pFB as discussed above.

As noted at the beginning of Section 3.3.4, � n is equal to the probability that a
random foreground cell is the first of a series of at least n consecutive foreground
losses. Under the above approximate independence assumption, this is given by� n � (1 � pFB) pn

FB �
The (1 � pFB) factor comes from the fact that this cell is the first one to be lost;
i.e., the previous foreground cell found the system not in full-buffer state.
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High values of k

In order to calculate this limit, we need to go back to section 3.3.1 and calculate
the limit behaviour of all quantities introduced there. For convenience, we will
use the approximate-equals sign � to denote that the ratio of the left- and right-
hand sides is 1 in the limit k ��� .

Starting from equation (3.4), we find the following bounds for z � and z � ,
based on the assumptions that � f � 0, � b � 0 and (stability condition) ���t� f �#� b:

z � � � f ��� b ���g�S� � 2
f ��� 2

b ��� 2 � 2 � f � b � 2 � f ��� 2 � b �
2 � b� � b ���T� � � 2 � 2 � b �r��� 2

b

2 � b
� �� b

� 1 
and similarly

0 ] z � ] 1 �
Thus, high powers of z � tend to 0, and high powers of z � tend to infinity. Using
this, one can see that for large k:d 1 � z �j� z �

zk�  d k � 1 � 1
z � e 1 � �� bz �  e k � 1 � 0 c � 1

z � �
Then

p � � f� f ��� (1 � 1
�
z � )

and consequently� n � � k(1 �l� ) o � f� f ��� (1 � 1
�
z � ) q n � 1 � (1 � 1

�
z � )� f ��� (1 � 1
�
z � )
� (3.6)

3.3.6 Numerical results

In this section, the expressions for � n derived above are evaluated numerically
for several values of the parameters, to illustrate the dependence of the n-CCL
frequency on those parameters and to test the quality of the approximations
given in Section 3.3.5.
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n � 5
n � 4
n � 3
n � 2
n � 1

f

� n

10.10.010.0010.000110 � 510 � 6

1

0.01

0.0001

10 � 6

10 � 8

10 � 10

10 � 12

10 � 14

Figure 3.4: The n-CCL frequency � n as a function of f �&� f
� � ; ��� 0 � 8, ��� 1,

k � 25.

n f � 1 f � 0 � 01 f � 0 � 0001 f � 10 � 6 limit
1 0.0004210 0.0007327 0.0007570 0.0007573 0.0007573
2 0.0001871 2.431 2 10 � 5 8.648 2 10 � 7 5.816 2 10 � 7 5.739 2 10 � 7

3 8.317 2 10 � 5 8.063 2 10 � 7 9.880 2 10 � 10 4.466 2 10 � 10 4.350 2 10 � 10

10 2.849 2 10 � 7 3.565 2 10 � 17 2.509 2 10 � 30 7.039 2 10 � 32 6.246 2 10 � 32

Table 3.1: Comparison of � n for small f ��� f
� � and theoretical limit; �$� 0 � 8,

k � 25.

Varying the fraction of foreground traffic

Figure 3.4 shows the n-CCL frequency as a function of the fraction f of fore-
ground traffic in the input stream, for several values of n. Clearly, if the fore-
ground traffic is very small in comparison to the background, the cell loss fre-
quency converges to a constant. This agrees with our analysis in Section 3.3.5.
Table 3.1 shows the numbers.

For n � 2, the n-CCL frequency clearly increases considerably with increas-
ing f . This is intuitively reasonable: increasing f means that there will on
average be fewer background arrivals between two consecutive foreground ar-
rivals, causing a stronger correlation between the states in which consecutive
foreground arrivals find the system; thus, it becomes more likely that after one
foreground cell is lost, the next foreground cell will also be lost.
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For n � 1, the n-CCL frequency is seen to decrease slightly with increasing f .
This can best be considered an artifact of our definition of the n-CCL frequency.
To see this, first note that the fraction of foreground cells that are lost is just the
queue’s steady-state full-buffer probability, which does not depend on f . There-
fore, if every foreground loss would count as a 1-CCL event, the frequency � 1

would be independent of f . However, our definition of the n-CCL event is such
that if multiple, say n, cells are lost consecutively, these n foreground losses
together only count as one 1-CCL event. Above, we already noted that at in-
creasing f , such n-CCL events with n � 1 become more frequent; therefore, with
increasing f , the 1-CCL frequency decreases.

Varying the buffer size

Figure 3.5 shows the n-CCL frequency as a function of the buffer size k, for
several values of n. Also, the theoretical asymptotic curves from equation (3.6)
have been plotted. Clearly, the asymptotic curves are approached reasonably fast
for increasing k. However, additional experiments have shown that for larger � ,
the approximation is only good for larger k.

n � 4
n � 3
n � 2
n � 1

k

� n

2520151050

1

0.1

0.01

0.001

0.0001

10 � 5

10 � 6

Figure 3.5: The n-CCL frequency as a function of k and the theoretical limit for
large k (solid lines); � b � 0 � 7, � f � 0 � 1, �`� 1.
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Varying the number of consecutive cells lost

From equation (3.5), it is clear that � n decays exponentially with n. This can
also be seen in Figures 3.4 and 3.5, since curves for several values of n have been
plotted.

3.4 Concluding remarks
In this chapter, some probabilities and distributions involving consecutive loss in
simple queueing systems have been determined analytically. However, one may
need to resort to numerical evaluation for practical applications.

In this chapter, we have first studied consecutive loss in M
�
G
�
1
�
k and

G
�
M
�
m
�
k queues; these calculations turned out to be rather straightforward.

These calculations rely on embedded Markov chains, so for extension of these
results to more general queues, a different method would need to be developed.

Furthermore, we have demonstrated the calculation of the consecutive loss
probability for one stream in an M

�
M
�
1 queue which is serving multiple inde-

pendent streams of traffic. This analysis is quite complicated, even though it
is a purely Markovian model. These complications are caused by the fact that
in a multiple-stream model, the consecutive loss event is no longer confined to
a single full-buffer period, or even to a single busy cycle. It may be possible to
extend the present analysis to a G

�
M
�
m queue with Poisson background traffic

(i.e., only the foreground inter-arrival times would have a non-exponential dis-
tribution). For any further extension, the embedded Markov chain used in Sec-
tion 3.3.1 is no longer well-defined, so a different approach would be needed; in
such cases, simulation may be a more suitable technique.





Chapter 4

The remaining service time
upon reaching a high level
in M � G � 1 queues

?
n this chapter, we study the distribution of the remaining service time upon

reaching a high level (typically corresponding to full buffer) due to a customer
arrival in an M

�
G
�
1 queueing system. This problem is motivated by research

on efficient simulation of cell loss in such queueing systems (see Chapter 5) and
could also be of interest in other contexts.

Consider an M
�
G
�
1
�
B queue without service interruptions. Initially, assume

that it is empty, i.e., there are neither customers waiting nor in service. After
some time, the queue may become full, i.e., there are a total of B customers in
it, one of which is being served. We are interested in the distribution of the
remaining service time of the customer being served at the moment full buffer is
reached. After the full-buffer state is left, the queue will sooner or later either
become empty (marking the end of the busy cycle), or reach full buffer again
during the same busy cycle; more full-buffer periods may follow in the same busy
cycle. Because of the memoryless arrival process, the second and later full-buffer
hits are stochastically equivalent, so we will refer to them as subsequent hits in
this chapter. The first full-buffer hit in a busy cycle is in general different from
subsequent full-buffer hits, and will be referred to as the first hit.

A huge amount of literature exists on the study of the single-server queue
with all its variants; however, little is related to this problem. The closest we
found was a discussion of the distribution of idle periods in a stable GI

�
M
�
1

queue in Chapter II.5.10 of [Coh82]. The stable GI
�
M
�
1 queue is the dual of the

unstable M
�
G
�
1 queue, so those idle periods correspond to the remaining ser-
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vice times for ‘subsequent’ hits to full buffer in an unstable M
�
G
�
1 queue. Our

analysis is more comprehensive, as it treats the stable as well as the unstable
M
�
G
�
1 queue, and also the ‘first’ as well as ‘subsequent’ hits. In Chapter III.6.3

of [Coh82], there is a discussion of a related subject: the stationary joint distri-
bution of the number of customers and the past service time in an M

�
G
�
1 queue.

In [Asm81] the equilibrium distributions of the past and remaining service times
upon arrival to a given level in an M

�
G
�
1 queue are calculated; equilibrium here

implies that no distinction between first and subsequent hits is made: they are
“mixed” according to the frequency with which they occur. Finally, in [Fak82]
the expected value of the remaining service time upon arrival to a given level in
G
�
G
�
1 queues is studied.

We start by introducing some notation in Section 4.1. Next, we derive some
results for a hypothetical “doubly-unbounded” M

�
G
�
1 queue in Section 4.2.

These results are used in Section 4.3 to find approximate results (accurate for
large B) for the real bounded M

�
G
�
1
�
B queue. Those results allow us to calculate

the distributions of past and remaining service times in Section 4.4. However,
this analysis does not hold for systems where the average service time equals the
average inter-arrival time; to derive results for this case, we use a limit proced-
ure in Section 4.5. As a by-product of the analysis in this chapter, we can also
obtain an (asymptotically tight) approximation for the probability of reaching
full buffer in a busy cycle, as demonstrated in Section 4.6. Section 4.7 illustrates
the accuracy of our results by comparing them with results from exact numer-
ical analysis and simulation. We present a summary of the results together with
conclusions in Section 4.8. Note: the results in this chapter are only valid if a
technical condition is satisfied (see (4.4)); which exclude cases where the service
time distribution has a heavy tail.

4.1 Notation
Throughout this chapter, we will use some notational conventions which are in-
troduced here. First, three generic random variables are defined:

• X is the (total) service time.

• Y is past service time upon hitting full buffer.

• Z is the remaining service time upon hitting full buffer.

Note that the distributions of Y and Z can be defective (in cases where there is
a non-zero probability that full buffer is not reached in a given busy cycle); the
defect will be represented by a probability mass at �|� . We will also consider the
distributions of Y and Z conditional on reaching full buffer, and denote these by
Y � fb and Z � fb, respectively; these are non-defective, of course.
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For probability distributions the following notation is used, using the random
variable W as an example:

• fW( 2 ) is the probability density function.

• FW( 2 ) is the distribution function.

• F̄W( 2 ) is the complementary distribution function: F̄W(w) � 1 � FW(w).

• F̃W( 2 ) is the Laplace-Stieltjes transform of FW( 2 ): F̃W(s) �M� D0 e � stdFW(t).

The arrival process is Poisson; its arrival rate is denoted by � , and the system
load is denoted by � , with ���M� � (X).

Finally, the symbol for approximate equality ( � ) in this chapter is understood
to imply equality in the limit of infinite buffer size B; i.e., the limit for B ���
(sometimes i ��� ) of the quotient of the left-hand side and the right hand side
is 1.

4.2 The doubly-unbounded M @ G @ 1 queue

In this section, we study the “doubly-unbounded” M
�
G
�
1 queue. This hypothet-

ical system is identical to the usual M
�
G
�
1 queue with infinite buffer, except for

one detail: if the buffer becomes empty, the service process continues, so the buf-
fer content (number of customers in the system) can become negative; in fact, we
allow it to become infinitely negative. Of course, this has no physical interpreta-
tion, but it is useful as a step towards studying the bounded M

�
G
�
1
�
B system in

the next section.
For this doubly-unbounded queue, we consider the state of the system at the

beginning of service epochs. Because of the memoryless arrival process, these
instants together form an (embedded) Markov chain. Let Nn (with ��� ] Nn ] � )
denote the buffer content at the nth embedded point, i.e., at the beginning of the
nth service period (n � 1).

We define qj as the probability of exactly j arrivals during one service interval.
Therefore,

qj ��Z D
0

( � s)j

j!
e � / sdFX(s) �

Next, we define r(n)
i as the probability that Nn � i, assuming that the first service

starts in state 0. Furthermore, we define ri as the expected number of times the
Markov chain visits state i. Clearly,

ri ��D�
n � 1

r(n)
i �
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Note that although ri is the expected number of visits during an infinite interval,
it is (in general) a finite number, because the system will eventually drift to either��� (if � ] 1) or �|� (if �T� 1).

It is easily seen that r(n)
i must satisfy the following recursion for n � 1:

r(n)
i ��D�

j � 0

qjr(n � 1)
i � j � 1  (4.1)

with boundary condition at n � 1:

r(1)
i � Ii � 0

def.��% 1 if i � 0

0 otherwise,
(4.2)

because we start at level 0. Suppose one were to start in state m instead of 0,
which corresponds to replacing Ii � 0 by Ii � m in the above equation. Since the
system is doubly-unbounded, the resulting solution r �i would just be a translated
copy of the original solution, i.e., r �i � ri � m.

We now define V(z) as the z-transform of qj; it can be expressed in terms of
the Laplace-Stieltjes transform F̃X ( 2 ) as follows:

V(z) ��D�
j � 0

zjqj � F̃X ( ���l� z) � (4.3)

Below, we will also need the solutions of the equation

V(K) � K � (4.4)

It is easily seen that V(z) is a convex function, that V(1) � 1 (so 1 is a solution
to (4.4)), and that V � (1) ��� . Because of these facts, (4.4) can have at most one
other solution, which must be greater than 1 if � ] 1, and less than 1 if ��� 1.
For our analysis, we assume that this second solution of (4.4) does indeed exist1,
and we denote it by K ( �� 1). Again because of convexity, V � (K) must be greater
than 1 if � ] 1, and less than 1 if �O� 1. We denote the two solutions of (4.4) by
K1 and K2, where 0 ] K1 ] K2; Table 4.1 summarizes their properties.

In Appendix 4.A we prove the following theorem:

Theorem 4.1 Given the recursion (4.1) with initial condition (4.2), the sum ri �_ Dn � 1 r(n)
i (which can be interpreted as the expected number of visits to state i of

1For �!� 1, such a solution K � 1 obviously only exists if the Laplace transform F̃X ( � ) exists for
negative values of its argument. If the tail of the probability distribution of the service time X decays
less than exponentially fast, this is a problem. In particular, K does not exist for distributions with a
heavy tail, so the results in this chapter are not applicable in such cases.
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case K1 V � (K1) K2 V � (K2)� ] 1 1 � K � 1 � 1�g� 1 K ] 1 ] 1 1 �
Table 4.1: Properties of K1 and K2, solutions of V(K) � K.

the embedded Markov chain of the doubly-unbounded system) has the following
properties:

ri � K � i
1

1 � V � (K1)
for i W 0  (4.5)

and
lim
i � D K i

2ri � 1
V � (K2) � 1

 (4.6)

where 0 ] K1 ] K2 are the two solutions of V(K) � K.

Note that (4.6) can also be written as

ri � K � i
2

V � (K2) � 1
for i   0 � (4.7)

4.3 The bounded M @ G @ 1 queue
Let us now turn to the “real” system, the bounded M

�
G
�
1
�
B queue. Because of

the Poisson arrival process, we can again define an embedded Markov chain with
embedding points at the beginning of service epochs. At those embedded points,
the state variable of interest is the number of customers in the system. Starting
in state A (i.e., with A customers in the system, and at the beginning of a service
period), we study the evolution of the embedded Markov chain until absorption,
which happens in either of two ways:

• Full buffer: if during one service, so many arrivals occur that there would
be B or more customers in the system just before the completion of this
service, full buffer is reached.

• Empty system: if there is only one customer left in the system, and during
his service no others arrive, the system would be empty at the completion
of this service.

We will now proceed to determine the expected number of times Ei the embedded
Markov chain visits state i, starting from level A and ending in one of the above
two absorbing states.

In the previous section, we have determined ri for the doubly-unbounded
queue starting in state 0. Those results can be used to obtain Ei as follows:
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if one would just use the ri results (shifted by A, to accommodate the fact that we
start in state A instead of 0), one would overestimate Ei. In order to compensate
for this error, we compare the expected number of times state i is visited in the
bounded system (Ei) and in the unbounded system (E �i � ri � A):

• First, we have a contribution which is the same for both Ei and E �i, corres-
ponding to the evolution up to absorption (i.e., full buffer or empty system).

• Second, if the systems reach level 0 before level B, the bounded system
stops (empty system), whereas the unbounded system continues, giving
some additional contribution to E �i. This is exactly as large as the contri-
bution that would be produced by starting from state 0, which we know is
given by ri. In order to cancel this contribution, we need to determine the
probability L that the unbounded system indeed reaches level 0 before level
B. Then the correction term for Ei is clearly given by �RL ri.

• Third, if the systems reach level B before level 0, the bounded system stops
(full buffer), whereas the unbounded system continues, giving an additional
contribution to E �i (for i ] B) only if it down-crosses into state B � 1 later
on. This contribution is exactly as large as the contribution that would be
produced by starting from state B � 1, which is given by ri � B � 1. In order
to cancel this contribution, we need to determine the probability N that the
unbounded system down-crosses into level B � 1 before reaching level 0.
Then the correction term is given by �¡N ri � B � 1.
Note that if ��� 1, the system may not return to level B � 1 after having
passed level B; in this case N is not equal to 1 ��L . On the other hand, if� ] 1, then NU� 1 �YL .

Figure 4.1 shows four typical sample paths of the number of customers in the
buffer as a function of time in the unbounded system. The filled circles repres-
ent the embedding points of the embedded Markov chain. The lines at levels 0
and B represent the absorption of the bounded system at empty system and full
buffer, respectively. The dotted parts of the paths are the parts that must be com-
pensated for by the above procedure. Note the difference between what happens
to paths that reach level B and to paths that reach level 0. In the former case,
compensation is necessary only if the buffer content returns to level B � 1 (which
may never happen if the arrival rate is higher than the service rate, i.e., �T� 1).

From the above, it follows that Ei is given by ri � A (that is, the expected num-
ber of visits to level i starting from level A in the doubly-unbounded system),
minus the contribution due to sample paths beyond absorption at level 0 (i.e.,L ri) and level B (i.e., N ri � B � 1):

Ei � ri � A �lL ri �TN ri � B � 1 � (4.8)
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time
0

A

B

level

B � 1

Figure 4.1: Illustration of typical sample paths in the doubly-unbounded queue.
In the bounded queue, the dotted parts of the sample paths must be cancelled.

The value of the starting level A is determined by whether first or subsequent
hits are being considered. The values of L and N can be determined by applying
the appropriate boundary conditions, as will be shown in the sequel.

4.3.1 First hit: A ¢ 1

In the case of first hit, we start in state 1, thus A � 1. In the bounded system,
the embedded Markov chain cannot reach state 0 or B � 1 because of absorption
(which would occur before or upon entering either state). As we also do not start
in either of these states, we know that E0 � 0 and EB � 1 � 0. By inserting this
into (4.8), we find the conditions for L and N :

0 � E0 � r � 1 �lL r0 �gN r � B � 1 (4.9)

and

0 � EB � 1 � rB � 2 �YL rB � 1 �gN r0 � (4.10)

Substituting for ri from (4.5) and (4.7) we get the following two equations:

K1 �YLY�gN KB � 1
1 � 0

and
K � (B � 1)

2 (K2 �lL )
V � (K2) � 1 � N

1 � V � (K1)
�
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By substituting from (4.5) and (4.7) into (4.8), and then using the above equation
to eliminate N , we can write Ei for 1 � i W B as follows:

Ei � K � i � 1
2

V � (K2) � 1
�XL K � i

2

V � (K2) � 1
�gN K � i � B � 1

1

1 � V � (K1)� K � i
2 (K2 �lL )

V � (K2) � 1
� K � i � B � 1

1 K � (B � 1)
2 (K2 �lL )

V � (K2) � 1� K � (B � 1)
2 (K2 �lL )
V � (K2) � 1

(KB � i � 1
2 � KB � i � 1

1 ) �
Writing this properly as a limit gives us

Theorem 4.2 The expected number of visits EB � j to state B � j of the M
�
G
�
1
�
B

embedded Markov chain, starting from state 1, has the following asymptotic be-
haviour for large B:

lim
B � D EB � j

K � (B � 1)
2 (K j � 1

2 � K j � 1
1 )

� K2 �YL
V � (K2) � 1

� (4.11)

For the moment, we do not need the value of L and defer its calculation to Sec-
tion 4.6.

4.3.2 Subsequent hits: A ¢ B £ 1

In the case of subsequent hits, we start in state B � 1, thus A � B � 1. In
the bounded system, the embedded Markov chain cannot reach this state again
(because of absorption), so the total number of visits to this state must be 1,
i.e., EB � 1 � 1. Furthermore, since state 0 is an absorbing state, it is considered
unreachable, so E0 � 0. By inserting this into (4.8), we find the equations for
determining L and N :

1 � EB � 1 � r0 �YL rB � 1 �gN r0

and
0 � E0 � r � B � 1 �lL r0 �gN r � B � 1 �

Substituting for ri from (4.5) and (4.7) in the above, we get�RL K � (B � 1)
2

V � (K2) � 1
� (1 �gN )

1
1 � V � (K1) � 1

and �RLg� (1 �gN )KB � 1
1 � 0 �

Solving for L and N yields L�� (1 �TN )KB � 1
1 (4.12)
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and
1

1 �gN � � KB � 1
1 K � (B � 1)

2

V � (K2) � 1
� 1

1 � V � (K1)
� (4.13)

By substitution into (4.8), we find for 1 � i W B

Ei � K a i � B a 1
1

1 � V ¤ (K1) � KB a 1
1 K a i

2
V ¤ (K2) � 1

1
1 � V ¤ (K1) � KB a 1

1 K a (B a 1)
2

V ¤ (K2) � 1

�
Note that because K1

�
K2 ] 1 for any �l�� 1, the second terms of both the numer-

ator and the denominator vanish for large B and large i, which yields

Theorem 4.3 The expected number of visits EB � j to state B � j of the M
�
G
�
1
�
B

embedded Markov chain, starting from state B � 1, has the following asymptotic
behaviour for large B:

lim
B � D EB � j

K j � 1
1

� 1  (4.14)

which for � ] 1 reduces to
lim

B � D EB � j � 1 � (4.15)

Remark 4.1 Here we give a less rigorous, but more intuitive explanation of
(4.15).

Consider the embedded Markov chain of the bounded system at service be-
ginning epochs, in the limit for B ��� . The probability of going from state m
to state m � 1 is simply equal to the probability of no arrivals during a service
period, which we henceforth denote by ¥ . Starting in state m, define Ēm to be the
expected number of visits to state m before reaching any state above m. Clearly,
Ēm � 1, since the starting in state m is also counted. Furthermore, for infinitely
high levels Ēm is independent of m, so Ēm is equal to some constant E. Since
we are considering subsequent hits, Em (as defined earlier) is the expected num-
ber of visits to state m, starting from state B � 1 until absorption due to a full
buffer or an empty system. One can easily see that it must satisfy the recursion
Em ��¥ Em � 1Ēm, which for sufficiently large m reduces to

Em � CEm � 1

with C ��¥ E. Since the starting state B � 1 is never visited again until absorption,
EB � 1 � 1 is a boundary condition for the above recursion. It follows that

Em � CB � m � 1 for 1 � m W B � 1 �
To determine C, we use the following two arguments. Since the embedded
Markov chain eventually reaches an absorbing state at full buffer or empty sys-
tem, Em must be bounded for all m and B (with m ] B), which is possible only
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if C W 1. On the other hand, since � ] 1, there is a non-zero probability that
the embedded Markov chain eventually reaches state 0. Therefore, Em must not
vanish for low values of m even at large B, which is possible only if C � 1. Obvi-
ously, the only value of C which satisfies both conditions is C � 1. Consequently,
Em � 1, for 1 � m W B � 1.

4.4 Past and remaining service time distributions
Denote by Xn the duration of the service that starts at the nth embedded point
(n � 1). As for the doubly-unbounded system, Nn is the state (number of cus-
tomers) of the system at the nth embedded point. Without loss of generality, we
assume that after absorption (due to either full buffer or empty system) the em-
bedded Markov chain enters state 0 and stays there, i.e., Nn becomes 0. Define
Sn to be the time, starting from the nth embedded point, until full buffer would
be reached in the absence of any further service completions. Clearly, Sn has an
Erlang-(B � Nn) distribution, whose density for a given Nn � i we denote by gi(s);
thus

gi(s) � fSn(s � Nn � i) �$� ( � s)B � i � 1

(B � i � 1)!
e � / s �

Write the past service time distribution as a sum over a set of disjoint events,
which together cover all ways the event Y W y can happen:

FY(y) � \ (Y W y) ��D�
n � 1

B � 1�
i � 1

\
(Sn W y ¦ Sn W Xn ¦ Nn � i) �

Note that if Sn W Xn, then n is the last embedded point before reaching full
buffer, in which case Y � Sn. Furthermore, the second summation is over the
non-absorbing states 1 W i W B � 1, thus restricting the first summation to
embedded points until absorption. Next, conditioning on Nn � i gives

FY(y) ��D�
n � 1

B � 1�
i � 1

\
(Sn W y ¦ Sn W Xn � Nn � i)

\
(Nn � i) �

Using the independence of Sn and Xn, and _ Dn � 1
\

(Nn � i) � Ei, we find:

FY(y) � B � 1�
i � 1

Ei Z D
0
Z D

0
1s § y 1s § x dFX(x) gi(s) ds��Z y

0
F̄X(s) H(s) ds 

where H(s) is defined as

H(s) � B � 1�
i � 1

gi(s) Ei �S� B � 2�
i � 0

( � s)i

i!
e � / s EB � i � 1 � (4.16)
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By differentiation, one finds the probability density of Y:

fY(y) � dFY(y)
dy

� H(y)F̄X(y)  (4.17)

which holds only if F̄X (x) is continuous at x � y. At a discontinuity of F̄X ( 2 ), fY

does not exist.
Similarly we can write for the remaining service time distribution upon reach-

ing full buffer\
(z ] Z ] � ) ��D�

n � 1

B � 1�
i � 1

\
(Xn � Sn � z � Nn � i)

\
(Nn � i)� B � 1�

i � 1

Ei Z D
0
Z D

0
1x � s ¨ z dFX(x) gi(s) ds�MZ D

0
F̄X(z � s) H(s) ds �

Differentiation yields the probability density:

fZ(z) �Q� d
\

(Z � z)
dz

�K� d
dz
Z D

z
F̄X (t)H(t � z)dt� F̄X(z)H(0) ��Z t � D

t � z
F̄X(t) dH(t � z)� F̄X(z)H(0) � F̄X (z)H(0) �XZ D

z
H(t � z) dF̄X(t)��Z D

z
H(t � z) dFX(t) � (4.18)

Just like fY , also fZ does not exist at discontinuities of F̄X( 2 ).
4.4.1 First hit

For the first hit and �©�� 1, Ei is given by (4.11), and using (4.16) we find the
asymptotic expression for H(s):

H(s) � K � (B � 1)
2 � (K2 �lL )

V � (K2) � 1
� B � 2�

i � 0

( � sK2)i

i!
e � / s � B � 2�

i � 0

( � sK1)i

i!
e � / s �

� K � (B � 1)
2 � (K2 �lL )

V � (K2) � 1
�jD�

i � 0

( � sK2)i

i!
e � / s �ªD�

i � 0

( � sK1)i

i!
e � / s �� K � (B � 1)

2 � (K2 �lL )
V � (K2) � 1

� e / (K2 � 1)s � e / (K1 � 1)s � �
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According to (4.17), we find the probability density of the past service time
upon reaching full buffer by multiplying H(y) by F̄X (y). For � ] 1 we have K1 � 1,
so this can be simplified to

fY(y) � K � (B � 1)
2 � (K2 �lL )

V � (K2) � 1
� e / (K2 � 1)y � 1 � F̄X (y) 

and for �T� 1, we have K2 � 1, yielding

fY(y) � � (1 �lL )�«� 1
� 1 � e / (K1 � 1)y � F̄X (y) �

The above distributions are, in general, defective. If only the conditional distri-
bution of the remaining service times is of interest (i.e., conditional on reaching
full buffer), the above expressions and (4.18) can easily be normalized, leading to

Theorem 4.4 The probability densities of the past and remaining service times
in an M

�
G
�
1
�
B queue, conditional on reaching full buffer, and starting from

empty system, have the following asymptotic form:

lim
B � D fY ¬ fb(y) � �

1 �Y� (e / (K � 1)y � 1)F̄X(y) (4.19)

and
lim

B � D fZ ¬ fb(z) � �
1 �l� Z Dz

� e / (K � 1)(t � z) � 1 � dFX(t)  (4.20)

with K � K2 if � ] 1 and K � K1 if �T� 1.

4.4.2 Subsequent hits

For subsequent hits and ���� 1, Ei is given by (4.14). As in the previous section,
H(s) can be found using (4.16), yielding

H(s) � � e / (K1 � 1)s 
so according to (4.17) the past service time density is

fY(y) � � e / (K1 � 1)yF̄X (y)  (4.21)

and the remaining service time density is

fZ(z) � �Z D
z

e / (K1 � 1)(t � z)dFX(t) � (4.22)

Note that for ��� 1, these distributions are not defective. For � ] 1 we have
K1 � 1, which reduces the above expressions to

fY(y) � � F̄X (y) 
fZ(z) � � F̄X (z) �
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These are defective distributions. Their total probability is easily shown to be � ,
allowing us to calculate the densities conditional on reaching full buffer.

Theorem 4.5 The probability densities of the past and remaining service times
in an M

�
G
�
1
�
B queue, conditional on reaching full buffer, and starting from full

buffer, have the following asymptotic form:

lim
B � D fY ¬ fb(y) �®% /' F̄X (y) for � ] 1,� e / (K1 � 1)yF̄X(y) for �g� 1

and

lim
B � D fZ ¬ fb(z) �&% /' F̄X (z) for � ] 1,� � Dz e / (K1 � 1)(t � z)dFX (t) for �g� 1.

4.5 The limit ¯±° 1

For �X� 1, equation (4.4) has only one solution (K1 and K2 approach 1 as � ap-
proaches 1). Since the analysis so far assumes two distinct solutions of (4.4), the
obtained results may not hold for �$� 1. However, we show that the limits of
these results as �«² 1 and as �«³ 1 exist and are identical, so we can assume them
to be the result for ��� 1.

4.5.1 First hit

In order to calculate the limit for the first hit, we need to examine the behaviour
of K for � near 1. Consider the function

g( �´ z) � % V(z) � z
1 � z for z �� 1,

1 �l� for z � 1,

where V(z) is given in (4.3). The function g( �´ z) as defined above is continuous
at z � 1, because limz � 1 g( �´ z) � 1 �l� (using L’Hospital’s rule).
Clearly, for ���� 1, the solution K of the equation g( �´ K) � 0, is the same K �� 1
which is defined in Section 4.2 as a solution of (4.4). Note that for ��� 1, also
K � 1. Calculation shows that for all �µ

g( �´ z)µ
z ¶ z � 1

�Q� � 2

�
(X2)
2

and
µ

g( �1 z)µ � ¶ z � 1
�K� 1 �

Then the implicit function theorem applied to g( �1 z) at z � 1 and ��� 1 implies
that

lim' � 1

dK
d � �Q� µ g( �´ z)

�wµ �µ
g( �´ z)

�wµ
z ¶ z � 1

�Q� 2� 2

�
(X2)

�



54 Chapter 4. Remaining service time in M
�
G
�
1

Using L’Hospital’s rule, we get the following limit:

lim' � 1

�
1 �Y� � e / (K � 1)y � 1 � � lim' � 1

� d
d ' � e / (K � 1)y � 1 �

d
d ' (1 �l� ) �·�R� d

d � ( � (K � 1)y) ¶ ' � 1
� 2y
�
(X2)


which we substitute into (4.19) to find the conditional probability density of the
past service time for the first hit:

lim' � 1
fY ¬ fb(y) � 2y

�
(X2)

F̄X (y) �
Similarly, the limit of the conditional remaining service time distribution for the
first hit (as given by (4.20)) is

lim' � 1
fZ ¬ fb(z) � 2

�
(X2)

Z D
z

(t � z)dFX(t) �
4.5.2 Subsequent hits

To get the past service time distribution for subsequent hits when �[� 1, we
need to calculate the limit of (4.21) and (4.22) for ��� 1. These limits are trivial,
since these functions turn out to be continuous at �#� 1. So all results derived in
Section 4.4.2 are also valid for �#� 1.

4.6 Approximation for full-buffer probability

In Section 4.4, we found expressions for the asymptotic distributions of the past
and remaining service times upon reaching a high level (e.g., full buffer in the
bounded system). It was noted that these distributions are defective; i.e., the
total probability of these distributions is less than 1. This defect of course rep-
resents the fact that the system does not always reach full buffer.

In Section 4.3 we defined L to be the probability that the bounded system hits
level 0 before reaching full buffer. As any path must either be absorbed at 0 or
at B, we can conclude that the probability of reaching full buffer (i.e., absorption
at B) is given by 1 �lL , which we calculate in the following.

4.6.1 First hit

Eliminating N from (4.9) and (4.10) in Section 4.3.1 gives:

K � (B � 1)
2 (K2 �YL )
V � (K2) � 1 � K � (B � 1)

1 (K1 �lL )
1 � V � (K1)

�
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For both � ] 1 (K � K2) and �T� 1 (K � K1), this is

K � (B � 1)(K �YL )
V � (K) � 1 � 1 �lL

1 �l� 
so

1 �YL � K � (B � 1)(K � 1)
V ¤ (K) � 1

1 � ' � K � (B � 1)


which for large B approaches

1 �lL � % K(K � 1)(1 � ' )V ¤ (K) � 1 K � B for � ] 1,
1 � K for �T� 1.

(4.23)

Remark 4.2 Relationship with large deviation results
For � ] 1, the decay rate of the full-buffer probability in (4.23) is given by

log K, where K is determined from (4.4). For verification, we will now show that
this is equal to the decay rate obtained using large deviation theory.

According to [Sad91], the large-deviations calculation of the decay rate of the
full-buffer probability starts by finding the non-trivial solution {¹¸ of the equation
F̃X( �R{º¸ ) � / �<»
¼/ . Then the decay rate is given by log K � , with K � � / �<»
¼/ . Using
the latter equality to rewrite the former in terms of K � , we get F̃X( ���l� K � ) � K � .
This is equivalent to (4.4), so K � � K.

Finally, it is interesting to note that V � (K) can easily be shown to be the traffic
intensity (i.e., average arrival rate divided by average service rate) in the so-
called “ {º¸ -conjugate” system, in which the inter-arrival and service time distri-
butions are exponentially twisted with the parameters { ¸ and �R{ ¸ , respectively
[Sad91].

4.6.2 Subsequent hits

For calculating the full-buffer probability for subsequent hits, we start from
equations (4.12) and (4.13). By substituting the latter into the former, we ob-
tain: L � KB � 1

1� KB a 1
1 K a (B a 1)

2
V ¤ (K2) � 1 � 1

1 � V ¤ (K1)

�
This can be simplified by considering the cases � ] 1 and �g� 1 separately. First
the case � ] 1, which implies that K1 � 1 and K � K2:

1 �lL � 1 � 1� K a (B a 1)

V ¤ (K) � 1 � 1
1 � ' � �´ (4.24)

where the second step uses the fact that B is large and K � 1. For the case �g� 1,
which implies that K � K1 and K2 � 1, we find:

1 �lL � 1 � 1� 1' � 1 � K a (B a 1)

1 � V ¤ (K)

� 1 � (1 � V � (K))KB � 1  (4.25)
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case � B approximation exact difference

first hit

0.8

5 8 � 327 2 10 � 2 9 � 851 2 10 � 2 15 %
10 9 � 659 2 10 � 3 9 � 835 2 10 � 3 1.8 %
20 1 � 2996 2 10 � 4 1 � 2999 2 10 � 4 0.024 %
40 2 � 3526 2 10 � 8 2 � 3526 2 10 � 8 0.000004%

0.95

5 0.06891 0.1933 64 %
10 0.04144 0.06759 39 %
20 0.01498 0.01742 14 %
40 0.001959 0.001995 1.8 %

1.05

5 0.09370 0.2700 65 %
10 0.09370 0.1560 40 %
20 0.09370 0.1101 15 %
40 0.09370 0.09570 2.1 %

1.2

5 0.3137 0.3900 20 %
10 0.3137 0.3233 3.0 %
20 0.3137 0.3139 0.069 %
40 0.3137 0.3137 0.000035 %

subsequent hit

0.95

5 0.95 0.8597 11 %
10 0.95 0.9184 3.4 %
20 0.95 0.9419 0.9 %
40 0.95 0.9491 0.09 %

1.05

5 0.9674 0.9060 6.8 %
10 0.9800 0.9668 1.4 %
20 0.9925 0.9912 0.13 %
40 0.9990 0.9989 0.002 %

Table 4.2: Comparison of approximation and true values for the probability of
reaching full buffer in an M

�
D
�
1
�
B queue.

where the second step uses the fact that B is large and K ] 1. From this, one sees
that the full-buffer probability 1 �XL � 1, which is not surprising, since we start
from just below full buffer in a system with a higher arrival rate than service
rate ( �T� 1).

4.7 Numerical validations and an application

In the previous sections, we have derived several asymptotic results which are
valid for infinitely high levels in M

�
G
�
1 queues. For sufficiently high levels,

the results may still be used as approximations. In general, it is difficult to
calculate error bounds for these approximations. However, we note that many
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Approximation
Simulation

Fz ¬ fb(z)

z

g

@
@

Subsequent hit, ½ � 1 ¾ 5
FZ ¿ fb(z) � 0 ¾ 7158(e0 À 8742x Á 1)

g

@
@

@
Subsequent hit, ½ � 0 ¾ 95

FZ ¿ fb(z) � z

g@@

First hit, ½ � 0 ¾ 95
FZ ¿ fb(z) � 206 ¾ 8(1 Á e Â 0 À 1017z) Á 19z

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 4.2: Remaining service time distributions in an M
�
D
�
1
�
10 queue.

of the approximations involve neglecting terms of the form KB (if K ] 1) or K � B

(if K � 1). For such a term to be very small, B must be very large and/or K
must be far from 1. The value of K depends both on the form of the service time
distribution FX ( 2 ) and on � . If � approaches 1, K also approaches 1. Consequently,
we can expect the approximation to be good if B is large and � is not close to 1.

4.7.1 Example: M � D � 1 � B
In order to illustrate the validity of the approximations, we first consider a simple
M
�
D
�
1
�
B queue. We assume the deterministic service time to be 1, thus

�
(X) �

1, and ���M� . This leaves two parameters to vary, namely � (traffic intensity) and
B (buffer size).

First, we will test our approximations for the full-buffer probability, presen-
ted in Section 4.6. For the M

�
D
�
1
�
B queue, the full-buffer probability can be

computed numerically (e.g., along the lines of Section 3.1). To validate our
approximations, Table 4.2 shows the approximate and true values of the prob-
ability of reaching full buffer, starting from an empty system (i.e., first hit) and
starting from level B � 1 (i.e., subsequent hits). As expected, the approximation
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is good for large B and for � not close to 1.
The accuracy of the approximations for the remaining service time distribu-

tion upon first and subsequent full-buffer hits is illustrated in Figure 4.2. (Note
in this example that because of the deterministic service time of 1, the remaining
service time cannot exceed 1.) The simulation results (shown with solid lines) of
course have some small statistical errors, at most 0.004 with 95 % confidence.
The analytical approximations (plotted with dashed lines) are given by the ex-
pressions shown in the figure, which follow directly from the analysis in Sec-
tion 4.4. Clearly, the approximate analytical distributions agree quite well with
the simulation results, especially considering the fact that we have a relatively
small B and � close to 1.

4.7.2 Example: M � H2 � 1 � B
As an example with non-deterministic service time, we consider an M

�
H2
�
1
�
B

queue. We choose the hyperexponential service time distribution such that the
service rate is either 2 (with probability 1

�
2), or 2

�
3 (with probability 1

�
2); thus

�
(X) � 1 and ���M� .

Approximation
Simulation

Fz ¬ fb(z)

z

e

@
@@ Subsequent hit, ½ � 1 ¾ 2

FZ ¿ fb(z) � 1 Á 0 ¾ 2773 e Â 2x Á 0 ¾ 7226 e Â 2x Ã 3e

@
@

@@
Subsequent hit, ½ � 0 ¾ 8

FZ ¿ fb(z) � 1 Á 0 ¾ 2500 e Â 2x Á 0 ¾ 7500 e Â 2x Ã 3
e

@
@@

First hit, ½ � 0 ¾ 8
FZ ¿ fb(z) � 1 Á 0 ¾ 08452 e Â 2x Á 0 ¾ 9154 e Â 2x Ã 3

6543210

1

0.8

0.6

0.4

0.2

0

Figure 4.3: Remaining service time distributions in an M
�
H2
�
1
�
10 queue.
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case � B approximation exact difference

first hit

0.4
10 0.0005005 0.0005007 0.054 %
20 3 � 098 2 10 � 7 3 � 098 2 10 � 7 0.00 %

0.6
10 0.00717 0.00728 1.5 %
20 1 � 213 2 10 � 4 1 � 213 2 10 � 4 0.024 %

0.8
10 0.03051 0.03618 16 %
20 5 � 145 2 10 � 3 5 � 284 2 10 � 3 2.6 %

1.2
10 0.1363 0.1744 22 %
20 0.1363 0.1436 5.1 %

1.6
10 0.3175 0.3238 1.9 %
20 0.3175 0.3177 0.05 %

2.0
10 0.4342 0.4355 0.3 %
20 0.4342 0.4343 0.00 %

subsequent hit

0.4
10 0.4000 0.3997 0.07 %
20 0.4000 0.4000 0.00 %

0.6
10 0.6000 0.5942 0.97 %
20 0.6000 0.5999 0.016 %

0.8
10 0.8000 0.7629 4.9 %
20 0.8000 0.7946 0.68 %

1.2
10 0.9563 0.9441 1.3 %
20 0.9899 0.9894 0.053 %

1.6
10 0.9885 0.9882 0.03 %
20 0.9997 0.9997 0.00 %

2.0
10 0.9972 0.9972 0.00 %
20 1.0000 1.0000 0.00 %

Table 4.3: Comparison of approximation and true values for the probability of
reaching full buffer in an M

�
H2
�
1
�
B queue.

Let us first test the approximation for the full-buffer probability. Table 4.3
shows the results from our approximation, as well as results from a numerical
computation for comparison. Clearly, for � not close to 1, our approximation is
quite good. A comparison with Table 4.2 suggests that for the same � , the ap-
proximations are better for the M

�
D
�
1
�
B system than for the M

�
H2
�
1
�
B system.

Presumably, this is due to the larger variance of the service time in the latter sys-
tem.

For the M
�
H2
�
1
�
B queue, Figure 4.3 shows the remaining service time dis-

tribution obtained from our analytical approximations and from simulations.
Again, the agreement between our approximations and the simulation results
is evident.
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4.7.3 Application: estimation of consecutive cell loss prob-
abilities in an M � G � 1 � B queue

In Chapter 5, we consider the estimation of consecutive-cell-loss (CCL) probabil-
ities in M

�
G
�
1
�
B queues using importance sampling simulation. In the process

of doing that, expression (5.4) is derived, which expresses the probability of at
least one n-CCL event during a busy cycle in terms of four other probabilities. In
Chapter 5, each of these four probabilities is estimated using simulation. Altern-
atively, these probabilities can also be approximated numerically using results
from the present chapter, as demonstrated below.

Equation (5.4) expresses the n-CCL probability ¥ n as follows:¥ n ��¥ p1n � ¥ (1 � p1n) d pn

1 �Xd (1 � pn)
�

Two of the four probabilities involved, namely ¥ and d , are simply the probab-
ilities of reaching first and subsequent full-buffer periods, respectively, which
can (for large B) be approximated by 1 �$L as calculated in Section 4.6 (equa-
tions (4.23) and (4.24)). The other two, p1n and pn, are the probabilities that at
least n (Poisson) arrivals occur during a first and a subsequent full-buffer period,
respectively. If the distributions of those durations are known, these two probab-
ilities can be estimated using a straightforward integration:

p1n ��Z D
0

e � / x D�
i � n

( � x)i

i!
dG1(x) 

pn � Z D
0

e � / x D�
i � n

( � x)i

i!
dG(x)  (4.26)

where G1( 2 ) and G( 2 ) are the distribution functions of the duration of first and sub-
sequent full-buffer periods, respectively. If the overflow level B is high enough,
G1( 2 ) and G( 2 ) can be approximated by the asymptotic distributions that we have
derived in the present chapter (Theorems 4.4 and 4.5).

As an example, consider an M
�
D
�
1
�
B queue, with arrival rate 0.8 and de-

terministic service time d � 1. The approximate values for ¥ and d can be read
from Table 4.2. The duration of the first full-buffer period asymptotically has a
density dG1(x)

�
dx of the form � e0 Ä 43084(1 � x) � 1 � , while the distribution G(x) of the

duration of subsequent full-buffer periods asymptotically is uniform on Å 0  1 Æ . By
numerical evaluation of the integrals in (4.26), approximate values of p1n and pn

can be calculated. Finally, the four probabilities are substituted into (5.4) to ob-
tain the n-CCL probability.

Clearly, the agreement between the analytical approximation and the exact
results is very good; in fact, it is much better than should be expected. For ex-
ample, consider B � 5: at such a low buffer size the approximations from the
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B n ¥ n (anal.appr.) ¥ n (exact)
5 1 5 � 412 2 10 � 2 6 � 018 2 10 � 2

4 7 � 239 2 10 � 4 7 � 246 2 10 � 4

16 1 � 330 2 10 � 17 1 � 329 2 10 � 17

64 1 � 174 2 10 � 98 1 � 175 2 10 � 98

10 1 6 � 278 2 10 � 3 6 � 352 2 10 � 3

4 8 � 388 2 10 � 5 8 � 398 2 10 � 5

16 1 � 542 2 10 � 18 1 � 542 2 10 � 18

64 1 � 362 2 10 � 99 1 � 363 2 10 � 99

20 1 8 � 447 2 10 � 5 8 � 448 2 10 � 5

4 1 � 130 2 10 � 6 1 � 130 2 10 � 6

16 2 � 075 2 10 � 20 2 � 075 2 10 � 20

64 1 � 832 2 10 � 101 1 � 834 2 10 � 101

Table 4.4: Analytic approximation of n-CCL probability for M
�
D
�
1
�
B queues,

with �r� 0 � 8 and d � 1.

present chapter are generally rather bad, and indeed Table 4.2 lists an error of
about 15% for the approximation of ¥ used here. Since ¥ n is directly proportional
to ¥ , a 15% error in ¥ should also contribute a 15% error to ¥ n. At n � 1, ¥ n

indeed has an error of this order (11%), but at n � 4, 16 and 64, the error in ¥ n is
just 0.1%. It seems as if the large error in the approximation of ¥ is compensated
for by errors in the approximations of d , dG1( 2 ) and dG( 2 ). Correlations between
these four errors are of course to be expected, since they all come from one ap-
proximation method. However, it is surprising that they cancel so well; further
analysis of this may be of interest.

4.8 Summary and concluding remarks

In this chapter, we have derived analytical approximations for the probability
densities of the past and remaining service time upon reaching a high level, e.g.,
full buffer, in M

�
G
�
1 queues. Table 4.5 summarizes the main results for these

distributions, conditional on reaching full buffer. As a by-product, we also ob-
tained approximations for the probability of reaching full buffer (for the first and
subsequent hits) in a busy cycle; those are given in (4.23), (4.24) and (4.25). How-
ever, the results in this chapter are only valid if a solution, unequal to 1, of (4.4)
exists; in particular, this excludes cases where the distribution of the service time
has a heavy tail.

Validations of the approximations are carried out by means of comparisons
with true values obtained from exact numerical results and simulations. The
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approximations are shown to be most accurate for high levels and � not too close
to 1, although the approximate distributions in Table 4.5 remain surprisingly
accurate for � near 1.

An extension of our results to queueing systems other than M
�
G
�
1 would be

of much interest. Our present analysis is based on an embedded Markov chain
formulation, which cannot be applied to most GI

�
G
�
1 systems; for such systems,

a different approach needs to be devised. The only other category of queueing sys-
tems which does lend itself to an embedded Markov chain analysis, is GI

�
M
�
1,

for which a study of the remaining inter-arrival time at service completion epochs
would be of interest.

Case
Past service time density Remaining service time density

fY ¬ fb(y) fZ ¬ fb(z)
First
hit

�Y�� 1 /1 � ' (e / (K � 1)y � 1)F̄X(y) /1 � ' � Dz � e / (K � 1)(t � z) � 1 � dFX (t)�#� 1 2Ç
(X2) yF̄X(y) 2Ç

(X2) � Dz (t � z) dFX(t)
Subs.
hit

�TW 1 1Ç
(X) F̄X(y) 1Ç

(X) F̄X (z)�g� 1 � e / (K � 1)yF̄X (y) �È� Dz e / (K1 � 1)(t � z) dFX(t)
Note: K is defined as the solution not equal to 1 of (4.4). For some distributions such a solution does

not exist, and the above results are not valid.

Table 4.5: Probability densities of past and remaining service times upon reach-
ing a high level in M

�
G
�
1 queues.

4.A Solving the doubly-unbounded system

In this appendix, we present a proof of Theorem 4.1. For definitions and proper-
ties of Nn, qj, V( 2 ), K1 and K2, see Section 4.2.

Define the following double-sided z-transform of the distribution of Nn:

R(n)(z) � D�
i � � D r(n)

i zi

From (4.2) we get
R(1)(z) � 1 

and from (4.1) we have (for 0 ] � z �¹W K2)

R(n)(z) � V(z)
z

R(n � 1)(z) 
as can be seen either by expanding the summations, or by noting that Nn is just
the sum of Nn � 1 and another independent random number with the generating
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function V(z)
�
z. Next, we easily find:

R(n)(z) � R(1)(z) o V(z)
z q n � 1 � o V(z)

z q n � 1 �
Now define R(z) to be the double-sided z-transform of ri, to find:

R(z) � D�
i � � D rizi � D�

i � � D D�
n � 1

r(n)
i zi ��D�

n � 1

R(n)(z) ��D�
n � 1

o V(z)
z q n � 1 � z

z � V(z)
�

(4.27)
The change of the order of summation above is possible on the ring2 É z : K1 ]� z � ] K2 Ê in the complex plane. So, (4.27) is valid on that ring.

Note that R(z) itself is only defined on the ring; however, the right-hand side
of (4.27) is also analytical outside the ring (except of course at K1 and K2), so it is
the (unique) analytical continuation of R(z).

Behaviour of ri for i W 0. We have already shown that �V(z) � ] � z � on the ringÉ z : K1 ] � z � ] K2 Ê . By Rouché’s theorem (see, e.g., [Tit52]), this means that
V(z) � z has exactly as many zeros on the disc É � z � ] K2 Ê as z does, while the
latter of course has exactly one zero (at 0). We already know that V(z) � z has
a zero at K1, which is on the disc. So that must be its only zero. Consequently,
z � K1 is the only pole of R(z)

�
z � 1

�
(z � V(z)) on the disc. Now calculate the

residue of this pole:

Res o R(z)
z
 K1 q � lim

z � K1
(z � K1)

R(z)
z
� lim

y � 1
(y � 1)K1

R(K1y)
K1y� lim

y � 1

(y � 1)K1

K1y � V(K1y)
� lim

y � 1

K1

K1 � K1V � (K1y)
� 1

1 � V � (K1)


where L’Hospital’s rule was used in the fourth step. Knowing the only pole’s
residue, we can split R(z)

�
z as follows (for K1 ] � z � ] K2):

R(z)
z
��D�

i � 0

r �i � 1zi � 1
1 � V � (K1)

1
z � K1

��D�
i � 0

r �i � 1zi � 1
�
K1

1 � V � (K1)
K1
�
z

1 � K1
�
z��D�

i � 0

r �i � 1zi � 1
�
K1

1 � V � (K1)

� 1�
i � � D o z

K1 q i �
2Note that the last summation (a simple geometric sum) converges on the ring because thereË

V(z)
Ë � Ë z Ë . This follows from observing that:

• Because of the convexity of V(z) and the fact that V(K1) � K1 and V(K2) � K2, we have
V(z) � z for any (real and positive) z for which K1 � z � K2.

• Write z, which is in general a complex number, as x Ì iy. With the definition (4.3) of V(z) in
terms of a Laplace transform of a positive function, one easily verifies that

Ë
V(z)
Ë � ËV(x Ì iy)

Ë	ÍË
V(
Ë
x
Ë
)
Ë	ÍrË

V(
Ë
x Ì iy

Ë
)
Ë
.
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The reason the first term, _ Di � 0 r �i � 1zi, contains no negative powers of z, is that
this term results from removing the only pole R(z) has on � z � ] K2, so this term
must be analytic on this disc, and therefore can be written as a Taylor series.
Multiply the above by z to find

R(z) ��D�
i � 1

r �izi � z
1
�
K1

1 � V � (K1)

� 1�
i � � D o z

K1 q i ��D�
i � 1

r �izi � 1
1 � V � (K1)

0�
i � � D o z

K1 q i 
from which (4.5) directly follows.

Limit behaviour of ri for large i. Using the final value theorem (Abelian
theorem, see [Tit52]) for z-transforms and applying L’Hospital’s rule yield the
following limit:

lim
i � D K i

2ri � lim
z � 1

(1 � z)R(K2z) � lim
z � 1

(1 � z)K2z
K2z � V(K2z)� lim

z � 1

(1 � z)K2 � K2z
K2 � K2V � (K2z)

� 1
V � (K2) � 1


thus proving (4.6). 2
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Chapter 5

Rare events involving IID
sums: bounded threshold
�

he estimation of rare event probabilities involving sums of independent and
identically distributed (i.i.d.) random variables is often encountered in the per-
formance and reliability evaluation of models stemming from various applica-
tions, such as system reliability, quality of service in communication networks,
signal detection, and others. Analytical and/or numerical evaluation of these
probabilities may not be possible. One alternative would be simulation; how-
ever, this is not efficient unless some importance sampling procedure is devised
to estimate these typically small probabilities.

Let Sn � _ n
i � 1 Xi be the sum of n i.i.d. random variables. A lot is known

about the asymptotic properties (for n ��� ) of averages of i.i.d. random variables
(i.e., Sn

�
n); for example, the central limit theorem (see, e.g., [Fel66]) and large

deviation results (see, e.g., [SW95]). In this chapter, however, we look at the sum
itself (not the average), which generally has different asymptotic properties for
n �Î� . For example, the probability that the average Sn

�
n is less than a given

threshhold generally decreases exponentially with n (assuming the threshold is
below the mean

�
Xi). In contrast, the probability that the sum Sn is below a

given threshhold often decreases even faster than exponentially with n (e.g., as
fast as 1

�
n!).

In this and the next chapter, we focus on the probability that the sum of n
i.i.d. positive random variables Xi is less than another, independent and possibly
differently distributed, positive random variable Y (the “threshold”):\ � n�

i � 1

Xi ] Y � � (5.1)

Our aim is to develop importance sampling simulation methods for the estim-
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ation of such probabilities. A desirable property of such simulation methods is
asymptotic efficiency, which means (see, e.g., [Sad91]) that for a given relative
error (accuracy), the required simulation effort grows less than exponential in n;
or, equivalently, that for a given simulation effort, the relative error grows less
than exponential in n. In this chapter, an importance sampling change of meas-
ure is proposed in which the distribution of Y is not modified, and which results
in asymptotically efficient simulation if Y is upper-bounded.

In Section 5.1, the details of this change of measure are discussed, and the
asymptotic efficiency is proved. In Section 5.2, this simulation scheme is applied
to the estimation of consecutive loss probabilities in M

�
G
�
1 queues.

5.1 Importance sampling simulation

In this section, the change of measure is described, and its asymptotic efficiency
is proved.

5.1.1 The change of measure

As stated in the introduction, only changes of measure are considered in which
the distribution of Y is not changed; thus, only the distribution of the Xi remains
to be changed. This may seem like an odd and artificial restriction, but it is not.
In practical problems, like the one to be discussed in Section 5.2, the distribution
of Y is not known because the samples of Y are simulation results themselves. In
that case, it is not possible to directly change the distribution of Y. Furthermore,
it is of theoretical interest to see what can be achieved by such a restricted change
of measure, and compare this with the results for a less restricted change of
measure that includes changing the distribution of Y, as discussed in Chapter 6.

For the change of measure applied to Xi, we only consider exponential tilting,
since that often turns out to be asymptotically efficient (e.g., [Sad91]). Denote
the exponential tilting parameter as { , then the tilted density of Xi is given by� e � » xfX(x) (for x � 0), where fX(x) is the original density of Xi and � is a normaliz-
ation constant ( � � 1 � � D0 e � » xfX(x)dx).

In the following theorem we propose an exponential tilting parameter which
yields an asymptotically efficient simulation as n goes to infinity.

Theorem 5.1 Let Y be a random variable with an upper bound b and pdf fY( 2 ),
and let Xi be i.i.d. positive random variables with pdf fX( 2 ). Then, an asymptotic-
ally efficient change of measure for estimating the probability in (5.1) is obtained
by exponentially tilting fX( 2 ), with a tilting parameter given by{«� qn

�
b � (5.2)
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Here, q is defined such that the (q � 1)-th derivative of fX(x) at x � 0 is its first non-
zero derivative. Using this change of measure, the relative error asymptotically
increases proportionally to nv Ï 2 � 3 Ï 4, with v defined such that the v-th derivative
of fY(y) at y � b is its first non-zero derivative; if Y is deterministic (necessarily
equal to b), we set v �Q� 1.

Proof: See Section 5.1.2.

From the above theorem, it is clear that the optimal change of measure and
the resulting error bounds depend in a rather peculiar way on the distributions
of Xi and Y: the dependence on the X-distribution is only through that distri-
bution’s behaviour near zero, and the dependence on the Y-distribution is only
through its behaviour near b. This is not surprising since it suggests that asymp-
totically (for large n), the typical way for the rare event to happen is by getting
small values of Xi and a large value of Y.

5.1.2 Asymptotic efficiency

The proof of the asymptotic efficiency of the change of measure introduced above,
relies strongly on an extension to the well-known central-limit theorem, given as
Theorem 5.2 in Appendix 5.A.2. This theorem basically states that under some
conditions, the distribution of the sum of a large number of i.i.d. random vari-
ables tends to a normal distribution also when the distribution of the individual
random variables is exponentially tilted with a parameter that varies with the
number of the i.i.d. variables.

Preliminaries

Let g(x) be the density obtained by exponentially tilting the pdf fX(x) of Xi; then

g(x) �S� e � » xfX(x) 
where � is the normalization factor. Consider a simulation run in which we
generate one sample y of Y, and n samples xi of Xi, i � 1  2 
�	�
�1 n. Define the
sum s � _ n

i � 1 xi, and the indicator I � 1s Ð y. The likelihood ratio associated with
this simulation run is

L � nÑ
i � 1

� � 1e » xi �S� � ne » s �
The importance sampling estimate of the probability

\ É _ Xi ] Y Ê is given by

� ¸ (LI), where

� ¸ denotes the expectation w.r.t. the new probability measure. The
variance of this estimator is given by

� ¸ (L2I) � � ¸ 2(LI). Consequently, its relative
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error is given by

RE � n
� ¸ (L2I) � � ¸ 2(LI)

�
(LI)

�QÒ
� ¸ (L2I)
� ¸ 2(LI)

� 1 
so in order to prove the asymptotic efficiency, we need to upper bound the fraction
in the right-hand side.

Proof of Theorem 5.1

The proof consists mainly of calculating the limit behaviour (as n ��� ) of

� ¸ (L2I)
and

� ¸ (LI). These limits can be calculated using the extended central limit
theorem presented in Appendix 5.A.2. Since the calculations for

� ¸ (L2I) and
for

� ¸ (LI) have a lot in common, it is convenient to first calculate the limit beha-
viour of the more general

� ¸ (LkI), and substitute k � 1 and k � 2 later. Evidently,

� ¸ (LkI) is given by the following integral, where FS( 2 ) is the probability distribu-
tion function of the sum of Xi drawn from their tilted distribution:� ¸ (LkI) �[Z b

0
Z b

s
Lk dFY(y) dFS(s) �S� � nk Z b

0
Z b

s
e » sk dFY(y) dFS(s) �

Apply the extended central limit theorem (Theorem 5.2) to approximate1 dFS(s)
as follows, noting that q as defined in Theorem 5.1 equals r � 1 with r as defined
in Theorem 5.2: � ¸ (LkI) � � � nk Z b

0
Z b

s
dFY(y)e » sk

nnq Ï »PÓ nq Ï » 2(s)ds � (5.3)

Here and in the following, the approximate-equals sign � is used to denote that
the limit as n ��� of the ratio of the left-hand and right-hand side is 1. Since{�� qn

�
b increases proportional to n, the factor e » sk in the above integrand will

become an ever steeper function near s � b for large n. Therefore, in the limit
as n ��� , the behaviour of the rest of the integrand is only important for s close
to b.

Consider the inner integral in the above. Near b the density fY(y) of Y is as-
sumed (per the definition of v in the theorem; the special case of deterministic Y
will be treated later) to have the form

C(b � y)v 
1Note that due to the presence of another factor that depends on Ô in the integrand, it is not

immediately obvious that this gives a correct approximation of the integral. However, as we will see
below the behaviour of the inner integral is such, that for large Ô , only the behaviour of dFS(s) near
its peak is important. Using this observation together with the extended central limit theorem, it
can be shown that indeed the ratio of the left-hand and the right-hand sides of (5.3) goes to 1 as Ô
and n go to infinity.
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for some positive constant C. Using this, the inner integral can be approximated
as Z b

s
C(b � y)vdy � C

v � 1
(b � s)v � 1 �

Substituting this into (5.3), and writing the Gaussian density n explicitly, we find� ¸ (LkI) � C Õ nq

(v � 1) � nkb Õ 2 � Z b

0
(b � s)v � 1e » ske � (b a s)2nq

2b2 ds �
Next, substitute s � b(1 � z) and { b � nq:� ¸ (LkI) � C Õ nqenqkbv � 2

(v � 1) � nk Õ 2 � Z 1

0
zv � 1e � nqkze � z2nq

2 dz �
For large n, the integrand goes to zero very quickly with increasing z, so we can
approximate the integral as follows:Z 1

0
zv � 1e � nqkze � z2nq

2 dz � Z D
0

zv � 1e � nqkze � z2nq
2 dz� (nq) � v � 2 Z D

0
wv � 1e � kwe � w2

2nq dw� (nq) � v � 2 Z D
0

wv � 1e � kwdw� (nq) � v � 2 (v � 1)!
kv � 2


where the substitution w � nqz has been made. Thus� ¸ (LkI) � Cv!enqkbv � 2

(nq)v � 3 Ï 2kv � 2 � nk Õ 2 � �
Substitution of k � 1 and k � 2 into the above yields:

� ¸ (L2I)
� ¸ 2(LI) � Õ 2 �

2v � 2Cv!bv � 2
(nq)v � 3 Ï 2 �

We see that
Ç ¼ (L2I)Ç ¼ 2(LI) is proportional to (nq)v � 3 Ï 2. Consequently, the relative error

of the estimator asymptotically increases proportional to nv Ï 2 � 3 Ï 4 for large n, as
was to be shown.

Finally, consider the special case of deterministic Y. In that case, the in-
ner integral in (5.3) is equal to 1, independent of s since all of the probability
mass of Y is concentrated at b. Since in the next step this inner integral is re-
placed by C

v � 1 (b � s)v � 1, the rest of the proof is still valid after simply replacing
all occurrences of C

�
(v � 1) by 1, and all other occurrences of v by � 1; note that

Cv! � C(v � 1)!
�
(v � 1) � 1 in this case. Thus, we see that the theorem also holds

for deterministic Y. 2
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Alternative proof

In [dBN98], a different proof was presented for the asymptotic efficiency of this
change of measure. The present proof is a bit simpler (not counting the proof of
the extended central limit theorem, which will be used again in the next chapter),
and yields a slightly stronger result: in [dBN98], it is only shown that nv Ï 2 � 3 Ï 4 is
an upper bound on the asymptotic growth rate of the relative error, whereas the
present proof shows this to be the exact limit.

5.2 Application: consecutive-cell-loss probability

In this section, the application is presented which originally motivated the search
for an efficient change of measure for estimating the IID sum “underflow” prob-
ability (5.1). This is the problem of estimating the consecutive-cell loss (CCL)
probability in an M

�
G
�
1 queue. We first derive an explicit expression for the CCL

probability in terms of other probabilities which are simpler to estimate than the
CCL probability itself. For each of these other probabilities, an asymptotically ef-
ficient importance sampling scheme is proposed, resulting in an asymptotically
efficient method for the estimation of the CCL probability.

5.2.1 Model and analysis

Consider an M
�
G
�
1
�
k queue, and define the n-CCL event as the loss of n or

more consecutively arriving cells (as in Chapter 3). We are interested in the
probability ¥ n of one or more such n-CCL events in one busy cycle. As usual, the
busy cycle is defined as the interval between two arrivals which find the system
empty; these are also regeneration points. Figure 5.1 shows the buffer content
during one typical busy cycle.

B C D E F G

H
I

buffer content

time

k

A

Figure 5.1: A typical regeneration cycle.
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Clearly, the n-CCL event can only happen by having at least n arrivals within
one full-buffer period (B–C, D–E or F–G in the figure). In a general GI

�
G
�
1
�
k

queue, the duration of full-buffer periods are neither independent, nor identically
distributed. However, in an M

�
G
�
1
�
k queue these durations are independent,

and the duration of the second and later (henceforth referred to as “subsequent”,
as in Chapter 4) full-buffer periods are identically distributed, as can be seen
easily. Therefore, the following probabilities are well-defined:

• ¥ : the probability of reaching full-buffer in a busy cycle (i.e., reaching
level k, starting from level 0 and before reaching 0 again). In Figure 5.1,
this is the probability of going from A to B.

• d : the probability of reaching yet another full-buffer period in the same
busy cycle (i.e., reaching level k, starting from level k � 1 and before hitting
level 0). In the figure, this corresponds to going from C to D or from E to F.
The alternative is shown as going from G to H.

• p1n: the probability of n or more arrivals during the first full-buffer period
in a busy cycle (shown as the interval B-C in the figure).

• pn: the probability of n or more arrivals during a subsequent full-buffer
period (e.g., the intervals D-E and F-G in the figure).

Using these definitions, ¥ n can be written as follows:¥ n �U¥ p1n � ¥ (1 � p1n) d pn

1 �Xd (1 � pn)
(5.4)

The first term on the right-hand side is the probability that the n-CCL event hap-
pens in the first full-buffer period in the busy cycle; the second term is the prob-
ability that it happens in one of the subsequent full-buffer periods in the same
busy cycle (using the closed form expression for the sum of a geometric series).
Similarly, the four probabilities ¥ , d , p1n and pn can also be used as a basis for
calculating other quantities of interest, such as the steady-state frequency of the
n-CCL event.

5.2.2 Importance sampling simulation method

Typically, the probability d is of order 1, and therefore easy to estimate using
standard simulation. The probability ¥ may be small for large k, so standard sim-
ulation may not be acceptable; but an asymptotically efficient change of measure
for this estimation is well-known [PW89]. This leaves only the problem of estim-
ating p1n and pn, which are typically also small.

Let us first consider estimating p1n. This is the probability that at least n cells
arrive (and are lost) during the first full-buffer period in a busy cycle. Denote the
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duration of such a full-buffer period as B1; then, this probability can be expressed
as follows:

p1n � \ % n�
i � 1

Xi ] B1 Ö �
The Xi’s are i.i.d. inter-arrival times whose distribution is known; for the M

�
G
�
1

model considered in this chapter, this distribution is exponential. However, the
distribution of B1 is not known. The only way to obtain samples of B1 is by start-
ing a simulation at the regeneration point corresponding to arrival to an empty
system. But if we start the simulation from that point, we could just as well use
the first part of the simulation (up to full-buffer) for estimating ¥ . So, we propose
the following procedure: perform a number of simulation runs, each starting
with an empty system. In each run, simulate until either the empty-buffer or
the full-buffer state is reached; this part of the simulation provides observations
to estimate ¥ . If full buffer is reached, the simulation run is continued until
either the end of that full-buffer period or the n-CCL event, whichever occurs
first. Simulation runs up to this point provide observations for estimating the
product ¥ p1n, which is, in fact, what we need to evaluate (5.4). However, a separ-
ate estimate of p1n could be obtained by taking as observations only the last part
(i.e., the full buffer part) of those simulation runs which did reach full-buffer.

Estimating pn is an almost identical problem: replace B1 by the duration of
the subsequent full-buffer periods, and use the end of full-buffer periods as start-
ing points; then the very same procedure as described above yields estimates of d
and d pn.

Finally, we only need to choose an appropriate change of measure to be used
in the importance sampling simulations. A good (or optimal) change of measure
is known for estimating each of the probabilities separately: for estimating ¥ ,
the method given in [PW89] can be used; for estimating d , standard simulation
can be used; and for estimating pn and p1n, an asymptotically efficient change
of measure has been presented in Section 5.1, for cases where the full-buffer
duration is bounded, e.g., the M

�
D
�
1 queue. For cases where the full-buffer dur-

ation is not bounded, no provably efficient simulation method has yet been found.
(However, some alternative methods are available; see Sections 3.1 and 4.7.3.)

5.2.3 Example: M � D � 1 � k system

Consider the estimation of the n-CCL probabilitiy in an M
�
D
�
1
�
k queue, with

arrival rate ��� 0 � 8 and deterministic service time d � 1. As described in Sec-
tion 5.2.2, two separate simulations are performed. In the first simulation (to
estimate ¥ and ¥ p1n) we use exponential tilting according to [PW89] up to full-
buffer, and exponential tilting according to (5.2) during the full-buffer period. In
the other simulation (to estimate d and d pn) we use standard simulation up to
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n ¥ p1n rel.error d pn rel.error
1 2 � 100 2 10 � 3 0.15 % 2 � 487 2 10 � 1 0.078 %
2 3 � 653 2 10 � 3 0.20 % 5 � 798 2 10 � 2 0.099 %
4 6 � 598 2 10 � 6 0.30 % 1 � 615 2 10 � 3 0.14 %
8 4 � 594 2 10 � 10 0.54 % 1 � 957 2 10 � 7 0.22 %
16 3 � 861 2 10 � 20 1.1 % 3 � 106 2 10 � 17 0.36 %
32 2 � 278 2 10 � 44 2.5 % 3 � 377 2 10 � 41 0.61 %
64 9 � 370 2 10 � 102 5.9 % 2 � 785 2 10 � 98 1.0 %

n ¥ n (sim.) rel.error ¥ n (exact)
1 6 � 353 2 10 � 3 0.3 % 6 � 352 2 10 � 3

2 2 � 465 2 10 � 3 0.3 % 2 � 464 2 10 � 3

4 8 � 401 2 10 � 5 0.3 % 8 � 398 2 10 � 5

8 9 � 901 2 10 � 9 0.4 % 9 � 91 2 10 � 9

16 1 � 538 2 10 � 18 0.5 % 1 � 542 2 10 � 18

32 1 � 649 2 10 � 42 0.8 % 1 � 683 2 10 � 42

64 1 � 360 2 10 � 99 1.2 % 1 � 363 2 10 � 99

Table 5.1: Simulation results for an M
�
D
�
1
�
10 queue, with �T� 0 � 8 and d � 1.

full-buffer, and then exponential tilting according to (5.2) during the full-buffer
period. To apply (5.2), we need values for q and b. Since the inter-arrival time
distribution is exponential, q � 1. And since the service time is deterministic
and equal to d, the remaining service time is a random variable assuming values
between 0 and d, so b � d � 1. It follows that the tilting parameter during (both
the first and subsequent) full-buffer periods is simply given by {"� n.

Table 5.1 shows simulation results at buffer size k � 10, for several values
of n. Each estimate is based on 4 2 106 observations; the accuracy of these estim-
ates is shown by listing the estimate’s relative error: the standard deviation as
a percentage of the mean. Along with the results in the table, the simulations
have also yielded estimates for ¥ and d ; typical values and their relative errors
are: ¥S� 9 � 837 2 10 � 3 m 0 � 068% and dM� 0 � 7961 m 0 � 025%. From these simula-
tion results, ¥ n and an estimate of its relative error can be calculated using (5.4).
The resulting estimates of ¥ n and their relative errors2 are shown in the lower
part of Table 5.1. For comparison, the exact values (obtained numerically, as de-
scribed in Chapter 3) are also shown in that table; clearly, the exact results and
the simulation results agree well.

2These are worst case relative error estimates, since we have assumed that each quantity in
the r.h.s. of (5.4) deviates in the direction which increases the total error in × n. Then calculating
the resulting relative error in × n from the known errors (bounds) in the quantities in the r.h.s. is
straightforward.
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Figure 5.2: Relative error as a function of n.

We now proceed to compare the asymptotic properties of the relative error
estimates with the claims of Theorem 5.1. In the estimation of pn (involving
subsequent full-buffer periods), the remaining service time B upon reaching full-
buffer would asymptotically (for k �Ø� ) have a uniform distribution on Å 0  d Æ
(see Chapter 4). As a consequence, the actual distribution of B (for finite k) is
approximately uniform on Å 0  d Æ , and hence v � 0. Therefore, according to The-
orem 5.1, we should expect the relative error to (asymptotically) grow propor-
tionally to n3 Ï 4. As the solid line in Figure 5.2 shows, the relative error from thed pn simulations indeed grow proportionally to n3 Ï 4 for large n.

For the estimation of p1n (involving the first full-buffer period), things are
a bit more complicated. Recall that the samples of the remaining service time
here are obtained from an importance sampling simulation with tilting accord-
ing to [PW89]: this tilting basically sets the arrival rate to 1.23084, thus making
the queue unstable. According to Chapter 4, in a queue with Markov arrivals
at rate 1.23084 and deterministic service times equal to 1, the remaining ser-
vice time at the first full-buffer hit asymptotically has a density proportional to� e � 0 Ä 35004(1 � x) � 1 � . Thus v � 1, so according to Theorem 5.1, we would expect
the relative error in p1n to (asymptotically) grow proportional to n5 Ï 4. Actually,
this expectation is not completely justified since the change of measure during
the first part of the simulation (up to full buffer) has an influence on the like-
lihood ratios, while the theorem does not allow for such an influence. However,
the experimental results (dashed line) plotted in Figure 5.2 confirm the growth
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proportional to n5 Ï 4, and actually, the proof of the theorem can be extended for
this particular case3.

5.3 Conclusions

In this chapter, we have proposed an asymptotically efficient importance
sampling scheme for the estimation of probabilities of the form

\
( _ n

i � 1 Xi ] Y),
where the Xi are independent and identically distributed, and Y is some bounded
random variable. We have derived expressions for the asymptotic growth rate of
the relative error with n.

As an example application, the estimation of the consecutive cell loss probab-
ility in M

�
D
�
1
�
k queues has been considered, with good results (confirming the

theory).

The importance sampling simulation method described in the present chapter
involves only changing the distribution of the Xi and not of Y. This restriction
can have implementation advantages, especially if the distribution of Y is not ex-
plicitly known. However, this restriction also makes the method limited to cases
in which Y is upper-bounded. In the next chapter, a method is presented which
changes the distributions both of Xi and of Y, and works also for unbounded Y.

5.A Extension of the Central Limit Theorem to
exponentially tilted random variables

The well-known Central Limit Theorem (CLT) basically states that the distri-
bution of the sum of n i.i.d. random variables approaches a normal distribution
when n goes to infinity. In this appendix, a variant of the CLT is presented and
proved in which the distribution of the random variables depends on n; within
one sum for a given n, the random variables are still i.i.d.. Furthermore, it is
shown that not just the distribution function, but also the density converges4 to
normal.

3One can easily verify that the proof in Section 5.1.2 remains valid if the likelihood ratio L is
multiplied by a function of (only) Y and that function does not go to zero at y � b. Furthermore, one
can verify that the likelihood ratio at the end of a sample path with tilting according to [PW89], is
indeed such a function of the remaining service time Y.

4The usual CLT only claims convergence of the distribution function. For convergence of the
density, some additional conditions are necessary; see e.g. Theorem XV.5.2 in [Fel66].
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5.A.1 A preliminary lemma

Lemma 5.1 Consider a family of random variables X, parameterized by { , with
a density fX( 2 ) satisfying5:

fX(x) � % 0 for x ] 0� X ( { ) � xr � o(xr) � e � » x for x � 0 
for some positive constant r, and {·� 1. Here � X( { ) is a normalization factor,
such that � D0 fX(x)dx � 1. Denote the expectation of X by � , and its standard
deviation by Ù , which obviously are both functions of { . Then the sum S � _ n

i � 1 Xi

of n independent such random variables has a density fS( 2 ) with the following
asymptotic behaviour as n ��� :

lim
n � D fS(x) � nn 0¹Ó n Ú 2(x)

1
� � Ù Õ n � � 0 

where nn 0¹Ó n Ú 2( 2 ) denotes a normal density with mean n � and variance n Ù 2. The
convergence is uniform in x, and holds even if { (and thus � and Ù ) vary with n.

Proof: One can easily show that the expectation � of X is given by�Y� r � 1{ � o( { � 1)

and its variance Ù 2 by Ù 2 � r � 1{ 2
� o( { � 2) �

Define a family of random variables Y � (X ��� )
� Ù ; clearly,

�
Y � 0 and

�
Y2 � 1. The density fY( 2 ) of Y is given by

fY(y) ��% 0 for y ] �R� � Ù� �Y ( { ) (y Ùr��� )r � 1 � w1(y Ùr��� ) � e � » (y Ú �<0 ) for y �M�R� � ÙÛ
where w1( 2 ) is some function such that limx � 0 w1(x) � 0, and where � �Y( { ) is a
normalizing factor such that � fY(y)dy � 1. Define NÜ� 1

� { . Consequently, �S�N (r � 1) � o(N ) and Ù 2 �ÝN 2(r � 1) � o(N 2). From this, it follows that � � Ù��Õ r � 1 � w2(N )  where w2(N ) is a function such that lim v � 0 w2(N ) � 0. Then

fY(y) �ÎÞßà ßá 0 for y ] � Õ r � 1 � w2(N )� Y(N ) � y � Õ r � 1 � w2(N ) � r � 1 � w1(y Ùr��� ) � e � y Õ r � 1

for y ��� Õ r � 1 � w2(N ),

where � Y (N ) is again a normalization factor. Note that the original interval Å 1 =�SÅ
for { corresponds to the interval Æ 0  1 Æ for N . However, the above expression for

5The small order symbol o(x) is defined here by limx â 0
o(x)

x � 0.
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fY(y) does not have singularities at NU� 0, so the range of N can be extended to the
closed interval Å 0  1 Æ . For every N the density fY(y) satisfies the conditions of The-
orem XV.5.2 in [Fel66], according to which the density of _ n

i � 1 Yi
� Õ n converges

uniformly to the standard normal density function e � y2 Ï 2 � Õ 2 � . Since this holds
for any constant N in the closed interval Å 0  1 Æ , it also holds if, with increasing n,N varies within this interval, as can easily be verified6. Since

n�
i � 1

YiÕ n
� S � n �Ù Õ n


the density of (S � n � )

� Ù Õ n also converges uniformly to the standard normal
density. From this, the convergence claimed in the lemma follows immediately.

5.A.2 The extended central limit theorem

Theorem 5.2 Consider random variables Xi with a distribution function FX( 2 )
satisfying FX (0) � 0 (i.e., X is a positive random variable) and

dFX (x)
dx

�S� X � xr � o(xr) � for 0 W x W a 
for some positive constants � X , r and a. No restrictions on the behaviour of the
distribution of X in the interval Å a =�SÅ are needed.

Next, consider the random variables Yi, obtained from Xi by negatively expo-
nentially tilting the distribution:

dFY(y) �M� Y ( { )e � » ydFX(y)

where {$� 0 is the tilting parameter and � Y normalizes the function such that
FY( � ) � 1. The tilting parameter { must be such, that as n �Î� , it increases at
least polynomially with n; i.e., ã p � 0 : limn � D { � np � 0.

Then the random variable S �ä_ n
i � 1 Yi has a density on the interval Å 0  na Æ ,

and this density converges to a normal density with mean n(r � 1)» and vari-
ance n(r � 1)» 2 for n �ª� , as follows:

lim
n � D fS(y) � nn(r � 1) Ï »PÓ n(r � 1) Ï » 2(y){ � n n(r � 1)

� 0 (5.5)

uniform in y.
6From Theorem XV.5.2 in [Fel66], we know that for any å¡� 0, and for any ærç è 0 é 1 ê , an N0( æzéëå )

can be given such that for all n � N0( æzéìå ) the maximum difference between the true density ofí n
i î 1 Yi ï
ð n and the standard normal density is less than å . Now define N( å ) � max ñxò	ó 0 ô 1 õ N0( æzéëå ).

Clearly then, for any å�� 0, the difference between the true density and the standard normal density
is less than å if n � N( å ), independent of æ .
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Proof: Start by writing the distribution function of Y in the following way:

FY (y) � FY (a)G(y) � H(y) 
where

G(y) � Þßßà ßßá
0 for y ] 0
FY (y)
FY (a) for 0 W y W a

1 for y � a

and

H(y) �®% 0 for y W a

FY (y) � FY(a) for y � a �
Note that the maximum of H(y) is 1 � FY (a), which vanishes as { ��� :

1 � FY(a) � � Da e � » ydFX(y)� D0 e � » ydFX(y)
W e � » a � Da dFX (y)� a

0 e � » ydFX(y)W e � » a� X � a
0 e � » x � xr � o(xr) � dx ö e � » a { r � 1 � (5.6)

In order to find the probability distribution of S, we need to calculate the
n-fold convolution of FY( 2 ):

FS(y) � Fn ¸Y (y) � Fn
Y (a)Gn ¸ (y)7 8:9 ;

(a)

� Hn ¸ (y)7 8:9 ;
(b)

� n � 1�
i � 1

o n
i q FY (a)iGi ¸ (y) ÷ H(n � i) ¸ (y)7 8:9 ;

(c)

�
The terms (a), (b) and (c) in the above can be studied separately:
(a) According to Lemma 5.A.1, the term (a) converges exactly as claimed (for the
whole distribution) in (5.5). Thus, it remains to be shown that the other terms
vanish.
(b) Since H(y) � 0 for y W a, the term (b) is zero for all y W na, so it cannot
disturb the density there. Furthermore, for y � na its influence vanishes as n
(and thus { ) go to infinity.
(c) This term is a sum of convolutions, each of which contains at least one factor
G(y). Since G(y) is differentiable (i.e., it has a density), convolutions of it are
also differentiable. So the term (c) has a density, and this density can be upper
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bounded as follows7:

d(c)
dy

� dG(y)
dy

÷ n � 1�
i � 1

o n
i q FY(a)iG(i � 1) ¸ (y) ÷ H(n � i) ¸ (y)W dG(y)

dy
÷ H(y) ÷ n � 2�

j � 0

o n
j � 1 q FY (a)jGj ¸ (y) ÷ H(n � 2 � j) ¸ (y)

W dG(y)
dy

÷ H(y) ÷ n2
n � 2�
j � 0

o n � 2
j q FY(a)jGj ¸ (y) ÷ H(n � 2 � j) ¸ (y)� dG(y)

dy
÷ H(y) ÷ n2F(n � 2) ¸

Y (y)W n2 dG(y)
dy

÷ H(y) �
An upper bound for dG(y)

�
dy can easily be derived: ignoring the o(xr) term, the

maximum occurs at y � r
� { and is equal to e � rrr { � r! � C { , for some positive

constant C. Using this, and the upper bound for H(y) given by (5.6), we arrive at
the following upper bound for the density contribution of term (c):

d(c)
dy

W n2C { e � » a { r � 1 � n2Ce � » a { r � 2 �
Since { increases at least polynomially with n, we find

lim
n � D d(c)

dy{ � Õ n
W lim

n � D n2Ce � » a { r � 2{ � Õ n
� 0 �

Therefore, the contribution of the term (c) to the density of S is negligible in the
sense that it does not disturb the convergence of (5.5).

7Note that from (f ø g)(y) �rù f (x) g(y Á x)dx, it follows that (f ø g) ú (y) �#ù f (x) g ú (y Á x)dx � (f ø g ú )(y).





Chapter 6

Rare events involving IID
sums: unbounded threshold
û

ike in the previous chapter, in this chapter techniques for estimating probab-
ilities of the form ¥j� \ � n�

i � 1

Xi ] Y � (6.1)

are studied, where Xi are positive i.i.d. random variables, and the “threshold” Y
is another independent positive random variable. As explained at the beginning
of the previous chapter, such probabilities occur in various performance and re-
liability models. We again focus on efficient estimation of these (typically very
small) probabilities using importance sampling simulation, and also derive an
analytical approximation.

The change of measure used for the importance sampling procedure in the
previous chapter was quite restricted: the distribution of Y was left unchanged,
and an exponential tilting was applied to the Xi. In the following we again use
exponential tilting, applied not only to Xi, but also to Y. This has several con-
sequences:

• The relative error of the resulting estimators increases slower with increas-
ing n.

• The previous chapter’s restriction to models in which Y is upper bounded
is relaxed. However, the method cannot be applied in situations where the
distribution of Y has a sub-exponential (heavy) tail.

• In problems where the samples of Y are obtained empirically (i.e., from a
preceding simulation, such as in the example of Section 5.2), it is generally
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not possible to change the distribution, so this chapter’s method cannot be
applied to those problems.

In Section 6.1, we discuss the exponential change of measure to be used for
the estimation of this probability. This change of measure yields asymptotically
efficient estimators; it is formally shown that the relative error for a fixed num-
ber of replications asymptotically increases no faster than Õ n. In Section 6.2,
the same change of measure is used to obtain a tight analytical approximation
for this probability for large n. Finally, in Section 6.3, we give three examples
from different application areas, and we use these to examine the validity and
accuracy of both the importance sampling simulation scheme and the analytical
approximation.

6.1 Importance sampling simulation
In this section, the importance sampling simulation is discussed. In Section 6.1.1,
the tilting method is described, and in Section 6.1.2, its asymptotic efficiency is
considered.

6.1.1 The tilting method

To estimate ¥ using importance sampling simulation, we propose the following
exponential change of measure:

• The distribution of Xi is tilted exponentially1: fX̧(x) � fX(x)e � » x � MX ( �R{ ),
where { is the tilting parameter.

• The distribution of Y is also tilted exponentially, equally strong, but in the
opposite direction: fY̧ (y) � fY(y)e » y � MY( { ).

• The tilting parameter { is chosen such that:

n

� ¸ Xi � � ¸ Y � (6.2)

In words: the expectation of the sum of the tilted Xi is equal to the expect-
ation of the tilted Y. Note that this means that the tilting parameter {
depends on n.

Together, these rules define the tilting which will be used not only for the im-
portance sampling simulation, but also for the analytical approximation in Sec-
tion 6.2.

1We use the following (common) notational conventions: FX ( � ) is the probability distribution func-
tion of X; fX ( � ) is the probability density function of X; MX (s) �·ü esX is the moment generating
function of the density of X; a star ( ø ) is used to denote tilted distributions, expectations, etc.
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The importance sampling simulation procedure is as follows. Perform a large
number, say N, of “replications”, where each replication consists of sampling
once from the tilted Y distribution (yielding y), and n times2 from the tilted Xi

distribution (yielding x1 	�
�	�: xn). For each replication, the indicator I ý xi Ð y is de-
termined, along with the likelihood ratio

L � Mn
X ( �R{ )MY( { )e � » (Y � Sn)  (6.3)

where Sn �[_ n
i � 1 Xi. The estimate ˆ¥��[_ N

k � 1 LkIk
�
N is unbiased, and its variance

is estimated by ˆÙ 2þ � 1
N(N � 1) _ N

k � 1 (LkIk � ˆ¥ )2.

Clearly, for the rare event _ Xi ] Y to happen, the Xi’s should be small and
Y should be large. In other words, this probability is mostly determined by the
behaviour of Xi near zero and by the tail behaviour of Y. For some typical tails
of Y, we show analytically that the proposed tilting results in asymptotically
efficient simulation, and we obtain an upper bound on the asymptotic growth of
the relative error in ˆ¥ with n (for a fixed number of simulation replications N).
These cases are:

• Y has an exponential tail (e.g., phase-type distributions). In this case, the
relative error asymptotically increases proportional to n1 Ï 2.

• Y has a super-exponential tail, satisfying a few technical conditions given at
the beginning of Section 6.1.2. This includes distributions such as positive
normal and Weibull. In this case, the relative error asymptotically grows
proportional to n1 Ï 4.

• Y is upper bounded (e.g., uniform and deterministic distributions). This
is a special case of the previous one, so again the relative error asymptot-
ically grows proportional to n1 Ï 4. Note that in this case the method from
Chapter 5 (which does not tilt Y) could also be applied; however, this would
result in a relative error that grows faster than n1 Ï 4 (except for the case of
deterministic Y, where both methods are equivalent).

As noted before, the method is not applicable to cases where Y has a sub-
exponential tail (heavy tail): such distributions cannot be tilted exponentially
to favor larger Y.

2In practice, one can save some computational effort by stopping after k � n samples, as soon así k
i î 1 xi � y.
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6.1.2 Asymptotic efficiency

As already noted in Section 5.1.2, the relative error of an importance sampling
simulation is given by

RE � Ò
� ¸ L2I

(

� ¸ LI)2
� 1 W Ò

� ¸ L2I
(

� ¸ LI)2


where L is the likelihood ratio as given by (6.3), and I is the indicator func-
tion ISn Ð Y . An upper bound for

� ¸ (L2I) can be derived as follows:
� ¸ (L2I) � � (LI) � Mn

X ( �R{ ) MY ( { ) � � e � » (Y � Sn) IY ¨ Sn
� W Mn

X ( �R{ ) MY ( { ) � I �
Therefore, an upper bound L for the square of the relative error is given byLX� Mn

X ( �R{ ) MY ( { )�
I

�
For showing asymptotic efficiency, it is sufficient to show that L increases at most
polynomially with n.

In the rest of this chapter, we will repeatedly discuss the mean and variance
of exponentially tilted random variables. Let Z be a random variable and ÿ the
tilting parameter; the tilted density is fZ̧ (z) ö e � zfZ(z). Then the following con-
venient expressions can easily be derived:� ¸ Z � M �Z( ÿ )

MZ( ÿ )
� d

d ÿ ln MZ( ÿ ) (6.4)

Var ¸ Z � d2

d ÿ 2
ln MZ( ÿ ) � d

d ÿ
� ¸ Z �

Case 1: Y has an exponential tail

For simplicity, assume that Y is exponentially distributed with parameter � .
Since only the tail behaviour of Y is important, this should not really restrict
the validity of the result. In this case,

�
I can be calculated explicitly:�

I � \ (Sn ] Y) � Z D
0

\
(Sn ] y)dFY(y) � Z D

0
� e � � y Z y

0
dFSn(z) dy� Z D

0
Z D

z
� e � � ydy dFSn(z) � Z D

0
e � � zdFSn(z) � Mn

X ( ��� ) �
Consequently: L�� ��r�l{ o MX( �R{ )

MX ( ��� ) q n �
From (6.2):

n
M �X( �R{ )
MX( �R{ ) � 1���l{
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or

( �#�Y{ )M �X ( �R{ ) � MX ( �R{ )
n

 (6.5)

so as n approaches infinity, { approaches � . Write MX ( ��� ) as a Taylor series3:

MX( ��� ) � MX ( �R{ ) � ( �Û�|{ )M �X( �R{ ) � � � ( �#�Y{ )2 � � MX ( �R{ ) o 1 � 1
n q � � � ( ���l{ )2 �

This allows us to write L for large n asL � � n M �X ( �R{ )
MX ( �R{ ) o 1 � 1

n q � n � � M �X( �R{ )
MX( �R{ ) e � 1

n

Thus, L increases approximately linearly in n; therefore, the simulation scheme
is asymptotically efficient, with a relative error increasing at most proportionally
to n1 Ï 2.

Case 2: Y has a super-exponential tail

In this section, we make the following additional assumptions:

• X satisfies the conditions of the extended central limit theorem, The-
orem 5.2 in the appendix of Chapter 5. These conditions basically require
that X has a finite non-zero density near 0.

• Y is such that
Var ¸ Y
� ¸ Y � �

( { � 1); (6.6)

a sufficient4 condition for this is

lim» � D ln

� ¸ Y
ln { � C 

for some positive constant C. Any system where

� ¸ Y grows polynomially
with { , for large { , satisfies this condition; this includes many typical super-
exponential distributions.

First, write the probability of interest

�
I as follows:�

I �[Z D
0
Z D

0
Iz Ð y dFSn (z) dFY(y) �[Z D

0
Z D

0
L Iz Ð y dFY̧ (y) dFŞn

(z)� Mn
X( �R{ )MY( { ) Z D

0
Z D

0
e � » (y � z)Iz Ð y dFY̧ (y) dFŞn

(z) �
3The big order symbol � (x) is defined by limx â 0 � (x)

x � C with C ç�� .
4Applying L’Hospital’s Rule gives lim 	 â�
 Var ¼ Y Ã� ¼ Y

1 Ã 	 � C é which is equivalent to (6.6).
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Then L�� Mn
X ( �R{ )MY( { ))�

I
� 1� D0 � Dz e � » (y � z)dFY̧ (y) dFŞn

(z)
�

We need to prove that this L increases less than exponentially fast with n. To do
so, start by rewriting 1

� L as follows (for brevity we write S instead of Sn):

1L �MZ D0
Z D

z
e � » (y � z) dFY̧ (y) dFŞ(z) �[Z D

0
Z y

0
e � » (y � z) dFŞ(z) dFY̧(y) �

Restrict both ranges of integration to obtain a lower bound on 1
� L :

1L �$Z m � a � n Ï »
m � a � n Ï » Z y

y � (1 Ï » ) e � » (y � z)dFŞ(z) dFY̧(y) 
where m � � ¸ Y � � ¸ S, and a is a positive constant which will be chosen later. In
the above range for z, we have e � » (y � z) � e � 1, so

1L � Z m � a � n Ï »
m � a � n Ï » Z y

y � (1 Ï » ) e � 1dFŞ(z) dFY̧(y) �
The inner integral can be lower bounded by e � 1 � { times the minimum of dFŞ(z)

�
dz� fŞ (z). Taking into account the range of y (as given by the outer integral), it is

clear that z in the inner integral is restricted to the interval Åm � (a Õ n � 1)
� {  m �

a Õ n
� {wÆ . After bounding the inner integral this way independently of y, the outer

integral can be written as a simple probability. We find:

1L � \ ¸ o �Y � m �ºW a Õ n{ q 2 e � 1{ 2 min
z ��� m � (a � n � 1) Ï »PÓm � a � n Ï »�� fŞ (z) �

Finally, rewrite the first factor using Chebyshev’s inequality:

1L � o 1 � { 2 Var ¸ Y
na2 q7 8=9 ;

(I)

2 e � 1{ 2 min
z ��� m � (a � n � 1) Ï »PÓm � a � n Ï »�� fŞ (z)7 8:9 ;

(II)

� (6.7)

One can easily verify that asymptotically

� ¸ X � (r � 1)
� { , where r is a constant

depending on the distribution of X as given in the conditions of the extended
central limit theorem (Theorem 5.2); combining this with (6.2) and (6.6) yields{ 2 Var ¸ Y

n
� { 2 Var ¸ Y 2 � ¸ X� ¸ Y � { 2 Var ¸ Y 2 (r � 1)

� {� ¸ Y �S{ � ( { � 1) � �
(1) � (6.8)

So a can trivially be chosen such that

1 � { 2 Var ¸ Y
n

1
a2
� 1

2
 (6.9)
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thus providing a lower bound for the factor (I) in (6.7). Note that instead of
1
�
2, any constant between 0 and 1 could have been used in the above inequality,

without affecting the final result.
The factor (II) in (6.7) will be estimated using Theorem 5.2, but first we need

to show that the conditions for that theorem are satisfied. Write mY( { ) � � ¸ Y
and mX( { ) � � ¸ X. The tilting (6.2) prescribes that mY( { ) � nmX( { ) . Differentiate
this to find

m �Y( { ) � dn
d { mX( { ) � nm �X( { ) 

from which it follows that

1
n

dn
d { � m �Y( { )

nmX( { ) � m �X( { )
mX( { ) � m �Y( { )

mY( { ) � m �X( { )
mX( { ) �

Now recall that Var ¸ Y � d

� ¸ Y � d {!� m �Y( { ), and that mX( { ) � (r � 1)
� {R� �

( { � 1),
and use (6.6) to find:

1
n

dn
d { � �

( { � 1) ��{ � 1 W C1 { � 1 
for some constant C1. By integrating we get

ln n W C2 � C1 ln { � n W eC2 { C1

for some constant C2. So n increases at most polynomially with { , thus satisfying
the last condition of Theorem 5.2. Hence, the density fŞ ( 2 ) will asymptotically ap-
proach a normal density with a standard deviation of n n(r � 1)

� { . Consequently:

min
z ��� 0 � (a � n � 1) Ï »PÓ 0 � a � n Ï »�� fŞ (z) � 1Õ 2 � n n(r � 1)

� { e � (a � n � 1)2
2n(r � 1) � C {Õ n


for some positive constant C and large n.

Substituting the above and (6.9) into (6.7), we have:L�W 1
1
2 2 e a 1» 2 C »� n

� 2
Ce � 1

Õ n �
This completes the proof of the asymptotic efficiency, and implies that the relative
error will asymptotically grow no faster than n1 Ï 4.

Case 3: Y is upper bounded

This is a special case of Case 2, so the same asymptotic efficiency proof holds. 2
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6.2 Analytical approximation
Start by writing ¥ as follows¥j��Z D

0
(1 � FY (y))dF ý Xi �[Z D

0
(1 � FY (y))L dF ý X ¼i 

where Xi̧ are tilted as described above, and L denotes the corresponding likeli-
hood ratio. Note that Y is not tilted here. (This is basically the “ g-method” of
[Sri98b].) By replacing the distribution of Xi̧ by a Gaussian distribution, one
obtains the following approximation [dBNS00]:

˜¥�� en 0 ( � » )n 2 � n � � � ( �R{ ) Z D0
(1 � FY (y))e » ye � (y � n 0 ¤ ( � » ))2 Ï 2n 0 ¤ ¤ ( � » )dy� (6.10)

Here, { is the tilting parameter as obtained in (6.2), and � (s) � ln MX (s), the
log moment generating function of the density of Xi. Note that the derivatives� � ( �R{ ) and � �C� ( �R{ ) are the mean and the variance of the tilted distribution of Xi,
respectively.

In Appendix 6.A, we present a theorem with its proof regarding the validity
of the above approximation in the case where the distribution of Y has an expo-
nential or a superexponential tail: the approximation asymptotically (as n �ª� )
converges to the true probability ¥ in the sense that

lim
n � D ˜¥¥ � 1 �

6.3 Application examples
In this section, we provide some application examples involving the estimation of
probabilities of the form (6.1). For each example, we give a table with simulation
estimates of the probability itself and the relative errors (standard deviation di-
vided by the mean) of these estimates after 105 replications, as well as the estim-
ate of the probability as obtained from the approximation (6.10) in Section 6.2.
Whenever possible, the true value (obtained numerically) of the probability be-
ing estimated is also included, for the purpose of validation. In order to check
the asymptotic efficiency of the simulation using the proposed change of meas-
ure, graphs showing the relative error (RE) as a function of n are presented. For
comparison, each graph contains a dotted line with a slope (1/2 or 1/4, see Sec-
tion 6.1) corresponding to the theoretical asymptotic growth of the relative error.
Note that in most examples we increase n so far, that the probabilities become
extremely low. These extremely low values are not really of practical interest,
but we provide them to show that the asymptotic behaviour of the relative error
agrees with the theoretical results established in this chapter.
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6.3.1 Reliability example

Consider a critical system component which may fail, and for which n (good and
non-operational) spares are available to keep the system running while the ori-
ginal component is being repaired. Let the r.v. Y be the repair time of the original
component, and Xi be the (operational) time until failure of the ith spare compon-
ent. Assume the spares are identical, so the Xi’s are i.i.d. Then the probability
that all n spares are exhausted before the original component is repaired, is given
by ¥�� \ ( _ n

i � 1 Xi ] Y).
We assume the life times Xi to have a Weibull distribution with �S� 1 andN�� 1 � 5, and the repair time Y to be deterministic, equal to 1. The results are

shown in Table 6.1 and Figure 6.1. Note that sampling from a tilted Weibull
distribution can be done efficiently as described in [Nak92]),

n ˆ¥ (IS simulation) RE ˜¥ (anal. approx.) ¥ (numerical)
4 2 � 752 2 10 � 3 m 0.44 % 2 � 460 2 10 � 3 2 � 745 2 10 � 3

8 1 � 392 2 10 � 8 m 0.58 % 1 � 315 2 10 � 8 1 � 402 2 10 � 8

16 1 � 145 2 10 � 22 m 0.73 % 1 � 114 2 10 � 22 1 � 153 2 10 � 22

32 5 � 914 2 10 � 58 m 0.90 % 5 � 806 2 10 � 58 5 � 91 2 10 � 58

64 7 � 040 2 10 � 143 m 1.09 % 7 � 029 2 10 � 143 7 � 09 2 10 � 143

128 1 � 729 2 10 � 341 m 1.29 % 1 � 685 2 10 � 341 –
256 2 � 026 2 10 � 796 m 1.58 % 2 � 05 2 10 � 796 –

Table 6.1: Results for the reliability example.

The agreement of the probability estimates from simulation and through nu-
merical means (evaluating the convolution integral) is evident. The graph shows
that the relative error asymptotically increases proportional to n1 Ï 4 (indicated by
the dotted line), which agrees with our theoretical bound. Furthermore, the ana-
lytical approximation (6.10) for the probability also agrees with the simulation
and numerical estimates.

6.3.2 Queueing example

Consider a simple queueing system with finite buffer size. When the buffer is
full, the system rejects arriving customers (e.g., cells in an ATM system). An
interesting performance measure is the probability that during one full-buffer
interval, n or more (necessarily consecutive) arrivals are blocked. If we denote
the duration of the full-buffer period by Y and assume that the inter-arrival times
of the cells are given by Xi (i.i.d.), this probability is given by ¥�� \ ( _ n

i � 1 Xi ] Y).
Consider an M

�
H2
�
1 system, with arrival rate 0.8, and a two-stage hyper-

exponential service process with rates 2 and 2/3, each with probability 1/2. Ac-
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� n1 Ï 4

n

RE

0.004

0.02

100101

0.01

Figure 6.1: Relative error for the reliability example.

cording to Chapter 4, the asymptotic distribution (for large buffer size) of the
duration of “subsequent” full-buffer periods is also hyperexponentially distrib-
uted, with rates 2 and 2/3 and probabilities 1/4 and 3/4, respectively. Because Y
has an exponential tail, the theoretical asymptotic bound for the relative error
is n1 Ï 2. Results are shown in Table 6.2 and Figure 6.2. Note that due to the
simple distribution of Y and Xi, an exact analytical expression for ¥ can easily be
derived and is used to obtain the numerical results in Table 6.2.

n ˆ¥ (IS simulation) RE ˜¥ (anal. approx.) ¥ (numerical)
4 6 � 808 2 10 � 2 m 0.56 % 6 � 5315 2 10 � 2 6 � 8055 2 10 � 2

8 5 � 891 2 10 � 3 m 0.76 % 5 � 8950 2 10 � 3 5 � 8878 2 10 � 3

16 4 � 553 2 10 � 5 m 1.05 % 4 � 6098 2 10 � 5 4 � 6047 2 10 � 5

32 2 � 852 2 10 � 9 m 1.45 % 2 � 8279 2 10 � 9 2 � 8271 2 10 � 9

64 1 � 055 2 10 � 17 m 2.06 % 1 � 0657 2 10 � 17 1 � 0656 2 10 � 17

128 1 � 490 2 10 � 34 m 2.89 % 1 � 5141 2 10 � 34 1 � 5141 2 10 � 34

Table 6.2: Results for the M
�
H2
�
1 queueing example.

Clearly, the probability estimate from simulation agrees with the numerical
result. Also, the growth of the relative error from simulation is seen to agree
with our theoretical bound, Õ n. For large n, the analytical approximation (6.10)
turns out to be very accurate.
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� n1 Ï 2

n

RE

0.05

0.004
10010

0.01

Figure 6.2: Relative error for the M
�
H2
�
1 queueing example.

6.3.3 Signal detection example

Consider a constant false alarm rate (CFAR) radar detector which processes i.i.d.
clutter returns from the background. The cell under test, denoted by Y, is com-
pared to an adaptive threshold which is made up of a sum of n CFAR window
samples É Xi Ê n

1 . For convenience, we assume that the threshold multiplier is set
to unity. If Y exceeds the threshold a detection is declared. Given that there is
no target in the test cell, the probability ¥j� \ (Y �[_ n

i � 1 Xi) represents the false
alarm probability of the detector. We assume both Y and Xi to have a Weibull
distribution with parameters N�� 2 and ��� 1, as suggested in [Sri98b]. The
results are shown in Table 6.3 and Figure 6.3.

The relative error asymptotically grows with n1 Ï 4, again supporting our the-
oretical result. Also, there is a good agreement between the probability estimates
from simulation and from the analytical approximation (6.10).

6.4 Conclusions
In this chapter, two methods for estimating rare event probabilities of the form\

( _ n
i � 1 Xi ] Y) for large n have been discussed.

The first method is based on importance sampling, using appropriate (expo-
nential) tilting of the distributions of the random variables involved. Theoret-
ically, we have shown that asymptotically the relative error for this simulation
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n ˆ¥ (IS simulation) RE ˜¥ (anal. approx.)
4 3 � 033 2 10 � 3 m 0.55 % 2 � 999 2 10 � 3

8 1 � 376 2 10 � 7 m 0.73 % 1 � 351 2 10 � 7

16 1 � 313 2 10 � 18 m 0.93 % 1 � 303 2 10 � 18

32 2 � 099 2 10 � 45 m 1.15 % 2 � 112 2 10 � 45

64 1 � 368 2 10 � 108 m 1.40 % 1 � 398 2 10 � 108

128 3 � 437 2 10 � 254 m 1.69 % 3 � 469 2 10 � 254

256 6 � 470 2 10 � 584 m 2.01 % –

Table 6.3: Results for the signal detection example.

� n1 Ï 4

n

RE

0.03

0.004
100101

0.01

Figure 6.3: Relative error for the signal detection example.

decreases proportional to the square root of n (when Y has an exponential tail) or
the fourth power root of n (when Y has a super-exponential tail), when keeping
the number of replications fixed. This asymptotic behaviour has been confirmed
experimentally. Furthermore, empirical results have shown that for smaller n,
the relative error tends to grow a bit slower when Y has an exponential tail, and
a bit faster in the other cases. Compared to the method for the estimation of such
probabilities described in Chapter 5, the present method is more general since
it is not limited to bounded Y distributions, and provides a slower growth of the
relative error with n (except for the case of deterministic Y, where both methods
are identical). However, in contrast to the method from Chapter 5, it can only be
used in situations where the distribution of Y is known and can be tilted.
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The second method in this chapter is based on analytical approximation, us-
ing the same (exponential) tilting of the random variables involved as in the first
method. A proof has been given for its asymptotic validity (as n �ª� ) in the case
when Y has an exponential or a super-exponential tail. Experimentally, the ap-
proximation was found to be quite good, with an error of typically a few percent
at n � 16.

Applications in queueing systems, reliability models and signal detection
have been considered.

6.A The analytical approximation

In this appendix, the validity of the analytical approximation presented in Sec-
tion 6.2 is proved for a broad range of distributions of Y.

Lemma 6.1 Given is a positive random variable Y with distribution function
FY(y) and moment generating function

�
e » Y valid for any { . Define the random

variable Z with the following density:

fZ(z) �$� Z(1 � FY(z)) 
where � Z is the normalization constant such that � fZ(z) � 1.

Next, define the new random variables V and W by exponentially tilting the
distributions of Y and Z, respectively, with a tilting parameter { :

dFV(z) �S� Ve » zdFY(z)

and
dFW(z) �$� We » zdFZ(z) 

where � V and � W are normalization factors again.
Assuming that

�
V grows at most polynomially with { , the following hold:�

V � � W � � o 1{ q
and

Var W W 1{ 2
� C Var V

for some C � 1.

Proof: Denote by � Z( 2 ) the log moment generating function of Z:� Z(s) � ln � Z � ln Z D
0

esy(1 � FY(y))dy�
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Similarly, � Y ( 2 ) denotes the log moment generating function of Y. Apply integra-
tion by parts to find for the latter:� Y (s) � ln Z D

0
esydFY(y)� ln o � Z D
0

esyd(1 � FY (y)) q� ln o � �
esy(1 � FY(y))� D0 ��Z D

0
sesy(1 � FY (y))dy q� ln o 1 � s Z D

0
esy(1 � FY (y))dy q

where the fact5 that limy � D esy(1 � FY(y)) � 0 is used. To shorten the notation,
define

J(s) � 1 � s Z D
0

esy(1 � FY(y))dy 
so � Y (s) � ln J(s)

and � Z(s) � ln � Z � ln
J(s) � 1

s
� ln � Z � ln s � ln(J(s) � 1) �

Note that the expectations of V and W at a tilting parameter { are given by the
derivatives of these log moment generating functions, � �Y ( { ) and � �Z( { ), respect-
ively. Thus:�

V � � W �M� �Y( { ) � � �Z( { ) � J � ( { )
J( { ) � 1{ � J � ( { )

J( { ) � 1
� 1{ � J � ( { )

J( { )(J( { ) � 1)
� 1{ �

�
V

J( { ) � 1
�

Consider the last term: it is given that its numerator increases at most polyno-
mially with { , and its denominator increases at least exponentially fast6 with{ . Therefore, this term vanishes compared to the 1

� { term. This completes the
proof of the first claim of the lemma.

Finally, consider the variance of W, omitting the argument ( { ) of J for brevity:

Var W �S� � �Z( { ) � 1{ 2
� J � � (J � 1) � J � 2

(J � 1)2
W 1{ 2

� J � � J � J � 2
(J � 1)2


where the last step uses the fact that J � � � 0, which is guaranteed because oth-
erwise Var V would be negative. Using lim » � D J �[� , we find

Var W W 1{ 2
� C

J � � J � J � 2
J2

� 1{ 2
� C � � �Y( { ) � 1{ 2

� C Var V
5This follows from the fact that the moment generating function is valid for any Ô : e 	 y(1 Á FY (y)) �

e 	 y ù 
y dFY (z)
Í

e Â 	 y ù 
0 e2 	 zdFY (z) é which for a given Ô goes to zero as y ��� , since the integral is
independent of y.

6Observe that for any å � 0, one has J(s) � s ù��0 esya dy � a(es � Á 1) with a � 1 Á FY ( å ). If å is
sufficiently small, a � 0, thus demonstrating exponential growth of J(s).
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for some C � 1, which completes the proof of the second claim of the lemma. 2

Theorem 6.1 Given is a set of i.i.d. positive random variables Xi that satisfy the
conditions of Theorem 5.2, and another independent positive random variable Y
whose distribution has an exponential or super-exponential tail. Make the follow-
ing definitions:

S � n�
i � 1

Xi � (s) � ln Z D
0

esxdFX (x) �
The probability that S ] Y is given by

P1 �[Z D
0
� 1 � FY (y) � dFS(y) 

which can be approximated by

P2 � en 0 ( � » ) Z D
0
� 1 � FY (y) � e » ynn 0 ¤ ( � » ) Ó n 0 ¤ ¤ ( � » )(y)dy� en 0 ( � » )n 2 � n � �C� ( �R{ ) Z D0

� 1 � FY (y) � e » ye � (y a n � ¤ ( a � ))2

2n � ¤ ¤ ( a � ) dy
with the tilting parameter { chosen such that (as in Section 6.1.1)

n

� ¸ Xi � � ¸ Y � (6.11)

Finally, if
Var ¸ Y
� ¸ Y � �

( { � 1)  (6.12)

then P2 converges to P1 in the sense that

lim
n � D P1

P2
� 1 �

Proof:
Case 1: Y has an exponential tail

As in Section 6.1.2, we assume for simplicity that Y is exponentially distrib-
uted with parameter � . Then the probability P1 (

�
I in Section 6.1.2) can be

calculated explicitly (note that by definition � ( { ) � ln(MX ( { ))):
P1 � en 0 ( � � ) �

From (6.5), we have ���X{"� 1
n � � ( { ) �
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Use this to rewrite the approximation P2 as follows:

P2 � en 0 ( � » ) Z D
0

e » ye � � y
nn 0 ¤ ( � » ) Ó n 0 ¤ ¤ ( � » )(y)dy� en 0 ( � » ) Z D

0
e � y Ï (n 0 ¤ ( � » ))nn 0 ¤ ( � » ) Ó n 0 ¤ ¤ ( � » )(y)dy� en 0 ( � » ) Z D� n 0 ¤ ( � » ) e � � � ¤ ¤ ( a � )� ¤ ( a � ) � n

z � 1
n0 Ó 1(z)dz� en 0 ( � � )en 0 ¤ ( » ) A ( � � �<» ) Z D� D e � 1

n0 Ó 1(z)dz� en 0 ( � � ) � 1e � 1 � en 0 ( � � ) � P1

as was to be shown. At the approximate-equals sign in the above, three approx-
imations are made simultaneously. First, n � ( �R{ ) is approximated using a Taylor
series as n � ( ��� ) � n � � ( �R{ ) 2 ( ���#�S{ ). Second, the lower limit of the integral is
replaced by its limit for n � � ; this extension of the range of the integral is
allowed since the integrand in this region quickly goes to zero. Third, the factor

e � � � ¤ ¤ ( a � )� ¤ ( a � ) � n
z in the integrand is replaced by its limit for n �ª� .

Case 2: Y has a super-exponential tail
First, define Xi̧ as the exponentially tilted versions of Xi:

dFX̧(x) � e � 0 ( � » )e � » xdFX(x) 
where e � 0 ( � » ) is the normalization factor. Let S ¸#� _ n

i � 1 Xi̧ and rewrite P1 as
follows:

P1 � en 0 ( � » ) Z D
0

(1 � FY (y))e » ydFŞ(y) �
Now note that P2 has the same form as P1 in the above, except for replacing
the actual distribution of S ¸ by a normal density with the same mean and vari-
ance. The difference between P1 (the true value of the probability) and P2 (the
approximation using a normal density) can be upper bounded as follows:�P1 � P2 � � en 0 ( � » ) Z D

0
(1 � FY(y)) e » y � fŞ � nn 0 ¤ ( � » ) Ó n 0 ¤ ¤ ( � » )(y) � dyW a(n) 2 {n n(r � 1)

2 en 0 ( � » ) � ( { )  (6.13)

where � ( { ) � Z D
0

(1 � FY(y))e » ydy

and where a(n) goes to zero when n �(� , according to Theorem 5.2 (the applic-
ability of this theorem can be shown in the same way as in Section 6.1.2).
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Next, we derive a lower bound on P2. Define a random variable W with the
density

fW(y) � 1� ( { ) (1 � FY (y))e » y �
This can be interpreted as an exponentially tilted version of a density propor-
tional to 1 � FY(y). Using this (and omitting the subscripts of n for brevity) P2

can be expressed as

P2 � en 0 ( � » ) � ( { ) Z D
0

1� ( { ) (1 � FY (y))e » y n ÄCÄCÄ (y)dy � en 0 ( � » ) � ( { ) Z D
0

fW(y) n ÄCÄCÄ (y)dy�
Denote the standard deviation of W by Ù and its mean by m. Then according to
Chebyshev’s inequalityZ m � c Õ n 0 ¤ ¤ ( � » )

m � c Õ n 0 ¤ ¤ ( � » ) fW(y)dy � 1 � Ù 2

c2n � � � ( �R{ ) 
for any positive constant c. Using this, we can lower bound P2:

P2 � en 0 ( � » ) � ( { ) o 1 � Ù 2

c2n � � � ( �R{ ) q min¬ y � m ¬ § c Õ n 0 ¤ ¤ ( � » ) n ÄCÄCÄ (y) � (6.14)

To estimate the minimum of the Gaussian density (n) in the above, note that by
the tilting in (6.11), its peak is at

� ¸ Y; and by Lemma7 6.1,

�
W � � ¸ Y � �

(1
� { ).

So the Gaussian density in the above is evaluated at c n n � � � ( �R{ ) � �
( { � 1) from

its mean. Since its variance is n � � � ( �R{ ) � n(r � 1)
� { 2 � o( { � 2), we have

min¬ y � m ¬ § c Õ n 0 ¤ ¤ ( � » ) � n ÄCÄCÄ (y) � 1n 2 � n � � � ( �R{ )e � (c �"! (1) Ï#� n)2 � e � c2n 2 � n(r � 1)
� { 2


for large n. Substituting this into (6.14) yields

P2 � en 0 ( � » ) � ( { ) o 1 � Ù 2

c2n � � � ( �R{ ) q e � c2n 2 � n(r � 1)
� { 2
�

Finally, we compare the upper bound on �P1 � P2 � from (6.13) with the above
lower bound on P2:�P1 � P2 �

P2
W a(n) Õ 2 �

e � c2 � 1 � Ú 2

c2n 0 ¤ ¤ ( � » ) � � a(n) Õ 2 �
e � c2 � 1 � Ú 2

c2n(r � 1) Ï » 2 � � (6.15)

Using the second claim of Lemma 6.1, we calculateÙ 2

n
� { 2

� { 2 Var W
n

W 1
n
� C

{ 2 Var ¸ Y
n

� �
(1) 

7Using this lemma requires that ü�$ Y grow at most polynomially with Ô , which follows from (6.12)
in the same way as it did in Section 6.1.2
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where the last step uses (6.8) from Section 6.1.2. Therefore, the denominator
of the right-hand side of (6.15) is lower bounded by a constant, which can be
made positive by choosing c large enough. Since the numerator a(n) vanishes as
n �(� , the relative difference between P1 and P2 vanishes as n �(� , implying
that

lim
n � D P1

P2
� 1 �

QED. 2
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Chapter 7

Adaptive importance
sampling simulation with
state-independent tilting

?
n the previous chapters, importance sampling simulation methods have been

described for several problems, and for these problems, the methods have been
shown to be asymptotically efficient. In the literature, such asymptotic efficiency
proofs are available for many problems. Unfortunately, when a simulation prac-
titioner is confronted with a problem that cannot be transformed into one of those
known problems, these results are useless to him. Devising a good importance
sampling procedure for a new problem can be difficult, and analytically verifying
its correctness (in the sense that it provides finite variance and thus a reliable
estimate) or asymptotic efficiency is often complicated and time-consuming.

Because of these problems, a new approach to importance sampling has been
tried in recent years: adaptive importance sampling. Adaptive here means1 that
in the course of the simulation procedure, the simulation parameters (change of
measure) are adapted to the rare event of interest. Typically, adaptive import-
ance sampling procedures perform several iterations, each consisting of simulat-
ing a (large) number of replications; after each iteration, the simulation para-
meters are changed based on the results up to then, to approach a setting which
gives minimal variance of the resulting estimate of the rare-event probability of
interest.

Several adaptive algorithms have been proposed in the literature. In [DT93b],
the minimum variance along a line in the parameter space is searched for by

1Note that in [Hee98b], the term “adaptive importance sampling” is used for something that in
this thesis would be called a “state-dependent change of measure”; see Chapter 8.
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running simulations at several points along that line. In [DT93a], mean field
annealing is used to find the minimum in a multi-dimensional parameter space.
Simulations at one point in the parameter space can also be used to estimate
the derivative (gradient) of the variance w.r.t. the parameters at that point. This
is used in stochastic gradient descent techniques to step towards smaller vari-
ance [AQDT95]. In the stochastic Newton’s method [RB00] not only the first
but also the second derivatives are used to approach the minimum variance
more effectively. Finally, the methods described in [Rub97], [RM98], [Lie99]
and [LR00] search for the minimum variance by exploiting the fact that in im-
portance sampling simulation, the samples taken at one point in the parameter
space can be used to directly estimate the variance at other points in the para-
meter space. The latter method requires neither multiple simulations per inter-
ation, nor the estimation of derivatives (which may be difficult to do accurately).

In this chapter, we will focus on the algorithm proposed in [RM98]. In Sec-
tion 7.1, this algorithm will be described in more detail. Two improvements are
subsequently described: a formulation based on cross-entropy in Section 7.2, and
some improvements specific for Markovian systems in Section 7.3. Section 7.4
contains experimental results, applying the methods discussed to several simple
queueing networks. Note that Section 7.1 and part of Section 7.2 consist of ma-
terial that was already known from [RM98] and [Lie99]; it is included here for
completeness, since the rest of this and the following chapter are based on it.

We will assume throughout that we are interested in (overflow) probabilities
of the following form: the probability of reaching some (rare) “overflow” state
before reaching an “absorbing” state, starting from a given initial state. Note
that in principle, this is not a regenerative simulation. A typical application is
a queueing network in which the overflow occurs when the total network pop-
ulation reaches some high level, the absorbing state is the state in which the
network is empty, and the starting state is the state just after the first arrival
to the empty system. In such cases, it is actually a regenerative simulation, and
the results could also be used for the estimation of the steady state probability of
the overflow event.

7.1 Principles

7.1.1 Preliminaries

Before the iterative procedure [RM98] for adapting the simulation parameters
can be described, a few definitions need to be made. Note that this notation is
not identical to the notation in [RM98], partially for consistency with the rest of
the thesis, partially in an attempt to clarify the notation.

Define vvv to represent the change of measure (tilting). In general, there can
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be several tilting parameters, so vvv is a vector. Standard simulation (no tilting) is
defined to correspond to vvv � 0. Furthermore, vvv ¸ is the value of vvv that minimizes
the variance of the estimator of the rare-event probability of interest.

Denote the sample path of one replication as Z, and the sample path for the
ith replication as Zi. The following functions of Z can be defined:

First, I(Z) is the indicator function of the rare event. So I(Z) is 1 if and only if
the rare event occurs during Z.

Second, f (Z  vvv) is the probability (or, for continuous systems, the probability
density) of the sample path Z under the tilting vvv. Then f (Z  0) is the probability
(density) of Z in the original (untilted) system.

Third, L(Z  vvv) is the likelihood ratio associated with the sample path Z and
the tilting vector vvv:

L(Z  vvv) � f (Z  0)
f (Z  vvv)

�
Finally, define

�
vvv to denote the expectation under the tilting vvv.

Based on simulation of N replications, with tilting vvv, the importance sampling
estimate of the rare event probability is given by

p̂ � _ N
i � 1 L(Zi  vvv)I(Zi)

N

and its variance by

ˆÙ 2 � 1
N � 1

� _ N
i � 1 L2(Zi  vvv)I(Zi)

N
� p̂2 � � (7.1)

Thus, in order to minimize this variance, one should find

vvv ¸ � arg min
vvv

�
vvvI(Z)L2(Z  vvv) �

Note that this equals
vvv ¸ � arg min

vvv

�
0I(Z)L(Z  vvv) (7.2)

which is the minimization of the expected value of I(Z)L(Z  vvv) in the original
(untilted) system.

7.1.2 The variance-minimization procedure

A practical adaptive simulation experiment would start with choosing an initial
value for vvv, denoted by vvv1; an obvious choice would be vvv1 � 0, i.e., start with
standard simulation. Subsequently a simulation involving say N replications
would be performed. Based on the results of this, a new value vvv2 for the tilting
vector would be calculated. This process is repeated, with the intention that the
vvvj converge to vvv ¸ .
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The algorithms used here for adapting vvv to minimize the variance are based
on the interesting property of importance sampling simulation, that one set of
samples can be used to estimate a quantity of interest for several values of the
system parameters. In particular, with a set of samples corresponding to one
value of vvv, one can estimate the variance (7.1) that would be achieved for several
other values of vvv. In fact, one can perform a minimization: given a set of samples
corresponding to one value of vvv, one can calculate the value of vvv that minim-
izes the variance. This new value of vvv can then be used for the next simulation
experiment.

We have already seen in (7.2) that minimal variance will be achieved in an
importance sampling simulation with the tilting vvv ¸ that minimizes

�
0I(Z)L(Z  vvv).

This can be rewritten as:

vvv ¸ � arg min
vvv

�
0 I(Z) L(Z  vvv) � arg min

vvv

�
vvvj I(Z) L(Z  vvvj) L(Z  vvv) �

The latter form can be approximated by a sum over N samples Zi taken from a
distribution tilted by vvvj, thus yielding an approximation to vvv ¸ . This approxima-
tion is used as the tilting for the next (i.e., j � 1th) iteration:

vvvj � 1 � arg min
vvv

N�
i � 1

I(Zi) L(Zi  vvvj) L(Zi  vvv) � (7.3)

Note that this expression contains two likelihood ratio factors, for fundament-
ally different reasons: L(Zi  vvvj) “compensates” for the fact that the samples Zi

are drawn from a vvvj-tilted distribution, whereas L(Zi  vvv) is part of the quantity
I(Zi) L(Zi  vvv) whose expectation (under the untilted distribution) we are trying to
minimize.

Actually finding the minimum in (7.3) is not trivial: usually the L(Z  vvv) func-
tion is non-linear, making this a non-linear optimization problem, which can only
be solved by a time-consuming numerical procedure. In some cases, the minim-
ization takes more time than the simulation itself. Also, a lot of memory may
be needed to store state information from all N replications. In Section 7.2, a
different approach for choosing vvvj � 1 will be discussed, which overcomes these
problems.

7.1.3 Changing the target event

The above minimization procedure assumes that the rare event is reached in at
least some of the N replications that are simulated. Otherwise, I(Zi) would be 0
for all i, making the minimization (7.3) meaningless.

However, typically one would start with vvv1 � 0, i.e., initially standard simu-
lation is used. Since the event of interest is rare, this would mean that it will not
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be observed, making the variance minimization impossible. In such cases, the
rare event should be temporarily replaced by a less rare event (e.g. by lowering
the overflow level in the case of a queueing system simulation). In practice, a
good choice is such that the new target event is reached in about 1 percent of all
replications (of the current iteration).

For the next iteration, the tilting parameter will typically favor the rare
event, so another target event closer or identical to the rare event of interest
can be chosen.

The above can be described mathematically as follows. Assume that some
target function U(Z) exists, and that the occurrence of the rare event of interest
corresponds to U(Z) � u0. For example, U(Z) could be the highest level some
buffer reaches on the sample path Z, and u0 the overflow level of that buffer. A
less rare event would then be U(Z) � u with u ] u0.

7.1.4 Algorithm

The above procedures are summarized in the following algorithm.

1. Initialize as follows:
j : � 1 (iteration counter)
vvv1 : � 0 (initial tilting = no tilting, i.e., standard simulation)

2. Simulate N replications with tilting vvvj, yielding Z1 �
�
� ZN .

3. Choose the overflow level u such that for a certain fraction (e.g., 1%) of all
samples Zi, the event U(Zi) � u happens. If u � u0, set u : � u0.

4. Define the rare-event indicator I(Zi) � 1U(Zi) % u, and find the new tilting
factor vvvj � 1 from the minimization (7.3).

5. Increment j and repeat steps 2–4, until u � u0 and the tilting vector has
converged (i.e., vvvj � 1 � vvvj).

Note that when applied to a queueing system, typically the tilted system is un-
stable after the first iteration, causing every overflow level to be reached with a
high probability. In that case, step 3 will of course always set u � u0 after the
first iteration.

7.2 Cross-entropy formulation
In the previous section, a method for approaching the optimal tilting vector vvv ¸
has been described which, at every iteration, performs a numerical minimization
of the estimated variance. In this section, a different approach to finding the
optimal tilting is described, which requires much less computational effort.
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It is well-known that, in principle, importance sampling simulation will
provide an estimator with zero variance if the “ideal” change of measure is ap-
plied. This ideal change of measure is such that the simulation distributions
of the random variables involved are precisely the original distributions condi-
tioned on the occurrence of the rare event.

So instead of choosing vvv by explicitly minimizing the variance, one could also
choose vvv by minimizing the “distance” between the vvv-tilted distribution and the
distribution conditioned on the occurrence of the rare event. In the iterative
scheme, observations from the jth iteration could be used to estimate the condi-
tional distribution, and then vvvj � 1 could be chosen such that the vvvj � 1-tilted dis-
tribution is as “close” as possible to the estimated conditional distribution. Of
course, an exact definition of distance needs to be given. One possibility is the
Kullback-Leibler cross-entropy, as proposed in [Lie99], [Rub99] and [LR00].

7.2.1 Theory

The Kullback-Leibler cross-entropy between two probability distributions f (z)
and g(z) is defined as follows:

CE � Z f (z) ln
f (z)
g(z)

dz �
Clearly, if the distributions f (z) and g(z) are identical, CE � 0; otherwise, CE � 0
(proof: see p. 156 in [KK92]). Note that this distance measure is not symmetric:
in general, exchanging f and g in the above will result in a different value of CE.

We want to apply the Kullback-Leibler cross-entropy to measure the distance
between the distribution to be used for the simulation (assumed to be of the
form f (z  vvv)), and the ideal distribution, and then minimize it. To do this, sub-
stitute g(z) � f (z  vvv) (i.e., the distribution to be optimized by changing vvv), and
f (z) ��� 0I(z)f (z  0) with � 0 � � I(z)f (z  0)dz; then f (z) is the original distribution
conditioned on the rare event (i.e., the “ideal” distribution). Thus, we need to do
the following minimization:

vvv & � arg min
vvv
Z � 0I(z)f (z  0) ln

� 0I(z)f (z  0)
f (z  vvv)

dz� arg max
vvv
Z I(z)f (z  0) ln f (z  vvv)dz� arg max

vvv

�
0I(Z) ln f (Z  vvv)  (7.4)

where vvv & denotes the value of vvv that minimizes the cross-entropy. In the above
form the equation is not useful, since we do not know

�
0I(Z) ln f (Z  vvv). However,

we can rewrite it as follows:

vvv & � arg max
vvv

�
vvvjI(Z)L(Z  vvvj) ln f (Z  vvv) �
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This form can easily be approximated by a sum over N samples from the jth
simulation, thus yielding an approximation to vvv & which we call vvvj � 1:

vvvj � 1 � arg max
vvv

N�
i � 1

I(Zi)L(Zi  vvvj) ln f (Zi  vvv)  (7.5)

where the Zi are drawn from a distribution tilted by vvvj. The above can be used
instead of (7.3) in step 4 of the algorithm from Section 7.1.4.

Note that in [Lie99], a slightly different cross-entropy formulation is used:
the L(Zi  vvvj) factor is omitted in (7.5). Since experiments in a few trial cases
showed that omitting the factor typically gives worse variance and sometimes
convergence problems, it has not been considered further.

7.2.2 Computational advantage

A drawback of the variance minimization algorithm from Section 7.1.2, is that
it requires a lot of memory (to store all the state information from the simula-
tion) and a lot of computations to (numerically) search for the optimal vvvj � 1. In
contrast, the cross-entropy method needs a much simpler computation for find-
ing vvvj � 1, at least if exponential tilting of the random variables is used. This is
demonstrated in the following.

Single exponentially tilted random variable

Consider a very simple system, in which every replication consists of drawing
just one sample from a random variable with density g(x). In that case, the
sample path Z is entirely given by that single sample. Assuming that exponential
tilting is applied, the family of tilted distributions can be defined as follows:

f (x  v) � g(x)evx� (v)


where � (v) is the normalization factor:� (v) ��Z D
0

g(x)evxdx �
Note that vvv has been replaced by v, since it is a scalar in this simple case. Sub-
stituting this form of f (x  v) into (7.4) yields

v & � arg max
v

�
0I(Z) � ln g(Z) � vZ � ln � (v) �� arg max

v

�
0I(Z) o vZ � ln Z D

0
g(x)evxdx q 
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where the ln g(Z) term has been dropped because it is independent of v and thus
does not influence the arg maxv. To find the maximum in the right hand side, set
its derivative w.r.t. v to zero:

0 � � 0I(Z) � Z � � D0 x g(x)evxdx� D0 g(x)evxdx
� � � 0 � I(Z)Z � � � 0I(Z) 2 � vZ �

Next, divide by

�
0I(Z) to find:

�
0 � Z � I(Z) � 1 � � � vZ � (7.6)

In words: the optimal tilting is such, that the (unconditional) expectation of Z
under the tilted distribution is equal to its expectation under the original distri-
bution but conditioned on the occurrence of the rare event.

The left-hand side of (7.6) is not known, of course. But in the iterative scheme,
we can estimate it from the previous iteration as follows:�

0 � Z � I(Z) � 1 � �
�

0ZI(Z)
�

0 I(Z)
�
�

vjZI(Z)L(Z  vj)
�

vj I(Z)L(Z  vj)
� _ N

i � 1 Zi I(Zi)L(Zi  vj)_ N
i � 1 I(Zi)L(Zi  vj)


assuming N replications were used in the jth simulation. Thus vj � 1 would be
chosen such that

�
vj � 1Z � _ N

i � 1 Zi I(Zi)L(Zi  vj)_ N
i � 1 I(Zi)L(Zi  vj)

 (7.7)

which is practical if

�
vj � 1Z is an easily invertible function of vj � 1. If Z is exponen-

tially distributed, this is obviously no problem. In other cases, one would first
need to find an expression for

�
� Z, i.e., the expected value of Z if its distribution

is tilted exponentially with parameter ÿ ; such an expression is given in (6.4) in
terms of the Laplace-Stieltjes transform of the probability distribution function
of Z. Analytical inversion w.r.t. ÿ of this expression may not always be feasible,
but numerical evaluation (i.e., given

�
� Z, numerically approximate ÿ ) typically

is.

Multiple exponentially tilted random variables

In a practical system, there will in general be several random variables, from
each of which multiple samples may be taken during one replication. As demon-
strated below, the simple form (7.7) still holds in such cases, with only slight and
obvious modifications.

Assume that there are n independent random variables, labeled 1 �
�	� n. Dur-
ing a particular replication, Nl samples are taken from the lth random variable,
with values Zl Ó 1 �
�	� Zl ÓNl . The tilting parameter for the lth random variable is
vvv(l), which is the lth component of vvv (note that we don’t use subscripts here to
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prevent confusion with the iteration number). The untilted density of the lth
random variable is gl( 2 ). Then

f (Z  vvv) � nÑ
l � 1

NlÑ
j � 1

gl(Zl Ó j)evvv(l)Zl ' j� l(vvv(l))

with � l(v) � Z D
0

gl(x)evxdx �
Substitution into (7.4) yields

vvv & � arg max
vvv

�
0I(Z) ln

nÑ
l � 1

NlÑ
j � 1

gl(Zl Ó j)evvv(l)Zl ' j� l(vvv(l))� arg max
vvv

�
0I(Z)

n�
l � 1

Nl�
j � 1

� ln gl(Zl Ó j) � vvv(l)Zl Ó j � ln � l(vvv(l)) �
� arg max

vvv

�
0I(Z)

n�
l � 1 GH � Nl ln � l(vvv(l)) � Nl�

j � 1

vvv(l)Zl Ó j IJ �
Differentiate this w.r.t. vvv(l) to find the maximum:

0 � � 0I(Z) GH � Nl
� D0 x gl(x)evvv(l)xdx� D0 gl(x)evvv(l)xdx

� Nl�
j � 1

Zl Ó j IJ
� � 0 GH I(Z)

Nl�
j � 1

Zl Ó j IJ � � 0 � NlI(Z) � 2 � vvv(l)Zl �
Proceeding as in the case of a single random variable, we find the following equa-
tion for choosing vvvj � 1(l):�

vvvj � 1(l)Z � _ N
i � 1 _ Nl

j � 1 Zl Ó j I(Z)L(Z  vvvj)_ N
i � 1 _ Nl

j � 1 I(Z)L(Z  vvvj)
 (7.8)

where i counts the replications, and Nl, Z and Zl Ó j belong to the ith replication.
Practically, the double sum is just a sum over all samples from the lth random
variable during all replications that reach the rare event.

As an example of the use of (7.8), consider the simulation of a queueing sys-
tem with an exponential interarrival time distribution with rate � . Exponen-
tially tilting such a distribution boils down to changing the parameter � to some
other value � j � 1 (for the j � 1th iteration), so the expectation of the tilted in-
terarrival time distribution is 1

� � j � 1. When using (7.8) to find the tilting of the
arrival distribution, its left hand side would thus be the expectation 1

� � j � 1, while



112 Chapter 7. State-independent tilting

the right-hand side is the average of all samples of the interarrival time drawn
on sample paths leading to the rare event, weighted according to the likelihood
ratio.

7.2.3 Comparison between minimization of variance and of
cross-entropy

The optimization procedure described in Section 7.1.2 changes the tilting para-
meter vvv such that the variance of the resulting importance sampling estimator is
minimized. Clearly, this is a useful property of an adaptive importance sampling
scheme.

In the procedure described in Section 7.2.1, an abstract quantity, the cross-
entropy, is minimized. It is not immediately clear, however, that this minimiz-
ation procedure is useful for importance sampling simulation, since there is no
clear relationship between the simulation variance and this cross-entropy. Still,
as will be seen in Section 7.4, this minimization procedure applied in adaptive
importance sampling simulation gives quite good results, at least for changes
of measure involving exponential tilting. A possible explanation for this is that
minimizing the cross-entropy between the simulation distribution and the condi-
tional distribution brings the former closer to the latter, i.e., closer to the distri-
bution that would give a zero-variance estimator; one should expect the variance
to decrease while doing so.

In this section, a more analytical comparison between the two methods is
made. We start by analyzing the variance-minimization method when used with
exponential tilting.

First, define f (x  v) as earlier:

f (x  v) � g(x)evx� (v)


where � (v) is the normalization factor:� (v) � Z D
0

g(x)evxdx �
Substituting this into (7.2) yields

v ¸ � arg min
v

�
0

g(Z)
g(Z)evZ � � 1(v)

I(Z) � arg min
v

�
0 e � vZ � (v)I(Z) �

To find the minimum, differentiate w.r.t. v and set to zero:

0 � � 0 e � v ¼ Z � (v ¸ )I(Z) o´� Z � � � (v ¸ )� (v ¸ ) q �
�

0L(Z  v ¸ )I(Z) ��� Z � � D0 x g(x)ev ¼ xdx� D0 g(x)ev ¼ xdx
���
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Division by

�
0I(Z) and rewriting yields

�
0 � Z L(Z  v ¸ ) � I(Z) � 1 ��
0 � L(Z  v ¸ ) � I(Z) � 1 � �

�
v ¼ Z � (7.9)

For comparison, the corresponding cross-entropy result (7.6) is�
0 � Z � I(Z) � 1 � � � v ( Z �

Thus, both methods choose v such that the expectation of the v-tilted random
variable becomes equal to the conditional expectation of Z; the only difference is
that in the variance minimization method an additional weighting factor equal
to the likelihood ratio2 L(Z  v) is used in this conditional expectation of Z.

Clearly, this difference will, in general, make v ¸T�� v & . However, in the ideal
case of zero variance, it is known (and easy to see) that, given the occurrence of
the target event, L(Z  v) becomes a constant. So if the zero variance change of
measure is in the family of distributions f (x  vvv), then both methods will find it
(assuming some regularity).

An alternative for the variance minimization method

As was stated before, finding vvv ¸ which minimizes the simulation variance as
given by (7.2) or (7.3), is not computationally simple. In the specific case of ex-
ponential tilting, (7.2) reduces to (7.9), which still cannot be solved easily due to
the presence of vvv ¸ in a non-linear way on both sides of the equation.

However, with the following substitution one could simplify the use of (7.9):
substitute vj for v ¸ in the left-hand side, and vj � 1 in the right-hand side. We get:

�
0 � Z L(Z  vj) � I(Z) � 1 ��
0 � L(Z  vj) � I(Z) � 1 � �

�
vj � 1Z �

This version has the same computational convenience as (7.8): the left-hand side
can be computed directly on the basis of simulation results from the jth itera-
tion, after which the right-hand side can be inverted to find vj � 1. This gives us
yet another way (besides variance-minimization and cross-entropy) to choose the
tilting vector for the next iteration in step 4 in the algorithm from Section 7.1.4.

What could be expected from using this method? When vj is near the optimal
value v ¸ , the above substitution of vj for v ¸ introduces only a small error. In

2Note that this factor is the only factor that makes the left-hand side depend on v. This causes
the computational complexity difference between the variance-minimization method and the cross-
entropy method: with the cross-entropy method, the left-hand side can be calculated first, and then
the right-hand side can be solved for v, whereas for the variance-minimization method an iterative
procedure is needed.
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that case, we might expect this method to converge indeed to the minimum vari-
ance. That would be an improvement over the cross-entropy method, which in
principle does not converge to the minimum variance, and needs a comparable
computational effort. On the other hand, if vj is far from the optimal v ¸ , insert-
ing this wrong value into the left-hand side of (7.9) could be expected to make
the convergence harder.

Actually, in Section 7.4 it will be shown experimentally that the performance
of this alternative method hardly differs from the variance-minimization and
cross-entropy methods; see Table 7.1.

7.3 Adaptation to Markovian models

Many models used for queueing systems performance evaluation, are (or can
be converted to) discrete-time Markov chains (DTMCs). This is the case if all
inter-arrival times and service times have an exponential distribution, and the
quantity of interest is, for example, an overflow probability. Note that some other
performance measures, like delays, cannot be obtained from the discrete-time
Markov chain description.

A DTMC for a Markovian queueing model has a highly regular structure.
First of all, the states typically can be arranged conveniently on a grid with as
many dimensions as the number of queues, with each coordinate representing
the number of customers in one of the queues. Secondly, every transition in the
DTMC corresponds to an elementary event in the queueing model: an arrival
or a service completion at one of the queues. For convenience, we will hence-
forth refer to such events as “transition events”. It should be noted that these
transition events are defined independently of the state; i.e., there is only one
transition event for a service completion at a given queue, and this single trans-
ition event corresponds to a transition out of every state in the DTMC in which
this particular queue is non-empty. Third, we see that not all transition events
are “enabled” in every state: e.g., in a state where a particular queue is empty,
the service completion event of that particular queue is not possible, i.e., not en-
abled. Finally, with every transition event a rate is associated (namely the rate of
the exponential inter-arrival or service time distribution in the continuous-time
model), and the probability of a given transition out of a given state of the DTMC
is that event’s rate divided by the sum of the rates of all transition events that
are enabled in that state.

As an example, consider a two-node tandem network as depicted in Fig-
ure 2.1. Evidently, the state of the network is completely described by n1 and n2:
the numbers of customers in the queues. There are three transition events: the
arrival at the first queue with rate � , service completion at the first queue with
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Figure 7.1: DTMC for two queues in tandem.

rate � 1, and service completion at the second queue with rate � 2. The state
space is depicted as a two-dimensional grid in Figure 7.1, with arrows denoting
the transitions. Note that in states on the horizontal axis (i.e., states where the
second queue is empty) the transition event corresponding to service completion
at the second queue is not enabled, so there is no arrow pointing down; simil-
arly the service completion at the first queue is not enabled in the states on the
vertical axis.

From the above, it follows that every transition probability in the DTMC is a
(simple) function of the rates of the continuous-time model. For the simulation of
overflows in the continuous-time queueing models, it is known that exponential
tilting generally works well ([PW89], [Sad91], and our examples in Section 7.4),
so it makes sense to try to apply the equivalence of exponential tilting to the
DTMC. Exponential tilting of an exponential distribution boils down to changing
the distribution’s rate; so the equivalent tilting of the DTMC would be changing
the rates, and letting the transition probabilities change according to their func-
tional dependence on those rates.

7.3.1 Cross-entropy for DTMCs — theory

In order to apply the cross-entropy formulation, let us first build a mathemat-
ical description of one replication of a DTMC simulation, denoting its sample
path by Z. Start by labelling all transition events (arrivals, service completions),
starting from 1. Then define the following:

• � k is the rate of transition event k.
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• n is the number of transitions in this sample path.

• cj is the label of the transition event that occurred at the jth transition of
the sample path.

• Ejk is an indicator: it is 1 if at the jth transition, transition event k was
enabled, and 0 otherwise.

• I is the indicator function of the occurrence of the target (rare) event during
this sample path.

Note that n, cj, Ejk and I are random variables, since they are functions of the
sample path. With the above definitions, the a-priori probability that at the jth
transition, transition event l happens, is obviously given by � l

� _ k Ejk � k. There-
fore, the probability of the entire sample path Z is given by\

(Z) � nÑ
j � 1

� cj_ k Ejk � k
�

The goal now is to find a set of transition rates � k which minimizes the cross-
entropy as given by3 (7.4). That is:� � � & � arg max/ / /

�
0I ln

nÑ
j � 1

� cj_ k Ejk � k
� arg max/ / /

�
0I

n�
j � 1

� ln � cj � ln
�

k

Ejk � k � �
To find the maximum, differentiate this w.r.t. � l:

0 � � 0I
n�

j � 1 GH 1cj � l� &l � Ejl_ k Ejk � &k IJ  (7.10)

where 1cj � l is the indicator function which is 1 if and only if cj � l, i.e., if at the
jth transition, the transition event l happened. Equation (7.10) can be rewritten
as

�
0I

n�
j � 1

1cj � l � � 0I
n�

j � 1

Ejl � &l_ k Ejk � &k  (7.11)

or, equivalently,

1

�
0 I n

�
0 I

n�
j � 1

1cj � l � 1

�
0 I n

�
0 I

n�
j � 1

Ejl � &l_ k Ejk � &k �
3In (7.4), the cross-entropy is minimized by changing the tilting vector vvv. In the present case

however, it is more convenient to refer to the rates themselves, and minimize the cross-entropy as
a function of the tilted rates instead of the tilting vector. Formally, the tilting vector vvv could be
defined as the difference between the tilted rates vector and the untilted rates vector, to show the
equivalence.
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The left-hand side obviously is the (observed) conditional probability of transition
event l on sample paths leading to the rare event. The right hand side is a
weighted average of the a-priori probability of transition event l on sample paths
to the rare event, using the transition rates � � � & . Intuitively, setting these two
equal seems like a good way for choosing the optimal tilting vector � � � & .

The set of equations (7.11) (note that there is one such equation for every
transition event l) typically cannot be solved directly, since the expectations in-
volved are hard to calculate. In Section 7.1 and 7.2, we have seen several cases
where such an equation was used to express the tilting parameter vector for the
next iteration in terms of simulation results from the previous iteration. Applied
to (7.11), this would mean approximating the left-hand side using simulation res-
ults, and then solving the right-hand side w.r.t. � &k. Unfortunately, the right-hand
side still contains an expectation over a sum over states of a sample path, which
makes it rather hard to invert w.r.t. � &k. One could use the sample paths gener-
ated in the previous simulation to evaluate this expectation multiple times, in
order to iteratively solve the right-hand side, but this is computationally intens-
ive. Therefore, it is desirable to find a simpler way for approximately calculating
the optimal tilting vector � � � & .

Let us rewrite (7.10) once more and multiply it by � &l , to find

0 � � 0I
n�

j � 1

1_ k Ejk � &k � 1cj � l _ kEjk � &k �l� &l Ejl � �
The right-hand side can be interpreted as a weighted average of the part between
parentheses, where one of the weighting factors is 1

� _ k Ejk � &k. If we, as an ap-
proximation4, leave out this weighting factor, we get:

0 � � 0I
n�

j � 1

� 1cj � l _ kEjk �,+k �Y�,+l Ejl �  (7.12)

where the symbol - is used instead of . to emphasize that the solution � � � + is not
really the one that minimizes the cross-entropy. The great advantage of (7.12)
over the more exact (7.11) is that it can be solved efficiently on the basis of sim-
ulation results, as explained in the next section.

Note that in the case where all transition events are enabled in all states, i.e.,
Ejk � 1 for all j and k, both versions (7.11) and (7.12) are equivalent. If this is
not the case, then the difference is that observations from states in which one
or more transitions are not enabled, weigh a bit heavier in (7.11) than they do
in (7.12). An experimental comparison of both methods is given in Section 7.4.1;

4Actually, the author originally came up with something equivalent to (7.12) on heuristic grounds,
experimentally found it to work well, and did not derive the close relationship with cross entropy
minimization until later.
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from the experimental results it is clear that the methods perform equally well,
so this weighing difference apparently does not significantly affect the results.

7.3.2 Cross-entropy for DTMCs — practice

We now proceed to transform (7.12) into a simple linear matrix equation, which
can be solved to find the (almost) optimal transition rates � � � + after replacing ex-
pectations by simulation results.

First, rewrite (7.12) as follows, basically taking the term corresponding to k �
l out of the summation over k:

0 � � 0I
n�

j � 1

� 1cj � l _ k /� lEjk � +k � (1 � 1cj � l)Ejl � +l � � (7.13)

Then define mlk as follows:

mlk
def.� �

0I
n�

j � 1

1cj � lEjk �
When divided by

�
0I (i.e., the rare event probability of interest), this quantity mlk

can be interpreted as the expected number of transitions at which transition
event k is enabled and transition event l happens, during one replication which
reaches the rare event. Next, define

ml
def.� �

k /� l

mkl � � 0I
n�

j � 1

Ejl
�
k /� l

1cj � k � � 0I
n�

j � 1

Ejl(1 � 1cj � l) 
where the last equals sign uses the fact that if cj is not equal to any k �� l, it must
be equal to l.

Using mlk and ml as defined above, we can rewrite the entire set (for all l) of
equations (7.13) as one matrix equation:,----. � m1 m12 m13 2	2
2

m21 � m2 m23 2	2
2
m31 m32 � m3 2	2
2

...
...

...
. . .

3544446 G00000H
�,+1�,+2� +3
...

I211111J � G0000H
0
0
0
...

I21111J � (7.14)

Of course, the expectations in mkl are generally not known, but we can approx-
imate them by simulating many, say N, replications:

m̂lk � 1
N

N�
i � 1

IiLi

ni�
j � 1

1cij � lEijk  (7.15)
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where the extra index i in Ii, Li, ni cij and Eijk indicates that they belong to the
ith replication. In practice, the factor 1

�
N can be left out, since it is the same for

all m̂lk and only their ratios are relevant for the solution of (7.14).
Now we finally have all we need for applying the algorithm from Section 7.1.4

to DTMC models: we can use the above calculations in step 4 of the algorithm
to calculate an approximation for the optimal tilting for the next iteration on
the basis of simulation results from the previous iteration. Note that the matrix
equation (7.14) can only determine the rates � � � + up to a constant factor, since
its right-hand side is 0. However, this is enough, since in a DTMC simulation
only the ratio between the rates is relevant. In practice (e.g., in tables in the
experiments section), we normalize the rates such that their sum equals 1.

Finally, note that in spite of their somewhat non-straightforward definition
(7.15), the quantities m̂lk can be calculated quite simply by the simulation pro-
gram, as follows. Start by setting all matrix elements to zero. For every replica-
tion (sample path) leading to the rare event, note the likelihood ratio L, then loop
over all transitions of that sample path, and for every enabled transition event k
add L to the matrix element mlk, where l is the transition event that actually
happened at that transition. After doing this, compute the diagonal elements
such that the sum of every column is 0.

7.4 Experimental results

The methods described in the previous sections will now be put to the test. Sev-
eral example queueing networks will be used for this. Whenever possible, non-
simulation results will be used to verify the results from the adaptive importance
sampling simulation methods.

7.4.1 Two Markovian queues in tandem with feedback

The first test case consists of two queues in tandem, where a fraction p of the
output of the second queue is fed back to the input of the first queue. Further-
more, external arrivals occur at the first queue with an exponentially distributed
interarrival time (rate � ), and the queues also have an exponentially distrib-
uted service time (with rates � 1 and � 2). This is illustrated in Figure 7.2. The
rare event of interest is overflow of the total population of the two queues, i.e.,
n1 � n2 � M, for some large M.

We use the following parameters: �U� 0 � 1, � 1 � 0 � 6, � 2 � 0 � 4 and p � 0 � 5.
Because of the feedback, the total arrival rate at the first queue is 0 � 2, causing
the first queue to have a load of 0 � 2 � 0 � 6 � 0 � 333 and the second queue of 0 � 2 � 0 � 4 �
0 � 5. So both queues are stable. We set the overflow level M to 50.
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Variance-minimization method (Section 7.1)
iteration replications ½ 3 1 3 2 p estimate rel.std.dev.

1 103 0 ¾ 1 0 ¾ 6 0 ¾ 4 0 ¾ 5 0 �
2 103 0 ¾ 203 0 ¾ 543 0 ¾ 339 0 ¾ 348 3 ¾ 710 � 10 Â 15 0 ¾ 2600
3 103 0 ¾ 198 0 ¾ 593 0 ¾ 300 0 ¾ 327 2 ¾ 699 � 10 Â 15 0 ¾ 0614
4 103 0 ¾ 194 0 ¾ 585 0 ¾ 307 0 ¾ 336 2 ¾ 857 � 10 Â 15 0 ¾ 0445
5 103 0 ¾ 199 0 ¾ 592 0 ¾ 304 0 ¾ 331 3 ¾ 107 � 10 Â 15 0 ¾ 1559
6 103 0 ¾ 186 0 ¾ 583 0 ¾ 309 0 ¾ 317 2 ¾ 531 � 10 Â 15 0 ¾ 0714
7 103 0 ¾ 198 0 ¾ 597 0 ¾ 308 0 ¾ 337 2 ¾ 891 � 10 Â 15 0 ¾ 0403
8 103 0 ¾ 199 0 ¾ 594 0 ¾ 302 0 ¾ 332 2 ¾ 383 � 10 Â 15 0 ¾ 0409
9 103 0 ¾ 198 0 ¾ 590 0 ¾ 302 0 ¾ 330 3 ¾ 024 � 10 Â 15 0 ¾ 1372
8 105 0 ¾ 199 0 ¾ 594 0 ¾ 302 0 ¾ 332 2 ¾ 670 � 10 Â 15 0 ¾ 0049
9 105 0 ¾ 198 0 ¾ 589 0 ¾ 306 0 ¾ 333 2 ¾ 668 � 10 Â 15 0 ¾ 0047
10 105 0 ¾ 197 0 ¾ 589 0 ¾ 305 0 ¾ 334 2 ¾ 672 � 10 Â 15 0 ¾ 0046

Cross-entropy method (Section 7.2)
iteration replications ½ 3 1 3 2 p estimate rel.std.dev.

1 103 0 ¾ 1 0 ¾ 6 0 ¾ 4 0 ¾ 5 0 �
2 103 0 ¾ 214 0 ¾ 547 0 ¾ 355 0 ¾ 348 2 ¾ 013 � 10 Â 15 0 ¾ 1636
3 103 0 ¾ 206 0 ¾ 579 0 ¾ 310 0 ¾ 340 2 ¾ 681 � 10 Â 15 0 ¾ 0547
4 103 0 ¾ 200 0 ¾ 589 0 ¾ 299 0 ¾ 332 2 ¾ 408 � 10 Â 15 0 ¾ 0436
5 103 0 ¾ 200 0 ¾ 598 0 ¾ 302 0 ¾ 331 2 ¾ 567 � 10 Â 15 0 ¾ 0446
6 103 0 ¾ 198 0 ¾ 591 0 ¾ 306 0 ¾ 331 2 ¾ 778 � 10 Â 15 0 ¾ 0400
7 103 0 ¾ 200 0 ¾ 595 0 ¾ 305 0 ¾ 328 2 ¾ 858 � 10 Â 15 0 ¾ 0387
8 103 0 ¾ 198 0 ¾ 595 0 ¾ 304 0 ¾ 329 2 ¾ 688 � 10 Â 15 0 ¾ 0433
8 105 0 ¾ 198 0 ¾ 595 0 ¾ 304 0 ¾ 329 2 ¾ 661 � 10 Â 15 0 ¾ 0045

Alternative variance-minimization method (Section 7.2.3)
iteration replications ½ 3 1 3 2 p estimate rel.std.dev.

1 103 0 ¾ 1 0 ¾ 6 0 ¾ 4 0 ¾ 5 0 �
2 103 0 ¾ 214 0 ¾ 547 0 ¾ 355 0 ¾ 348 2 ¾ 013 � 10 Â 15 0 ¾ 1636
3 103 0 ¾ 199 0 ¾ 591 0 ¾ 301 0 ¾ 343 2 ¾ 762 � 10 Â 15 0 ¾ 0477
4 103 0 ¾ 199 0 ¾ 585 0 ¾ 309 0 ¾ 330 2 ¾ 771 � 10 Â 15 0 ¾ 0471
5 103 0 ¾ 196 0 ¾ 607 0 ¾ 309 0 ¾ 332 2 ¾ 520 � 10 Â 15 0 ¾ 0431
6 103 0 ¾ 201 0 ¾ 578 0 ¾ 300 0 ¾ 332 2 ¾ 530 � 10 Â 15 0 ¾ 0452
7 103 0 ¾ 204 0 ¾ 617 0 ¾ 308 0 ¾ 336 2 ¾ 445 � 10 Â 15 0 ¾ 0541
7 105 0 ¾ 204 0 ¾ 617 0 ¾ 308 0 ¾ 336 2 ¾ 635 � 10 Â 15 0 ¾ 0058

DTMC method (Section 7.3)
iteration replications ½ 3 1 3 2 p estimate rel.std.dev.

1 103 0 ¾ 1 0 ¾ 6 0 ¾ 4 0 ¾ 5 0 �
2 103 0 ¾ 187 0 ¾ 497 0 ¾ 316 0 ¾ 335 2 ¾ 784 � 10 Â 15 0 ¾ 1336
3 103 0 ¾ 184 0 ¾ 541 0 ¾ 275 0 ¾ 326 2 ¾ 651 � 10 Â 15 0 ¾ 0367
4 103 0 ¾ 181 0 ¾ 542 0 ¾ 277 0 ¾ 334 2 ¾ 805 � 10 Â 15 0 ¾ 0364
5 103 0 ¾ 181 0 ¾ 543 0 ¾ 276 0 ¾ 331 2 ¾ 761 � 10 Â 15 0 ¾ 0384
6 103 0 ¾ 181 0 ¾ 542 0 ¾ 276 0 ¾ 334 2 ¾ 740 � 10 Â 15 0 ¾ 0333
7 103 0 ¾ 181 0 ¾ 543 0 ¾ 275 0 ¾ 333 2 ¾ 719 � 10 Â 15 0 ¾ 0391
7 105 0 ¾ 181 0 ¾ 543 0 ¾ 275 0 ¾ 333 2 ¾ 678 � 10 Â 15 0 ¾ 0037

continued on next page

Table 7.1: Experimental results for the tandem queue with feedback.
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Figure 7.2: Two queues in tandem with feedback.

continued from previous page

“Precise” DTMC method (Section 7.3, eq. (7.11))
iteration replications ½ 3 1 3 2 p estimate rel.std.dev.

1 103 0 ¾ 1 0 ¾ 6 0 ¾ 4 0 ¾ 5 0 �
2 103 0 ¾ 186 0 ¾ 484 0 ¾ 329 0 ¾ 336 2 ¾ 019 � 10 Â 15 0 ¾ 2271
3 103 0 ¾ 174 0 ¾ 540 0 ¾ 286 0 ¾ 320 2 ¾ 700 � 10 Â 15 0 ¾ 0510
4 103 0 ¾ 183 0 ¾ 542 0 ¾ 275 0 ¾ 331 2 ¾ 681 � 10 Â 15 0 ¾ 0376
5 103 0 ¾ 184 0 ¾ 539 0 ¾ 276 0 ¾ 332 2 ¾ 673 � 10 Â 15 0 ¾ 0392
6 103 0 ¾ 183 0 ¾ 539 0 ¾ 278 0 ¾ 330 2 ¾ 553 � 10 Â 15 0 ¾ 0367
7 103 0 ¾ 183 0 ¾ 543 0 ¾ 274 0 ¾ 331 2 ¾ 595 � 10 Â 15 0 ¾ 0322
7 105 0 ¾ 183 0 ¾ 543 0 ¾ 274 0 ¾ 331 2 ¾ 660 � 10 Â 15 0 ¾ 0038

Since this is a Markovian system, all methods discussed in this chapter can be
applied to it. The results are presented in Table 7.1. For each of the methods, this
table shows simulation parameters and results (estimate and error as fraction of
the estimate) for a number of iterations, starting with the untilted system. For
most iterations 103 replications were used; after convergence, 105 regenerations
were used to check whether the relative error decreases appropriately (i.e., by a
factor of n 105 � 103 � 10).

This problem is amenable to the analytical/numerical method discussed in
Chapter 2, which gives the exact (except for numerical inaccuracies) probability
as 2 � 6645 2 10 � 15. Comparing this with the estimates and their relative standard
deviations in the table shows that the simulation estimates are good: in most
cases, the difference with the exact answer is less than one standard deviation.

In [FLA91], a method is discussed to analytically choose the simulation para-
meters for simulation of overflows in a Jackson network, based on large devi-
ations heuristics. Applied to the present problem, this method gives: � ¸ � 0 � 2;� 1̧ � 0 � 6; � 2̧ � 0 � 3; p ¸ � 0 � 3333. From the tables it is clear, that all four adapt-
ive importance sampling algorithms also converge to these values. Note that for
checking this for the DTMC methods, the above rates must be normalized first,
because in DTMC simulations only the ratios between the rates are relevant.

In Section 7.2.3, it was noted that in principle, the cross-entropy method need
not converge to a simulation with minimal variance, as opposed to the variance-
minimization method. Thus one would expect that the cross-entropy method
ends up with a larger variance. However, the table shows that both methods give
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approximately equal variance, and in fact it seems that the cross-entropy method
is slightly better. Apparently then, the disadvantage of the cross-entropy method
(i.e., the fact that it does not really minimize the variance) is compensated for by
something else, presumably a slightly better (less noisy) convergence. In the
same section, an alternative method was introduced which should combine con-
vergence to minimal variance with the computational simplicity of the cross-
entropy method. Given that the variance of the cross-entropy method is not
higher than that of the variance-minimization method, little advantage can be
expected from the alternative method. Indeed, the simulation results in the table
confirm this.

The last method (the “precise” DTMC method) presented in the table is the
version of the DTMC method which exactly minimizes the cross-entropy, whereas
the second last method is the version that does this only approximately, but saves
a lot of computational effort; see Section 7.3.1 for the details. It is clear from the
results in the table that both methods perform equally well; therefore, in the rest
of this section only the approximate but computationally efficient version will be
used.

7.4.2 Two non-Markovian queues in tandem with feedback

To check the adaptive importance sampling method for non-Markovian systems,
we use the same network as in the previous example (Figure 7.2), but with differ-
ent distributions. The interarrival time distribution is set to a two-stage Erlang
distribution with exponential parameter 0 � 2. The service time distributions are
set to uniform on Å 0  3 � 333 Æ and Å 0  5 Æ , for the first and the second server, respect-
ively. Note that with these settings, the expectations of the interarrival and
service times are the same as those in the previous example, so also the server
utilizations are identical.

Obviously, the DTMC method is not applicable to this problem. Between
the remaining three methods (variance minimization, cross-entropy, and the al-
ternative variance-minimization), little performance difference was observed in
the previous example. Because of its computational advantages, only the cross-
entropy method was tried for the present model.

The results are presented in Table 7.2. Like before, 103 replications were sim-
ulated in every iteration, except for the last one, in which 105 many were used.
In the table the following symbols are used: � is the exponential parameter of
the Erlang-2 interarrival time distribution; { 1 and { 2 are the exponential tilting
parameters of the service time distributions; p is the routing probability, just like
in the previous example.

The table clearly shows that also for this non-Markovian system, the simula-
tion parameters quickly converge to their final value. Checking the correctness of
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iteration repl.
* 4

1
4

2 p estimate rel.s.d.
1 103 0 5 2 0 0 0 5 5 0 6
2 103 0 5 330 7 5 5 43 8 10 Â 2 0 5 083 0 5 231 3 5 201 8 10 Â 25 0 5 1325
3 103 0 5 364 7 2 5 53 8 10 Â 10 0 5 146 0 5 237 3 5 074 8 10 Â 25 0 5 0329
4 103 0 5 359 4 5 96 8 10 Â 8 0 5 157 0 5 235 3 5 353 8 10 Â 25 0 5 0367
5 103 0 5 357 7 6 5 67 8 10 Â 3 0 5 154 0 5 239 3 5 322 8 10 Â 25 0 5 0313
6 103 0 5 355 7 1 5 57 8 10 Â 3 0 5 155 0 5 237 3 5 351 8 10 Â 25 0 5 0421
7 103 0 5 356 7 3 5 26 8 10 Â 8 0 5 154 0 5 239 3 5 154 8 10 Â 25 0 5 0341
7 105 0 5 356 7 3 5 26 8 10 Â 8 0 5 154 0 5 239 3 5 285 8 10 Â 25 0 5 0036

Table 7.2: Experimental results for a non-Markovian feedback tandem queue.

the probability estimates is not possible, since no analytical results are available
for this system. However, all estimates are consistent with each other (with the
given standard deviations), and the relative error decreases by approximately a
factor of 10 when the number of replications is increased by a factor of 100, so
the results seem reliable.

7.4.3 Jackson network with two sources, routing and feed-
back

Consider the three-node Jackson network depicted in Figure 7.3. This network
has two inputs, each of which is fed by a source with exponentially distributed
inter-arrival times. Furthermore, after completing service in server 2, the cus-
tomers can leave the network (with probability p2), or enter queue 3. After com-
pleting service in server 3, the customers again can leave the system (with prob-
ability p3), or return to queue 2. All servers have exponentially distributed ser-
vice times. The rare event of interest is overflow of the total population of the
network.

The following parameter values were used:� 1 �M� 2 � 1 � 1 �$� 2 �M� 3 � 6 p2 � p3 � 1
�
2 �

Due to the feedback and the routing, the load offered to the first queue was 1
�
6,

to the second queue 4
�
9, and to the third queue 2

�
9. Clearly, the second queue is

the bottleneck. The overflow level of the total network population was set to 50.
The results of applying the variance-minimization, the cross-entropy and the

DTMC method to this system are shown in Table 7.3. Initially, 104 replications
were used for every simulation; the last few iterations (marked with a star in the
table) used 106 replications to verify the validity of the results. The numerical
method from Chapter 2 was also applied, yielding a probability of 9 � 8386 2 10 � 18.
Furthermore, the method from [FLA91] gives the following rates: � 1̧ �M� 2̧ � 2 � 25,
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p2

p3

1 £ p3� 1

� 2

) 1 ) 2
1 £ p2 ) 3

Figure 7.3: A three-node Jackson network.� 1̧ � 6, � 2̧ � 3 � 5, � 3̧ � 6, p2̧ � 0 � 381 and p3̧ � 0 � 307, which is quite close to what
the adaptive methods find.

It is clear from the table that all three methods give correct estimates of the
rare-event probability; in the majority of the cases the estimate is within one
standard deviation from the numerical result. In spite of this, some unexpected
behaviour is observed when the number of replications is increased by a factor of
100: one would expect the standard deviation to drop by a factor of Õ 100 � 10,
but that only happens in the DTMC case. In the other two cases, the stand-
ard deviation drops significantly less, and increases in the next iteration. This
suggests that the non-DTMC simulations are not reliable for this system.

The following experiment confirms this unreliability. About 100 iterations
were performed of the cross-entropy method with 106 replications per iteration.
Ignoring the first few iterations to allow the method to converge, almost all of
the results have a relative error between 0.005 and 0.01; 14 cases had a relative
error between 0.01 and 0.02, leaving only three exceptions, namely 0.082, 0.10
and even 0.31. Rerunning the exceptional iterations with a different seed for the
random number generator resulted in a small relative error. These exceptions
suggest that there are some sample paths that do lead to the overflow event, but
are not favored by the tilting found by the adaptive procedure; when finally such
an unfavored path occurs, it will have a large likelihood ratio and thus make a
large contribution to the estimator and the estimated variance. This mechanism
has been proposed (for other models) in [GK95] and [GW97].

7.4.4 Tandem queue with “difficult” parameter values

A well-known heuristic for determining the optimal change of measure for the
simulation of overflows in tandem Jackson networks, is interchanging the arrival
rate with the slowest (bottleneck) service rate; this has been suggested originally
by [PW89]. In [GK95], the performance of this change of measure is studied
analytically. It is shown that for some range of the arrival and service rates
this method works well, leading to asymptotically efficient simulation, or even
simulation with bounded relative error. However, it is also shown that for some
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Variance-minimization method
iteration ½ 1 ½ 2 3 1 3 2 p2 3 3 p3 estimate rel.s.d.

1 1 1 6 6 0 ¾ 5 6 0 ¾ 5 0 �
2 1 ¾ 541 1 ¾ 471 5 ¾ 258 4 ¾ 121 0 ¾ 366 5 ¾ 137 0 ¾ 327 1 ¾ 71 � 10 Â 17 0 ¾ 5483
3 2 ¾ 163 2 ¾ 032 5 ¾ 551 3 ¾ 490 0 ¾ 388 5 ¾ 372 0 ¾ 272 9 ¾ 04 � 10 Â 18 0 ¾ 0460
4 2 ¾ 169 2 ¾ 080 5 ¾ 839 3 ¾ 539 0 ¾ 377 5 ¾ 705 0 ¾ 307 1 ¾ 03 � 10 Â 17 0 ¾ 1048
5 1 ¾ 984 2 ¾ 154 5 ¾ 939 3 ¾ 552 0 ¾ 381 5 ¾ 591 0 ¾ 276 9 ¾ 38 � 10 Â 18 0 ¾ 0464
6 2 ¾ 138 2 ¾ 160 5 ¾ 977 3 ¾ 618 0 ¾ 371 5 ¾ 701 0 ¾ 300 9 ¾ 55 � 10 Â 18 0 ¾ 0466
7 2 ¾ 192 2 ¾ 182 5 ¾ 842 3 ¾ 630 0 ¾ 388 5 ¾ 694 0 ¾ 303 1 ¾ 08 � 10 Â 17 0 ¾ 1046
8 2 ¾ 246 2 ¾ 137 5 ¾ 518 3 ¾ 691 0 ¾ 348 5 ¾ 306 0 ¾ 327 1 ¾ 04 � 10 Â 17 0 ¾ 0690
9 2 ¾ 138 2 ¾ 079 5 ¾ 887 3 ¾ 632 0 ¾ 382 5 ¾ 944 0 ¾ 312 1 ¾ 03 � 10 Â 17 0 ¾ 0613
9 ø 2 ¾ 138 2 ¾ 079 5 ¾ 887 3 ¾ 632 0 ¾ 382 5 ¾ 944 0 ¾ 312 9 ¾ 78 � 10 Â 18 0 ¾ 0059
10 ø 2 ¾ 125 2 ¾ 122 5 ¾ 884 3 ¾ 633 0 ¾ 381 5 ¾ 847 0 ¾ 309 9 ¾ 96 � 10 Â 18 0 ¾ 0118
11 ø 2 ¾ 114 1 ¾ 966 6 ¾ 003 3 ¾ 742 0 ¾ 376 5 ¾ 796 0 ¾ 325 9 ¾ 80 � 10 Â 18 0 ¾ 0074

Cross-entropy method
iteration ½ 1 ½ 2 3 1 3 2 p2 3 3 p3 estimate rel.s.d.

1 1 1 6 6 0 ¾ 5 6 0 ¾ 5 0 �
2 1 ¾ 818 1 ¾ 647 5 ¾ 268 4 ¾ 106 0 ¾ 310 5 ¾ 036 0 ¾ 281 1 ¾ 28 � 10 Â 17 0 ¾ 2848
3 2 ¾ 025 2 ¾ 152 6 ¾ 307 3 ¾ 442 0 ¾ 358 5 ¾ 843 0 ¾ 302 9 ¾ 56 � 10 Â 18 0 ¾ 0662
4 2 ¾ 210 2 ¾ 183 5 ¾ 895 3 ¾ 565 0 ¾ 384 5 ¾ 894 0 ¾ 310 9 ¾ 54 � 10 Â 18 0 ¾ 0378
5 2 ¾ 211 2 ¾ 189 5 ¾ 881 3 ¾ 558 0 ¾ 376 5 ¾ 883 0 ¾ 308 9 ¾ 26 � 10 Â 18 0 ¾ 0324
6 2 ¾ 198 2 ¾ 183 5 ¾ 934 3 ¾ 586 0 ¾ 376 5 ¾ 871 0 ¾ 311 1 ¾ 01 � 10 Â 17 0 ¾ 0457
7 2 ¾ 182 2 ¾ 160 5 ¾ 928 3 ¾ 585 0 ¾ 376 5 ¾ 909 0 ¾ 305 9 ¾ 68 � 10 Â 18 0 ¾ 0490
8 2 ¾ 210 2 ¾ 143 5 ¾ 908 3 ¾ 568 0 ¾ 369 5 ¾ 835 0 ¾ 313 1 ¾ 01 � 10 Â 17 0 ¾ 0419
8 ø 2 ¾ 210 2 ¾ 143 5 ¾ 908 3 ¾ 568 0 ¾ 369 5 ¾ 835 0 ¾ 313 9 ¾ 72 � 10 Â 18 0 ¾ 0069
9 ø 2 ¾ 200 2 ¾ 167 5 ¾ 906 3 ¾ 571 0 ¾ 376 5 ¾ 866 0 ¾ 308 9 ¾ 84 � 10 Â 18 0 ¾ 0150
10 ø 2 ¾ 199 2 ¾ 172 5 ¾ 914 3 ¾ 577 0 ¾ 375 5 ¾ 851 0 ¾ 310 9 ¾ 97 � 10 Â 18 0 ¾ 0102

DTMC method
iteration ½ 1 ½ 2 3 1 3 2 p2 3 3 p3 estimate rel.s.d.

1 1 1 6 6 0 ¾ 5 6 0 ¾ 5 0 �
2 0 ¾ 124 0 ¾ 104 0 ¾ 284 0 ¾ 221 0 ¾ 356 0 ¾ 266 0 ¾ 316 9 ¾ 43 � 10 Â 18 0 ¾ 0552
3 0 ¾ 114 0 ¾ 114 0 ¾ 298 0 ¾ 180 0 ¾ 375 0 ¾ 294 0 ¾ 313 9 ¾ 71 � 10 Â 18 0 ¾ 0132
4 0 ¾ 114 0 ¾ 114 0 ¾ 298 0 ¾ 179 0 ¾ 375 0 ¾ 295 0 ¾ 308 9 ¾ 73 � 10 Â 18 0 ¾ 0128
5 0 ¾ 114 0 ¾ 113 0 ¾ 299 0 ¾ 179 0 ¾ 376 0 ¾ 295 0 ¾ 307 9 ¾ 62 � 10 Â 18 0 ¾ 0126
6 0 ¾ 114 0 ¾ 113 0 ¾ 299 0 ¾ 179 0 ¾ 377 0 ¾ 295 0 ¾ 307 9 ¾ 64 � 10 Â 18 0 ¾ 0130
7 0 ¾ 114 0 ¾ 113 0 ¾ 300 0 ¾ 179 0 ¾ 376 0 ¾ 295 0 ¾ 307 9 ¾ 88 � 10 Â 18 0 ¾ 0123
8 0 ¾ 114 0 ¾ 113 0 ¾ 299 0 ¾ 179 0 ¾ 375 0 ¾ 295 0 ¾ 306 9 ¾ 75 � 10 Â 18 0 ¾ 0135
8 ø 0 ¾ 114 0 ¾ 113 0 ¾ 299 0 ¾ 179 0 ¾ 375 0 ¾ 295 0 ¾ 306 9 ¾ 85 � 10 Â 18 0 ¾ 0015
9 ø 0 ¾ 114 0 ¾ 113 0 ¾ 300 0 ¾ 179 0 ¾ 376 0 ¾ 295 0 ¾ 308 9 ¾ 85 � 10 Â 18 0 ¾ 0015
10 ø 0 ¾ 114 0 ¾ 113 0 ¾ 299 0 ¾ 179 0 ¾ 376 0 ¾ 295 0 ¾ 308 9 ¾ 86 � 10 Â 18 0 ¾ 0015

Table 7.3: Experimental results for the three-node Jackson network.

other range of the arrival and service rates, the simulation is not asymptotically
efficient.

In this section, we apply the DTMC method5 to two queues in tandem, with

5Only the DTMC method was used because in all of the previous experiments (except for the non-
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arrival rate 0 � 04 and service rate at both servers of 0 � 48. This is in the region
where according to [GK95], interchanging the arrival rate and the bottleneck
service rate does not yield an asymptotically efficient simulation. The simulation
results are shown in Table 7.4, in the familiar format, for three overflow levels:
12, 25 and 50. For comparison, the exact values of the overflow probabilities
(calculated numerically according to Chapter 2) are also shown in the table.

For overflow levels of 12 and 25, the simulation procedure clearly yields cor-
rect estimates. However, in the case of overflow level 25, a rather large number
of replications is needed for the relative error to become acceptably low (106 rep-
lications instead of 103 or 104 in earlier examples). For an overflow level of 50,
the probability estimate turns out to be off by more than a factor of 2 in most
simulations, even though the estimated relative error is small in many cases.
Increasing the number of replications does not help. This is an indication that
the method yields an infinite variance estimator in this case.

7.4.5 Single queue with Markov-modulated source

All of the preceding examples contained a simple source model with independent
and identically distributed interarrival times. In the present example, we con-
sider a model with a Markov-modulated source. The modulating Markov-chain
is chosen such that the resulting source can also be considered as the aggreg-
ate of many independent sources which alternate between an “on” state, during
which arrivals are periodic at a constant rate, and an “off” state, during which
no arrivals are produced. The durations of the on and off periods are exponen-
tially distributed with rates L and N , respectively; the resulting Markov chain is
depicted in Figure 7.4.

n21 3 9(n 7 2) 9(n 7 1) 9n 90 n 7 1:
2
:

3
:

n
:

Figure 7.4: Modulating Markov chain.

Simulating one step in this modulating Markov chain consists of sampling
from two random variables. The first represents the holding time at the current
state; this has an exponential distribution whose rate is the total rate out of
the state. The second has a binomial distribution, to decide whether to jump to
the next higher or the next lower state. Obviously, the rate of the holding time
distribution and the parameter of the binomial distribution are different for each

Markovian ones, of course) it performed equally well or better than the other methods. A test of the
present model with the (non-DTMC) CE method and overflow level 50 showed no improvement over
the DTMC method.
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Overflow level = 12 (exact probability � 1 ¾ 4693 � 10 Â 11)
iteration replications ½ 3 1 3 2 estimate rel.s.d.

1 104 0 ¾ 04 0 ¾ 48 0 ¾ 48 0 �
2 104 0 ¾ 522 0 ¾ 412 0 ¾ 066 1 ¾ 440 � 10 Â 11 0 ¾ 0325
3 104 0 ¾ 582 0 ¾ 345 0 ¾ 073 1 ¾ 520 � 10 Â 11 0 ¾ 0262
4 104 0 ¾ 577 0 ¾ 347 0 ¾ 076 1 ¾ 462 � 10 Â 11 0 ¾ 0248
4 105 0 ¾ 577 0 ¾ 347 0 ¾ 076 1 ¾ 455 � 10 Â 11 0 ¾ 0104
5 105 0 ¾ 576 0 ¾ 346 0 ¾ 078 1 ¾ 458 � 10 Â 11 0 ¾ 0082
6 105 0 ¾ 577 0 ¾ 347 0 ¾ 076 1 ¾ 470 � 10 Â 11 0 ¾ 0084
6 106 0 ¾ 577 0 ¾ 347 0 ¾ 076 1 ¾ 472 � 10 Â 11 0 ¾ 0026

Overflow level = 25 (exact probability � 2 ¾ 8722 � 10 Â 25)
iteration replications ½ 3 1 3 2 estimate rel.s.d.

1 104 0 ¾ 04 0 ¾ 48 0 ¾ 48 0 �
2 104 0 ¾ 522 0 ¾ 412 0 ¾ 066 2 ¾ 258 � 10 Â 25 0 ¾ 1301
3 104 0 ¾ 565 0 ¾ 379 0 ¾ 056 2 ¾ 537 � 10 Â 25 0 ¾ 1654
4 104 0 ¾ 592 0 ¾ 339 0 ¾ 068 3 ¾ 806 � 10 Â 25 0 ¾ 2622
5 104 0 ¾ 627 0 ¾ 290 0 ¾ 083 4 ¾ 610 � 10 Â 25 0 ¾ 3314
6 104 0 ¾ 566 0 ¾ 382 0 ¾ 052 2 ¾ 300 � 10 Â 25 0 ¾ 2370
6 105 0 ¾ 566 0 ¾ 382 0 ¾ 052 2 ¾ 978 � 10 Â 25 0 ¾ 1283
7 105 0 ¾ 582 0 ¾ 342 0 ¾ 076 3 ¾ 142 � 10 Â 25 0 ¾ 0609
8 105 0 ¾ 590 0 ¾ 335 0 ¾ 074 2 ¾ 933 � 10 Â 25 0 ¾ 0762
9 105 0 ¾ 576 0 ¾ 342 0 ¾ 082 2 ¾ 787 � 10 Â 25 0 ¾ 0762
9 106 0 ¾ 576 0 ¾ 342 0 ¾ 082 3 ¾ 054 � 10 Â 25 0 ¾ 0354
10 106 0 ¾ 581 0 ¾ 343 0 ¾ 076 2 ¾ 882 � 10 Â 25 0 ¾ 0197
11 106 0 ¾ 585 0 ¾ 340 0 ¾ 074 2 ¾ 869 � 10 Â 25 0 ¾ 0279

Overflow level = 50 (exact probability � 6 ¾ 0327 � 10 Â 52)
iteration replications ½ 3 1 3 2 estimate rel.s.d.

1 104 0 ¾ 04 0 ¾ 48 0 ¾ 48 0 �
2 104 0 ¾ 522 0 ¾ 412 0 ¾ 066 3 ¾ 181 � 10 Â 52 0 ¾ 4357
3 104 0 ¾ 516 0 ¾ 435 0 ¾ 049 3 ¾ 598 � 10 Â 52 0 ¾ 4430
4 104 0 ¾ 558 0 ¾ 390 0 ¾ 051 2 ¾ 791 � 10 Â 51 0 ¾ 8905
5 104 0 ¾ 572 0 ¾ 378 0 ¾ 050 3 ¾ 402 � 10 Â 52 0 ¾ 5086
5 105 0 ¾ 572 0 ¾ 378 0 ¾ 050 2 ¾ 414 � 10 Â 52 0 ¾ 1280
6 105 0 ¾ 529 0 ¾ 424 0 ¾ 047 3 ¾ 288 � 10 Â 52 0 ¾ 2883
7 105 0 ¾ 516 0 ¾ 425 0 ¾ 059 2 ¾ 081 � 10 Â 52 0 ¾ 0622
8 105 0 ¾ 522 0 ¾ 430 0 ¾ 048 2 ¾ 473 � 10 Â 52 0 ¾ 1076
8 106 0 ¾ 522 0 ¾ 430 0 ¾ 048 2 ¾ 712 � 10 Â 52 0 ¾ 0512
9 106 0 ¾ 531 0 ¾ 418 0 ¾ 051 4 ¾ 160 � 10 Â 52 0 ¾ 2527
10 106 0 ¾ 563 0 ¾ 386 0 ¾ 051 3 ¾ 413 � 10 Â 52 0 ¾ 0781
11 106 0 ¾ 539 0 ¾ 404 0 ¾ 056 2 ¾ 988 � 10 Â 52 0 ¾ 0538
12 106 0 ¾ 536 0 ¾ 412 0 ¾ 053 2 ¾ 905 � 10 Â 52 0 ¾ 0509
13 106 0 ¾ 535 0 ¾ 413 0 ¾ 052 4 ¾ 483 � 10 Â 52 0 ¾ 1989
13 107 0 ¾ 535 0 ¾ 413 0 ¾ 052 4 ¾ 343 � 10 Â 52 0 ¾ 0852
14 107 0 ¾ 546 0 ¾ 397 0 ¾ 057 4 ¾ 700 � 10 Â 52 0 ¾ 1559
14 108 0 ¾ 546 0 ¾ 397 0 ¾ 057 11 ¾ 613 � 10 Â 52 0 ¾ 5837

Table 7.4: Experimental results for two queues in tandem in the “difficult” para-
meter region.
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state of our Markov chain. As a consequence, the simple cross-entropy formulas
from Section 7.2.2 cannot be applied, so one needs to go back to the basic cross-
entropy minimization equations (7.4) and (7.5).

A natural choice for the tilting is to simply change the rates L and N . The
question then is how to change L and N such that the maximum in (7.4) (or (7.5))
is attained. By performing an analysis similar to Section 7.2.2 (albeit a bit more
complicated), one finds thatL & � a

�
b and N & � (1 � a)

�
c 

where a, b and c are averages of three quantities over all samples on paths on
which the rare event is reached; a is such an average of the samples of the bino-
mial random variable with 0 indicating a step to the next lower state and 1 a step
to the next higher state; b is such an average of x 2 (n � i), where x is the sample
from the exponential distribution and i is the state of the Markov chain; finally,
c is such an average of x 2 i. Note that the right-hand sides of (7.7) and (7.8) are
also such averages.

iteration replications L N estimate rel.std.dev.
1 104 0 � 005 0 � 020 0 �
2 104 0 � 0710 0 � 0300 6 � 049 2 10 � 16 0 � 4384
3 104 0 � 0503 0 � 0403 3 � 515 2 10 � 15 0 � 2277
4 104 0 � 0423 0 � 0484 4 � 727 2 10 � 15 0 � 0545
5 104 0 � 0420 0 � 0509 4 � 412 2 10 � 15 0 � 0514
6 104 0 � 0417 0 � 0509 4 � 334 2 10 � 15 0 � 0543
6 106 0 � 0417 0 � 0509 4 � 401 2 10 � 15 0 � 0053

Table 7.5: Experimental results for a single queue with a Markov-modulated
source.

Table 7.5 shows the simulation results for the buffer overflow probability of a
single queue with the source model described above, and a deterministic service
time. The parameters are as follows: service time = 1/3; interarrival time =
1
�
i, where i is the state of the modulating Markov process; LX� 0 � 02, N�� 0 � 1 and

n � 10. The resulting modulated arrival process corresponds to 10 on/off sources,
each transmitting (when on) at 1/3 of the service rate, with an average burst size
of 10, and average silence time of 50 time units. We estimate the probability that
an overflow of the queue occurs before the end of a busy period, starting at the
first arrival of the busy period and with the modulating Markov chain in state
2. The overflow level was set to 400. Judging from the simulation results in the
table, the method works well in this example.

In Chapter 3 of [Man96], importance sampling simulation of a Markov-modu-
lated fluid model is discussed. Applying those calculations to a fluid model with
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the parameter values used in the above discrete-arrival model, gives LX� 0 � 0428
and N�� 0 � 0467; these are close to the simulation results obtained above for the
model with discrete arrivals.

7.4.6 Asymptotic efficiency

To check the asymptotic efficiency, several of the previous experiments have been
repeated with different overflow levels. Table 7.6 shows the results. Since in
Sections 7.4.1 through 7.4.3 convergence was always achieved by the fourth it-
eration, in principle only the results from the fourth iteration are shown in the
table; however, there are a few exceptions, marked with a star.

system method level exact estimate rel.std.dev.

Markov tandem
queue with
feedback (103 repl.)

cross-entropy

25 8 5 940 8 10 Â 8 8 5 780 8 10 Â 8 0 5 0380
50 2 5 665 8 10 Â 15 2 5 408 8 10 Â 15 0 5 0436

100 2 5 367 8 10 Â 30 2 5 353 8 10 Â 30 0 5 0411
200 1 5 867 8 10 Â 60 1 5 597 8 10 Â 60 0 5 0420

DTMC

25 8 5 940 8 10 Â 8 9 5 145 8 10 Â 8 0 5 0367
50 2 5 665 8 10 Â 15 2 5 805 8 10 Â 15 0 5 0364

100 2 5 367 8 10 Â 30 2 5 341 8 10 Â 30 0 5 0391
200 1 5 867 8 10 Â 60 1 5 874 8 10 Â 60 0 5 0413

Non-Markov
tandem queue with
feedback (103 repl.)

cross-entropy

25 – 1 5 596 8 10 Â 12 0 5 0365
50 – 3 5 353 8 10 Â 25 0 5 0367

100 – 1 5 489 8 10 Â 50 0 5 0288
200 – 3 5 216 8 10 Â 101 0 5 0385

Three-node
Jackson network
(104 repl.)

cross-entropy see text

DTMC

25 6 5 273 8 10 Â 9 6 5 296 8 10 Â 9 0 5 0121
50 9 5 839 8 10 Â 18 9 5 731 8 10 Â 18 0 5 0128

100 – 2 5 433 8 10 Â 35 0 5 0139
200 – 1 5 454 8 10 Â 70 0 5 0141*

Two node tandem
(106 repl.)

DTMC
12 1 5 469 8 10 Â 11 1 5 472 8 10 Â 11 0 5 0026**
25 2 5 872 8 10 Â 25 2 5 869 8 10 Â 25 0 5 0279**
50 6 5 033 8 10 Â 52 incorrect estimate

Single queue with
Markov-modulated
source (104 repl.)

cross-entropy

100 – 6 5 374 8 10 Â 6 0 5 0542
200 – 5 5 964 8 10 Â 9 0 5 0573
400 – 4 5 727 8 10 Â 15 0 5 0545
800 – 2 5 871 8 10 Â 27 0 5 0526*

* fifth instead of fourth iteration because of significantly better relative error
** later iteration, see Table 7.4

Table 7.6: Test of the asymptotic efficiency.

It is clear from the table that in most cases the relative error grows hardly
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or not at all with the overflow level (and thus the rarity of the event). Thus, we
conclude that in those cases the method is asymptotically efficient, and even has
a bounded relative error.

No results have been given for the three-node Jackson network with cross-
entropy simulation. This is because of the varying relative error, already noted
in Section 7.4.3. In the course of iterations, these relative errors tend to vary
about a factor of 2, with every now and then a much bigger value. Still, it can
be noted that this factor 2 range is roughly the same for all overflow levels tried.
But it does not seem warranted to conclude asymptotic efficiency from this, as
long as the meaning of the observed exceptionally large relative errors is still
unclear.

Another exception is the tandem queue with the specific parameter setting
studied in Section 7.4.4. In this case, the relative error increases by a factor of
10 when (approximately) doubling the overflow level from 12 to 25; after doub-
ling the overflow level again, the simulation gives incorrect estimates, even for
a higher number of replications. Clearly, this is not an asymptotically efficient
simulation.

7.4.7 Other rare events

In the above, only overflows of the total network population during a busy cycle
have been considered. However, the method is not limited to such problems.
Other problems for which the method is applicable include overflow of one par-
ticular queue in a network, and different kinds of initial and absorbing states,
like the pseudo-regenerations studied in [KN99].

Applying the method to such problems yields a similar picture to the ex-
amples studied here: in some cases it works fine, in others it shows similar
problems (like bad convergence and relative error not decreasing properly).

7.5 Conclusions

In this chapter, three variants of an adaptive importance sampling method have
been discussed. These methods attempt to iteratively find the optimal set of sim-
ulation parameters. They differ in the algorithm used to choose the simulation
parameters for the next iteration.

In several experiments, it was found that the methods often work well, yield-
ing correct estimates of the rare-event probability of interest, and typically dis-
playing asymptotic efficiency, often even bounded relative error.

However, in some cases (only at extremely low probabilities and/or at rather
specific parameter settings) the following types of “bad” behaviour were noted:
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(a) relative error not decreasing properly with increasing number of replica-
tions; (b) convergence irregularity (in Table 7.3); (c) completely wrong estimate
(in Table 7.4). Clearly, the existance of such problems (especially the third one;
in the first two cases the resulting estimates seem to be correct) means that the
method is not generally applicable and fails in some cases.

A possible explanation for these problems is that the tilting found by the
adaptive algorithm does not favor all typical paths leading to the rare event well
enough. Thus, the contribution from an unfavored but typical path will be zero
in most replications, but large in some replications, causing a lot of variance, and
irregular results if the number of replications is too small to sufficiently sample
the unfavored typical path. This problem has been discussed in the literature, in
[GK95] and [GW97]. In the latter paper, a possible remedy is proposed: split the
rare event into several separate events, such that each of them can be simulated
well, and then combine the results of the separate simulations; some simple (non-
queueing) examples are provided, but it is not clear how to apply this idea in a
queueing context.

In the next chapter, we propose a variant of the cross-entropy method from
the present chapter. In this variant, we allow the change of measure (tilting) to
depend on the state of the system; the cross-entropy technique is still used to
adaptively find the optimal such tilting. As will be shown, this method yields
asymptotically efficient estimation of overflow probabilities such as those of the
tandem queue in Section 7.4.4, where the present chapter’s method (and large-
deviations heuristics) fail.





Chapter 8

Adaptive importance
sampling simulation with
state-dependent tilting

?
n the previous chapter, several methods have been proposed for adaptively

choosing the (tilting) parameters in an importance sampling simulation. All of
them share an important characteristic: the tilting does not depend on the state
of the system. It was shown that these methods work quite well for some sys-
tems, but not for others; typical problems include unreliable simulation, conver-
gence problems, and a growing relative error (the simulation is possibly no longer
asymptotically efficient). In fact, there is evidence in the literature (e.g. [GK95])
that such a state-indepent tilting simply cannot result in asymptotically efficient
simulation for some problems, like the tandem queue with certain parameter
values.

In this chapter, an alternative method will be explored in which the tilting
parameters are allowed to depend on the state of the system. We realize this
by assigning a separate set of tilting parameters to every distinct state of the
system, in order to not unnecessarily restrict the way the tilting depends on
the state. Clearly, this gives an immense freedom to the tilting, so improved
performance of the simulation is to be expected. On the other hand, it makes
the problem of correctly choosing the tilting parameters much harder: a few
parameters need to be chosen per state, as opposed to only a few parameters in
total in the state-independent case.

The idea of allowing the tilting to depend on the state of the systems seems to
have received relatively little attention in the literature. In [CFM83], an efficient
exponential change of measure is considered for a certain class of Markov chain
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problems, where the exponential tilting parameter is a function of the state and
is determined using large-deviations theory. In [Hee98b], a DTMC simulation
of the load on a network is described, where the transition probabilities at each
state of the DTMC are chosen on a heuristic basis. Furthermore, in [KN99]
a DTMC model of a two-node tandem network is simulated with a tilting that
depends on the contents of the first buffer; the details of this tilting are based
on modelling the system as a Markov additive process. In [MR00], transient
overflows of a queue with a large number of Markov-modulated fluid sources
are simulated with a change of measure depending on the time. In the latter
methods, the tilting is based on a mathematical model, which makes the results
rather specific to these particular problems. In the method to be discussed in
this chapter, the tilting is not determined in advance; instead, it will be chosen
adaptively using an iterative procedure based on cross-entropy, similar to the
method discussed in the previous chapter.

In Section 8.1, the method will be described in detail. As noted above, the
biggest problem with the method is the enormous number of tilting parameters
for models with a large state-space; Section 8.2 discusses ways to overcome this.
The performance of the method is studied experimentally in Section 8.3, followed
by a mathematical analysis of some aspects of the method in Section 8.4. All of
these sections only discuss DTMC simulations. Section 8.5 provides some con-
cluding remarks, including a brief discussion of the possiblity of extending the
method to non-Markovian problems.

8.1 Principles

In principle, extending the state-independent methods from Chapter 7 to a state-
dependent method is trivial: the system to be simulated is modified such that
each of its random variables (like interarrival and service times) is replaced
by a set of identically distributed random variables, one for each of the sys-
tem’s states. Correspondingly, the simulation procedure is modified such that
whenever it needs to sample a random variable, it samples the copy of that ran-
dom variable belonging to the current state of the system. Then each of the copies
of the distribution can be assigned its own, separate, tilting factor: the tilting can
be made state-dependent. The rest of the method as discussed in Chapter 7 still
applies.

In fact, things are not quite as simple as this. For non-DTMC systems, the
state space generally is not discrete, so it is not possible to assign a different set
of tilting parameters to every state; in fact there are more problems with non-
DTMC systems, see Section 8.5.2. For DTMC models, direct application of the
method from Section 7.3 to the system modified as above would involve inverting
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a very large matrix in (7.14). The matrix would have a structure which could be
exploited to make the inversion feasible, but it is simpler to derive the equations
for state-dependent DTMC simulation from the basic cross-entropy minimization
equation (7.4), as we will do below.

8.1.1 Preliminaries

As stated before, we will restrict the derivations to DTMC models. Such mod-
els are completely described by their initial probability distribution and their set
of transition probabilities, i.e., the probabilities of going from one state to an-
other. Since many DTMC models (e.g., for queueing systems) are derived from
continuous time models with exponential time distributions (CTMCs), the trans-
ition probabilities are typically calculated from transition rates: the probability
of going from state i to state j is given by � ij

� _ k � ik, where � ij is the transition
rate from state i to state j, and k in _ k runs over all states. In fact, many
of the calculations done in this chapter can most conveniently be performed in
terms of rates instead of transition probabilities, because this avoids the need to
continuously take the condition that the probabilities must sum up to 1 into ac-
count. Therefore, all calculations for establishing the optimal tilting will be done
in terms of the rates; whenever real transition probabilities are needed (e.g., to
actually perform the simulation), they can be trivially calculated by normalizing
the sum of all rates out of a state to 1.

In DTMC models, only one type of tilting is possible: changing the transition
probabilities. Thus, the tilting can be specified by giving the new set of trans-
ition probabilities. However, as noted above, it is most convenient to work in
terms of rates, so we will actually specify the tilting as a vector � � � of all (tilted)
transition rates � ij. The aim then is to find a � � � which minimizes the variance of
the importance sampling estimator.

Before deriving the actual cross-entropy and variance minimization formulas,
let us first build a mathematical description of one replication Z of a DTMC
simulation; note that this description is different from the one in Section 7.2.1,
because different details need to be emphasized. Define the sequence zi which
denotes the state of the system just before the ith transition in this replication
Z. Denote by � lm the rate (or probability) of going from state l to state m. Then
obviously the (a priori) probability of the ith step is� zizi � 1_ k � zik


where k runs over all states (or, equivalently, only those states that can be
reached in one step from state zi, since all other � zik are 0). The total probab-
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ility of the sample path Z is \
(Z) � Ñ

i

� zizi � 1_ k � zik


where i runs over all steps in the sample path.

8.1.2 Cross-entropy formulation

Substitute the above expression for the probability of a sample path into (7.4);
then we get the following expression for the optimal transition rate vector � � � & :� � � & � arg max/ / /

�
0I(Z) ln

Ñ
i

� zizi � 1_ k � zik
� arg max/ / /

�
0I(Z)

�
i

� ln � zizi � 1 � ln
�

k

� zik � �
To find the maximum in the right-hand side, set the derivative with respect to � lm

to 0, for any two states l and m:

0 � � 0I(Z)
�

i:zi � l GH 1(zi � 1 � m)� &lm � 1_ k � &lk IJ 
or, equivalently:

1� &lm
�

0I(Z)
�

i:zi � l

1(zi � 1 � m) � 1_ k � &lk
�

0I(Z)
�

i:zi � l

1 �
Thus, we find the following expression for the optimal transition probability qlm

from state l to state m:

qlm � � &lm_ k � &lk �
�

0I(Z) _ i:zi � l 1(zi � 1 � m)

�
0I(Z) _ i:zi � l 1

� (8.1)

Of course, the expectations in the right-hand side are generally not known, but
we can approximate them as follows:

qlm � � &lm_ k � &lk �
� / / / j I(Z)L(Z  � � � j) _ i:zi � l 1(zi � 1 � m)

� / / / j I(Z)L(Z  � � � j) _ i:zi � l 1� _ ZN
Z � Z1

I(Z)L(Z  � � � j) _ i:zi � l 1(zi � 1 � m)_ ZN
Z � Z1

I(Z)L(Z  � � � j) _ i:zi � l 1
 (8.2)

where _ ZN
Z � Z1

is a sum over the sample paths from N replications, simulated with
transition rates � � � j (see below). Note that the factor _ i:zi � l 1 in the denominator is
just the number of visits to state l during replication Z, and that _ i:zi � l 1(zi � 1 � m)
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in the numerator is the number of those visits in which the transition to state m
was chosen next.

The j in � � � j in the above typically refers to the iteration number, as it did in
Chapter 7. Thus, given an initial set of transition rates � � � 1, we can perform a
simulation and use (8.2) to find the second set of transition rates � � � 2; actually,
we can only find these rates up to a constant factor, but this is enough for a
DTMC simulation. Next, a simulation using � � � 2 can be used to find � � � 3, and so on.
Basically, the algorithm from Section 7.1.4 can be applied, using (8.2) in step 4
to calculate the tilting � � � j � 1 for the next iteration.

8.1.3 Variance-minimization formulation

A derivation similar to the above can be started from equation 7.2, yielding� ļm_ k � ļk

�
� / / / jI(Z)L(Z ë� � � )L(Z ë� � � j) _ i:zi � l 1(zi � 1 � m)

� / / / jI(Z)L(Z ë� � � )L(Z ë� � � j) _ i:zi � l 1
�

Compared to the cross-entropy version (8.2), an additional likelihood ratio factor
has appeared. This difference between the cross-entropy and the variance-
minimization formulation is not surprising: it was also observed in Section 7.2.3.

As in the case of state-independent tilting, the cross-entropy formulation has
computational advantages over the variance-minimization approach, so only the
former will be used in this chapter.

8.1.4 Practical problems

Using the adaptive importance sampling method with state-dependent paramet-
ers chosen according to (8.2) seems very simple. There are, however, practical
difficulties. The cause of these is the enormous number of states that a typical
queueing network can have. For example, a network with three queues and an
overflow level of 50 for the total network population (like the network studied in
Section 7.4.3) has 23425 states1. Doubling the overflow level to 100 multiplies
this number of states by almost 8. If the rare event of interest is the overflow of
one particular queue, other queues in the network can have an infinite size, thus
making the number of states infinite.

One of the consequences of the enormous state space is that a lot of data needs
to be stored: this takes a lot of memory capacity; but with present-day computers
and the size of the queueing networks studied here, this is typically not a problem
(except if the state space is infinite, of course). However, manipulating such a lot

1This is the total number of ways to distribute among three distinct queues a total of 1 customer
(3 ways), 2 indistinguishable customers (6 ways), 3 indistinguishable customers (10 ways), up to 50
indistinguishable customers.
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of data (e.g. in the smoothing techniques that will be discussed later) can be
prohibitively time-consuming.

The accuracy of the estimations in the right-hand side of (8.2) is more prob-
lematic. The only sample paths that give a contribution to the sums in the nu-
merator and denominator are those that both reach the rare event (because of
the I(Z) factor) and pass through the state l (because of the summation over i
for which zi � l). The factor I(Z) will not be a problem: either the tilting in the
jth iteration is such that the event of interest is no longer rare, or the event is
modified such that it is not too rare (cf. Section 7.1.3). However, the tilting will
not favor visits to states that are away from some optimal path to the rare event
of interest. If the state space is multi-dimensional, this means that many states
will still not be visited often or at all, even under a tilting that makes the target
event non-rare. States that are not visited at all during the N replications of a
simulation yield 0

�
0 (undefined) in the right hand side of (8.2). And states that

are visited only a few times make the quotient of sums in the right-hand side a
bad approximation of the quotient of expectations.

There is in fact a rather fundamental risk here: suppose the transition from
some state l to another state m happens in only 10 % of all visits to state l, and
state l is visited only 5 times during the N replications of a simulation. Then it is
quite likely that in none of those 5 visits to state l, a transition to state m will be
made. Consequently, using (8.2) to choose the simulation parameters for the next
iteration would set the rate (probability) of this transition to 0, thus making the
transition impossible. Then in the next simulation, surely no transitions from
state l to state m will be observed, so this rate will again be set to 0 for the next
iteration: it will remain at 0 forever, thus possibly resulting in a biased estimator.

The only case in which the above does not give a biased estimator, is when
the rare event of interest can no longer be reached after that particular trans-
ition has been made. As a matter of fact, all paths Z which contain such a trans-
ition necessarily have I(Z) � 0; as a consequence, (8.2) will automatically set the
rate of such a transition to zero for the next iteration. Therefore, after the first
iteration, all sample paths will reach the rare event.

8.2 Dealing with the large number of states

As discussed above, the large state space of typical (queueing) models poses
some problems for the adaptive optimization of the state-dependent change of
measure. In this section, techniques are discussed to deal with these problems.
These techniques exploit the highly regular structure of DTMCs corresponding
to practical (queueing) models: in such DTMCs, many states are “similar” to
other states, in terms of their position in the state space and their transition
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probabilities to their neighbour states. It is reasonable to assume that the op-
timal importance sampling transition probabilities for two such similar states
are close. If this is the case, the estimates of the transition probabilities for a
given state may be improved by also including observations from sample paths
passing through an appropriate set of such similar states. Of course, this in-
troduces an error, since the optimal probabilities are generally not really equal.
On the other hand, since more samples are used, the variance of the estimation
decreases. Furthermore, treating several states as if they were one state saves
memory for storing the transition probabilities. This is necessary for systems
with an infinite number of states.

Note that the “error” discussed above does not imply that the resulting es-
timate of the rare-event probability will be biased; in principle that estimate will
be unbiased as long as the correct likelihood ratios are used. The error in the
transition probabilities only causes the variance of the resulting estimator to be
larger than optimal. In fact, such errors and the associated non-optimal vari-
ance are always present, even if no grouping of states is used, due to the fact
that the transition probabilities are estimated by simulation and thus subject to
statistical errors.

As in Section 7.3, we will focus on DTMC models of queueing systems. The
typical properties of such a DTMC were already described in Section 7.3. Briefly,
they are (for a system with n queues):

• States can be labeled by n integers, each denoting the content of one buffer,
and conveniently arranged at the points of an n-dimensional grid.

• Transitions typically increment one coordinate and/or decrement another
coordinate by 1.

Roughly defining “similarity” of states in such a system is not hard: if the co-
ordinates in the n-dimensional space differ little, then the states are near each
other.

Three techniques for dealing with the large number of states are described in
the rest of this section:

• Local average: if the estimate of the transition probabilities in a state is not
good enough, collect data from nearby states and try again; if necessary, add
data from some more states, etc.

• Boundary layers: group all states in which the content of a queue is large;
thus, the transition probabilities are allowed to depend on that queue’s con-
tent only in states where that queue is nearly empty, i.e., near a boundary
of the state space.
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• Smoothing using spline fitting: fit a smooth function (e.g., a cubic spline)
through the transition probability estimates.

Mathematical formulation of grouping of states

Combining the observations from “similar” states is actually quite simple. To do
this, extend the sums in the right-hand side of (8.2) as follows:

qlm � � &lm_ k � &lk � _ l ¤ _ ZN
Z � Z1

I(Z)L(Z  � � � j) _ i:zi � l ¤ 1(zi � 1 � m ¤ )_ l ¤ _ ZN
Z � Z1

I(Z)L(Z  � � � j) _ i:zi � l ¤ 1 � (8.3)

Here l � runs over all states of which the observations should be used for the
estimation of the transition probabilities for state l. State m � is the state whose
position relative to state l � is the same as the position of state m relative to state l;
e.g., if state m has 1 more customer in queue 2 than state l has, then state m �
must also have 1 more customer in queue 2 than state l � has. Note that for all m
and all l � , a suitable m � must exist, otherwise the states are not similar enough to
apply this technique. Practically speaking, this means that only states with the
same set of enabled transitions can be combined (e.g., states in which the same
queues are empty).

In fact, also states with different sets of enabled transitions could be com-
bined, but that would require using the more complicated formulation from Sec-
tion 7.3.

8.2.1 Local average

The principle of the local average method is as follows. In order to find the new
transition probabilities in state l, first treat it as a separate state, and calculate
the transition probabilities according to (8.2); also calculate some measure (to be
defined below) for the accuracy of these transition probabilities. Check whether
the accuracy is satisfactory: if so, then use the transition probabilities just calcu-
lated. Otherwise, combine the observations of this state l with the observations
from some states surrounding it, and calculate the new transition probabilities
using (8.3); check the accuracy again: if satisfactory, use these transition prob-
abilities; if not, repeat the previous steps with a larger set of surrounding states,
etc.

Accuracy of transition probability estimates

In order to apply the above procedure, a measure for the accuracy of the new
transition probabilities needs to be defined. A first criterion obviously is the
number of times the state l (and its surrounding states) has been visited: if this
number is small, then the estimated probabilities are not reliable.
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Second, a check can be made that no transition probabilities that should be
non-zero, have become zero, as discussed in Section 8.1.4. If a transition to a
given state would get a zero probability on the basis of the observations, it must
be checked whether the rare (target) state can be reached from this state. If so,
then it is not acceptable that the transition probability is set to zero. This reach-
ability test is trivial in the queueing examples discussed later in this chapter,
but in other problems this test may be non-trivial.

Third, we can estimate the relative error of the probabilities estimated ac-
cording to (8.2). In order to do so, first rewrite this equation in terms of a real
sample average, as follows:

qlm � � &lm_ k � &lk � Qlm_ k Qlk
with Qlm � _ ZN

Z � Z1
I(Z) _ i:zi � l L(Z  � � � j)1(zi � 1 � m)_ ZN

Z � Z1
I(Z) _ i:zi � l 1

�
Thus, Qlm is the average of L(Z  � � � j)1(zi � 1 � m) over all visits zi to state l on sample
paths that eventually reach the rare event (i.e., for which I(Z) � 1). Define M to
be the total number of such visits, i.e., M � _ ZN

Z � Z1
I(Z) _ i:zi � l 1. Then

Qlm � 1
M

ZN�
Z � Z1

�
i:zi � l

I(Z)L(Z ë� � � j)1(zi � 1 � m)

and the variance of this estimate obviously is

1
M � 1 GH 1

M

ZN�
Z � Z1

�
i:zi � l

I(Z)L2(Z ë� � � j)1(zi � 1 � m) � Q2
lm IJ �

Consequently, the relative error is (approximating M � 1 by M):;<<<<= _ ZN
Z � Z1

_ i:zi � l I(Z)L2(Z  � � � j)1(zi � 1 � m)� _ ZN
Z � Z1

_ i:zi � l I(Z)L(Z  � � � j)1(zi � 1 � m) � 2
� 1

M
� (8.4)

Of course, this derivation and the above equation can be extended to grouping of
states, similar to the derivation of (8.3).

Which states are near?

When the data available for one state is not enough to estimate the new trans-
ition probabilities with sufficient accuracy, data from nearby states needs to be
collected. Since we are focussing on queueing systems where the state is determ-
ined by the numbers of customers in the queues, it makes sense to define states
as near when they have approximately the same number of customers in the
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same queues. More precisely, we define the distance between two states as the
maximum absolute difference of the numbers of customers in the queues. For
example, in a system with three queues, the distance from the state in which
the three queues contain 4, 5 and 6 customers, respectively, to the state in which
they contain 2, 5 and 7 customers, is max � � 4 � 2 � V� 5 � 5 � P� 6 � 7 � � � 2.

However, care must be taken not to group states which have a different set
of enabled transitions; typically, this means that states in which a certain queue
is empty (and thus the transition corresponding to a departure from that queue
is impossible) can not be combined with those in which that same queue is not
empty, and vice versa. This is illustrated in Figure 8.1. Starting from two par-
ticular (encircled) states in the state space of a two-node queueing system, the
figure shows which states are subsequently included when allowing a progress-
ively larger distance d.

d � 2

d � 4

d � 3

d � 1

d � 0

n2 n2

n1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
0
1
2
3
4
5
6
7
8

n1

5 6 7

Figure 8.1: Grouping of states in the state space of a two-node queueing system.

Note that the distance as defined above is not the usual geometric distance
( � _ i(xi � yi)2, where xi and yi are the ith coordinates of the points x and y).
One advantage of the distance defined here, is that it is very easy to loop over
all points included within a certain distance from a given point; this is import-
ant, since this needs to be done possibly several times for every point, see the
algorithm below. Since this works well in practice, no other distance measures
were tried.

The algorithm

The above leads to the following algorithm, which should be performed for all
states:
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1. Initialize d : � 0.

2. Consider all acceptable (see above) states within a distance d from the state
under consideration; count the total number of visits n to these states; cal-
culate the new transition probabilities using (8.3) and their relative errors
using (8.4).

3. Check whether the number of visits n is high enough, no non-zero rates
have become zero, and the highest of the relative errors is low enough. If
so, stop.

4. Check whether incrementing d still enlarges the set of states. If not, stop.

5. Increment d by one, and repeat steps 2–5.

Note that for every state, a separate value of d is found, which is a measure
for the locality of the resulting estimate of the transition probabilities for that
state: large d means many relatively remote states have been aggregated. In
the experiments section, the average value of d over all states will be shown, to
give an indication of how much grouping was typically needed. The smaller the
average d, the more locally the new transition probabilities were estimated.

Practical considerations

The above description still leaves a few issues open. First of all, the minimum
acceptable number of visits to the (set of) states needs to be chosen. This is
not really important2, it mainly serves to ensure that all transitions have had a
reasonable chance of occurring. In practice, a value of 100 was used with good
results.

Secondly, the maximal acceptable relative error needs to be chosen. This is
not so easy. The lower this value is chosen, the more the algorithm will be in-
clined to group states. Doing so reduces the variance of the transition probability
estimates, but makes them less state-dependent, thus possibly worsening the es-
timate of the rare-event probability of interest. There is also a direct relationship
with the number of replications used in the simulation: the more replications, the
lower the relative error will be for a given d, so the fewer states will be grouped.
In practice, setting the allowed relative error to 0 � 2 and then increasing the num-
ber of replications until the system converges, turned out to work well.

States corresponding to high levels of queues are typically reached rarely:
the tilting typically only favors overflow of one queue, while for the other queues

2Actually, it is a relic from an earlier version of the algorithm, in which this was the only criterion.
Since the test that checks whether all possible transitions have been observed has been added, one
could consider dropping the criterion regarding the number of visits.
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high levels remain rare. Thus, there will be many rarely visited states, for each of
which the above algorithm would combine observations from many surrounding
states (large d), which would be very time-consuming. Here the boundary-layer
method, described in the next section, comes in: it basically combines the obser-
vations from all those high-level states in advance.

8.2.2 Boundary layers

The fundamental assumption for the boundary-layer method is that when a
queue’s content becomes large, the transition rates will hardly depend on that
queue’s content; this assumption is based on observations (see Figures 8.8
and 8.10, and Appendix 8.A). So instead of distinguishing between all possible
values of the queue’s content (0, 1, 2, �	�
� , K, where K is the highest possible level,
e.g., the overflow level or the maximum network population), we only distinguish
between say 0, 1, �
�
� , B � 1 and � B, where B is the number of boundary lay-
ers (to be chosen). See Figure 8.2 for an illustration; shading has been used to
group states that will be considered as one state for the purpose of estimating
the optimal transition probabilities.

1 boundary layer 2 boundary layers 3 boundary layers

Figure 8.2: Using boundary layers to reduce the state space of a two-node
queueing system.

The hardest problem is of course choosing the number of boundary layers. The
only way to do this seems to be experimentation: try a low number of boundary
layers and see whether the system converges to a reliable simulation (e.g., error
decreasing properly with increasing number of replications); if not, increase the
number of boundary layers. Looking at a graph of the transition probabilities
versus the coordinates can also help: if enough boundary layers have been used,
it is to be expected that the transition probability at queue content B � 1 is not
much different from the same probability at B (which actually covers � B). For
more details, see the examples in Section 8.3.
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8.2.3 Smoothing using spline fitting3

Plots of the obtained transition probabilities as a function of the buffer con-
tents, such as Figures 8.8 and 8.10, typically show a rather smooth, monotonous
change, with noise superposed on it (due to the fact that these are simulation
results). Obviously, such noise in the transition probabilities used for the next it-
eration degrades the simulation accuracy (variance), so it is desirable to remove
it.

In principle, the local-average technique should be able to achieve that. For
every state, it replaces the direct estimate by an average over a set of surround-
ing states. In practice it was found that this is not effective enough: either too
many states are grouped which degrades the simulation because the tilting then
depends too weakly on the state, or the noise is not reduced sufficiently.

The spline-fitting is an attempt to reduce the noise without loosing too much
of the state-dependence. The idea is that it should be possible to approximate
the transition rates by a smooth function of the coordinates (the contents of the
queues). Since in general the actual form of the dependence of the transition
probabilities on the state is not known, functions from some rather general fam-
ily need to be used, whose parameters can be adjusted to make them fit to the
(noisy) simulation results.

Principle of the spline fitting

A spline is a function that is described piecewise by polynomials. This means
that the domain on which the spline is to be defined is divided into segments,
and on each segment a separate polynomial is defined. These polynomials are
typically chosen such that the resulting spline has some form of smoothness at
the segment boundaries, e.g., continuity of the first derivative. Thus, splines
provide a flexible way to approximate smooth functions.

For the state-dependent importance sampling problem, the functions to be
approximated by splines are the new (optimal) transition probabilities. Their
domain is the state space of the Markov chain (e.g., > n for a network containing
n queues). Figure 8.3 shows a possible division of the state space of a two-node
queueing system; every dashed rectangle indicates a piece of the domain that
will be covered by one polynomial function. Note that, as before, no states are
combined that have different sets of enabled transitions, i.e., states where differ-
ent sets of queues are empty. Note further that most of the states are drawn in
gray; only the corner states of the regions are drawn in black. This is to stress
the type of approximation that will be used: in those corner points, the value

3Note that the technique described here is completely different from what is known as “spline
smoothing” in the literature; see the remarks at the end of this section.
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Figure 8.3: Typical division of state space for spline approximation.

of the function itself will be estimated, as well as its derivatives with respect to
the coordinates (number of customers in the queues). Then the function on the
region will be chosen as a polynomial which has precisely those values at the
corner points. This scheme can trivially be generalized to more than the two
dimensions shown here.

Base polynomials

First, consider a one-dimensional region in the above scheme. Without loss of
generality, choose this to be the interval Å 0  1 Æ . We are given the value of the
function itself, and of its first derivative, at both end points (0 and 1); and we
are looking for a polynomial approximation of this function to be based on (only)
this information. A polynomial that can fit this description will in general be
of at least degree three; otherwise, it does not have enough degrees of freedom
to match all four requirements (i.e., values of the function itself and its first
derivatives at both ends of the interval).

Consider the following four degree-three polynomials (plotted in Figure 8.4),
and their properties at the end points of the interval Å 0  1 Æ :

f (t) f (0) f (1) f � (0) f � (1)
g0(t) � 2t3 � 3t2 � 1 1 0 0 0
g1(t) �Q� 2t3 � 3t2 0 1 0 0
h0(t) � t 2 (1 � t)2 0 0 1 0
h1(t) � t2 2 (1 � t) 0 0 0 1

Each of these polynomials has a unity contribution to one of the (end-point)
quantities which specify the function for which an approximation is sought. Con-
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Figure 8.4: The four one-dimensional base polynomials.

sequently, if the degree-three polynomial approximation for that function is writ-
ten as a weighted sum of the above base polynomials, the weight coefficients are
precisely the given quantities. In other words: assume the function to be approx-
imated is z(t), and the values of z(0), z(1), z � (0) and z � (1) are given, then the only
fitting third-order polynomial is

z(0) g0(t) � z(1) g1(t) � z � (0) h0(t) � z � (1) h1(t) �
For the two-dimensional case, suitable base-polynomials can be obtained by

calculating the tensor-products of the above one-dimensional base-polynomials.
The tensor product f ( 25	2 ) of two functions f1( 2 ) and f2( 2 ) is defined as

f (x  y) � f1(x)f2(y) �
Substituting the one-dimensional base polynomials g0, g1, h0 and h1 into this,
a set of two-dimensional base polynomials is obtained, which have properties at
the corner points of Å 0  1 Æ > Å 0  1 Æ similar to those of the one-dimensional base-
polynomials. For example, at the corner point (0  0) we have:

f (x  y) f (0  0)
µ

xf (0  0)
µ

yf (0  0)
g0(x) 2 g0(y) 1 0 0
h0(x) 2 g0(y) 0 1 0
g0(x) 2 h0(y) 0 0 1
h0(x) 2 h0(y) 0 0 0

Graphs of these four polynomials are shown in Figure 8.5. These four polyno-
mials and their first derivatives are 0 at the other corner points, (1  0), (0  1)
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Figure 8.5: Four of the 2-dimensional base-polynomials.

and (1  1). Similarly, all of the other twelve polynomials that can be construc-
ted from g0, g1, h0 and h1, and their derivatives, are 0 at (0  0). Just as in the
one-dimensional case, these polynomials can be linearly combined to construct a
polynomial approximation for any function whose value and first derivatives at
the corners of a rectangle are given. In fact, the tensor product terms of one h
polynomial with another h polynomial (such as the last one in the above table)
are not even needed for this, since they have a zero contribution to the value and
the first derivatives at all corner points; we set their coefficients to zero.

These tensor products can trivially be generalized to more dimensions, without
losing the desired properties at the corner points.

Weighted least-squares estimation

With the base polynomials described above, we can approximate any function
for which we know the value and the derivatives at a set of corner points, e.g.,
the black points in Figure 8.3. The only remaining problem is estimating those
values and derivatives.

Estimating the value of a function and its first derivatives at a point basic-
ally means fitting a flat surface to the function, which can easily be done by the
well-known least-squares algorithm. Of course, the standard least-squares al-
gorithm would try to fit a flat surface to the entire set of data points, which is not
what we need (if this were a good approximation, no splines would be needed).
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Therefore, a modified version of the least-squares algorithm is used, which takes
a weighting factor into account for every data point. The weighting factor should
be chosen larger for points that are near the point of interest (i.e., one of the
corner points of the splines), and small for points far away; typically, it would be
zero for all points beyond a certain distance. This method is not new; e.g., it was
also used in [CDG88].

After some experimentation, the following simple weight function was found
to work well:

w(xxx  yyy) � max � 0  1 � �
i

o xi � yi

S q 2 �
where S is the stepsize of the grid of the splines (3 in the example of Figure 8.3),
and xxx and yyy are the vectors containing the coordinates of the corner point of
interest and the point whose weight is to be determined.

Choosing the corner points

In Figure 8.3, one possible division of a two-dimensional state space into regions
for the spline approximation has been shown; in this example, the corner points
are at coordinate values of 0, 1, 4 and 7. Choosing the corner points is a trade-off:
if more corner points would be used, the splines would consist of more segments
of base polynomials, so they would have more freedom to fit the real function,
thus decreasing the error. However, since the weighted least squares estimation
discussed above would be based on fewer points, the parameter estimates of the
splines would have a larger variance, thus increasing the error.

In practice, optimizing the set of corner points is not very important: as we
will see in Section 8.3, the spline method is mainly useful for speeding up the
initial convergence of the iterative procedure, and is typically switched off later
on.

Other smoothing methods

The spline-fitting technique described above is a rather ad-hoc smoothing tech-
nique: it is relatively simple, both conceptually and implementation-wise, and
(as we will see in the experiments section) it is very effective in practice. From a
theoretical point of view, however, this technique is suboptimal for the following
reasons:

• The (raw) data at points that happen to be near the center of a segment
on which a polynomial of the spline is defined, contribute less to the coeffi-
cients of these polynomials than the (raw) data at points near the corners.
This is a consequence of the weighted least-squares approximation used to
determine those coefficients. A better technique would let all data points



150 Chapter 8. State-dependent tilting

contribute equally, or according to their accuracy if such information is
available.

• The spline-fitting procedure is a parametric model: we assume that the real
function can be well approximated by a cubic polynomial spline, and then
optimize the parameters of that spline. However, since in principle we do
not know anything about the real function, a non-parameteric smoothing
technique would be more appropriate: a technique which does not make a
priori assumptions about the form of the real function.

Several techniques without these problems are available in the literature on re-
gression. One example is the “local regression” technique described in [Cle79],
[CDG88] and [CD88]: this technique does a weighted least-squares approxim-
ation for every separate point. Some other examples are described in [Eub88],
including a technique called “spline smoothing”; this is completely different from
the spline-fitting described in this section, and does not have the disadvantages
mentioned above. Apart from some preliminary experiments with local regres-
sion, none of these have been tried yet. An important reason for this is the
fact that the spline-fitting technique works well; as we will see at the end of
this chapter, the real present limitations on the usability of the adaptive state-
dependent importance sampling method are not related to the imperfections of
the smoothing techniques. Possibly, improved smoothing techniques will be re-
quired once these other problems will have been solved.

Disadvantage of smoothing

Whatever smoothing method is used, it puts a restriction on the form of the
function. On one hand, that’s precisely what is needed: restrict the function
to a set of functions which are (in some sense) not “noisy”. On the other hand,
we do not know the form of the exact function; chances are it does not fit the
smoothing restrictions. For example, it is unlikely that the optimal transition
probabilies are polynomial functions of the buffer contents, but the spline method
described in this section does model them as such. So approximating the real
transition probabilities by a smooth function introduces some “fitting error” (but
no bias for the rare event probability estimate, as noted before in the context
of grouping states, see Section 8.2). Thus, a trade-off has to be made: applying
smoothing reduces the error caused by the “noise” in the raw simulation results,
but introduces its own (fitting) error.

This trade-off can be seen clearly in the experiments section, in Figure 8.9
for example. At relatively low numbers of replications, the raw simulation res-
ults are relatively noisy so applying spline smoothing helps: significantly fewer
iterations are needed. On the other hand, when the number of replications is
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increased the raw simulation results become more accurate; in this case, the
fitting errors from spline smoothing actually reduce the accuracy, leading to a
higher variance for the resulting rare-event probability estimate.

8.2.4 Overview

To summarize, the adaptive importance sampling procedure looks like this:

1. Choose the number of boundary layers to be used; this should preferably be
done in advance, since it significantly reduces memory usage.
Also, other parameters need to be fixed in advance, such as the number of
replications per iteration, maximum acceptable relative error in the local
average method, etc.

2. Initialize the iteration counter j : � 1, and the initial transition probabilities
vector � � � 1 (see below).

3. Simulate N replications using transition probabilities � j. While doing this,
keep track of�

Z

I(Z)L(Z  � � � j)
�

i:zi � l

1(zi � 1 � m) and
�

Z

I(Z)L2(Z  � � � j)
�

i:zi � l

1(zi � 1 � m)

for all pairs of states l and m; or rather, distinct groups of states resulting
from the boundary layer technique. Also, the number of times each state /
distinct group of states is visited must be recorded.

4. Apply the local average algorithm (as detailed in Section 8.2.1) to these
data, yielding estimates for the simulation parameters � � � j � 1.

5. Optionally, apply the spline-based smoothing to � � � j � 1.

6. Increment the iteration counter: j : � j � 1.

7. Repeat steps 3–6 until convergence has been achieved.

One obvious choice for the initial transition probabilities is the “original” (un-
tilted) transition rates, like we did in the previous chapter. However, with this
choice the rare event of interest will typically not be reached, so in step 3 the
rare event needs to be modified as discussed in Section 7.1.3 (e.g., by lowering
the overflow level). Doing so may cause a problem, because it temporarily re-
moves some states from the state space: no transition probabilities are estimated
for these states, so it is unclear what transition probabilities should be used for
these states after they have been added again for the next iteration. Therefore,
another approach is mostly used: initially, perform one or more iterations of the
state-independent procedure described in Chapter 7, and use the obtained rates
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as the initial tilting � � � 1 for the above procedure. Alternatively, a heuristic and/or
large-deviations based method such as [FLA91] can be used to choose the initial
set of transition probabilities.

8.3 Experimental results

In this section, we investigate experimentally the performance of the adaptive
state-dependent tilting method described above. We start with a trivial example,
namely the M

�
M
�
1 queue, and then consider progressively more difficult ex-

amples. All of these examples concern the overflow probability of either the total
population or a single queue in a Markovian queueing network; the latter restric-
tion is necessary because the method at present only works for DTMC models.

As usual, the accuracy of simulation estimates is given as the relative error:
the estimated standard deviation divided by the probability estimate itself.

8.3.1 The M � M � 1 queue

The first example concerns the overflow probability in an M
�
M
�
1 queue. It is

well-known that importance sampling with a state-independent tilting works
well for estimating this probability: it provides an estimate with bounded re-
lative error (i.e., for a given number of replications and given arrival and ser-
vice rates, the relative error does not depend on the overflow level). See [PW89]
and [Sad91].

Still, it is of interest to try the state-dependent method on this simple system,
for several reasons:

• To check whether state-dependence gives gain compared to the state-inde-
pendent method.

• The DTMC model of the M
�
M
�
1 queue is basically a birth-death process,

and thus has a one-dimensional state space. Consequently, all states are
visited on every sample path from the empty state to the overflow state.
Thus, no techniques like boundary layers or local averaging are needed,
because every state is visited often enough.

• Because of the one-dimensional state-space and the availability of an ana-
lytical solution to equation (8.1) (see Appendix 8.A), the state-dependent
transition probabilities as obtained from the iterative simulation proced-
ure can be easily plotted and compared with the exact values.

For the experiments, we chose the following parameters: �S� 0 � 4, �K� 0 � 6,
and overflow level � 25. Theoretically, the overflow probability with these para-
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meters is 1 � 98018 2 10 � 5. To get things started, first one iteration (with 103 rep-
lications) of the state-independent DTMC procedure discussed in the previous
chapter was performed; this set the simulation parameters to � 1 � 0 � 659817
and � 1 � 0 � 340183, obviously making the queue unstable. From then on, the
state-dependent method was used; the resulting estimates and relative errors
are shown in Table 8.1. The fifth iteration (using the state-dependent transition
probabilities calculated in the fourth iteration) was performed twice, once with
103 and once with 105 replications. Continuing with the transition probabilities
from the latter simulation, the sixth and the seventh iteration were performed
only with 105 replications.

iteration replications estimate rel.error
1 103 2 � 23730 2 10 � 5 0 � 140
2 103 1 � 95122 2 10 � 5 0 � 0230
3 103 1 � 99364 2 10 � 5 0 � 00602
4 103 1 � 96880 2 10 � 5 0 � 00475
5 103 1 � 97421 2 10 � 5 0 � 00474
5 105 1 � 98058 2 10 � 5 0 � 000473
6 105 1 � 98013 2 10 � 5 0 � 0000583
7 105 1 � 98016 2 10 � 5 0 � 0000401

Note: continuing the iterations with 103 replications gave a
relative error varying between about 0 � 003 and 0 � 006; con-
tinuing with 105 replications similarly showed a relative error
varying between about 0 � 00003 and 0 � 00006.

Table 8.1: Simulation results for the M
�
M
�
1 queue.

Already after few iterations, a good estimate with a low relative error has
been obtained. For comparison, note that a simulation using optimal state-
independent tilting with 103 replications gives a relative error of about 0.04,
which is 10 times worse than the result with state-dependent tilting. Increas-
ing the number of replications by a factor of 100 should of course decrease the
relative error by a factor of Õ 100 � 10; indeed, the difference in the relative
error between the simulations using 103 and 105 replications in iteration 5 is a
factor 10. However, iterating further with 105 replications decreases the relative
error by another factor of about 10: in total, the relative error has decreased by
a factor of about 100. This is a consequence of the fact that not only the estimate
of the rare-event probability itself benefits from the increased number of replic-
ations, but also the estimates of the optimal transition probabilities used in the
simulation improve; this will be analysed further in Section 8.4.2.

Figure 8.6 shows the state-dependent arrival probability as a function of the
state (number of customers in the queue). Four sets of data are shown: the
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Figure 8.6: State-dependent arrival probability in the M
�
M
�
1 experiment.

ideal theoretical values (solid line), the practical results after the first iteration
(dashed line; note the noisiness), after the fifth iteration with 103 replications
(dotted line) and after the seventh iteration (with 105 replications; circles). The
latter clearly agree well with the theoretical values.

8.3.2 Two queues in tandem

The second example considers two queues in tandem, with exponentially distrib-
uted interarrival and service times. The arrival rate is 0.04, both service rates
are 0.48, and the rare event is the total network population reaching a high
level before it reaches zero, starting also from zero. In short, this is the prob-
lem for which the adaptive state-independent tilting method turned out to work
very badly in Section 7.4.4. This problem can easily be handled by the state-
dependent method. We will look at a rather high overflow level, namely 100;
this is twice as high as the overflow level of 50 for which the state-independent
method already produced incorrect results. We start the state-dependent iter-
ative simulation procedure with the rates resulting from one iteration of the
state-independent DTMC algorithm: � � � 1 � ( �<u� 1 s� 2)1 � (0 � 522  0 � 412  0 � 066). Ob-
viously, with these rates the system is unstable, so any overflow level will be
reached.

Results are shown in Table 8.2. For comparison, the overflow probability is
1 � 3270 2 10 � 105 according to the numerical method from Chapter 2.
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The upper part of Table 8.2 was obtained using only the boundary-layers tech-
nique to reduce the state space; the other two techniques (local average and
spline smoothing) were not used. Using 4 boundary layers proved sufficient, ef-
fectively reducing the state space to only 5 > 5 � 25 states. With 104 replications
per iteration, the system is seen to quickly converge to a correct estimate with a
low relative error. Apparently with 104 replications, each of the states is visited
sufficiently often to give a reliable estimate of the optimal transition probabilit-
ies. The last two lines of the upper part of the table show what happens when
the number of replications is increased to 105: the relative error decreases by
approximately Õ 10, as should be expected. On the other hand, no convergence
was observed when repeating the entire experiment with 103 replications per
iteration; apparently, with so few replications the estimates of the transition
probabilities are not accurate enough.

For the lower part of the table, the local average method from Section 8.2.1
was applied (on the basis of the same 4 boundary layers), with the number of
replications per iteration reduced to 103 (note that at 103 replications, no con-
vergence was observed without the local average technique). This data is also
presented graphically in the top part of Figure 8.7.

It is clear from the table that with this reduced number of replications, the
convergence now takes many more iterations: convergence is achieved by the
11th as opposed to the 4th iteration. But because of the much smaller amount
of work per iteration, the total simulation effort spent on achieving this conver-
gence is lower: 11 2 103 instead of 4 2 104 replications.

The data labeled “avg. d” are the average values of d, as defined in Sec-
tion 8.2.1; this is a measure for how many states were grouped on average. Ap-
parently, in the beginning the estimates of the transition probabilities are more
noisy than toward the end, so in the beginning more states need to be grouped
in order to have acceptably accurate estimates of the transition probabilities;
toward the end, the raw estimates become more accurate, so less grouping is
needed, and the dependence of the transition probabilities on the state can be
more fine-grained.

It looks like the convergence process can be divided into two phases: (a)
increasing estimate, and (b) decreasing relative error. In this example, the
increasing-estimate phase roughly comprises iterations 1 through 8; during this
phase, most of the estimates are underestimates with a tendency to increase,
and the estimated relative error varies between about 20 and 40 % (although
the estimate is off by much more than this). The decreasing-relative-error phase
is roughly iterations 9 through 11: the relative error decreases quickly, and the
estimate approaches its correct value. After this, nothing changes significantly
anymore: the system has converged. Note that during the first two phases the
average d tends to decrease roughly linearly (with some noise, of course).
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Figure 8.7: Experimental results for two queues in tandem.
with 103 replications per iteration, using local averaging.
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Without local average
iteration replications estimate rel.error

1 104 1 � 5908 2 10 � 106 0 � 24655
2 104 6 � 8313 2 10 � 106 0 � 14455
3 104 1 � 3743 2 10 � 105 0 � 02378
4 104 1 � 3281 2 10 � 105 0 � 00723
5 104 1 � 3199 2 10 � 105 0 � 00709
6 104 1 � 3162 2 10 � 105 0 � 00714
6 105 1 � 3218 2 10 � 105 0 � 00226
7 105 1 � 3281 2 10 � 105 0 � 00224

With local average
iteration replications estimate rel.error avg. d

1 103 0 � 1163 2 10 � 105 0 � 28336 2 � 72
2 103 0 � 4256 2 10 � 105 0 � 23534 1 � 88
3 103 0 � 6218 2 10 � 105 0 � 3183 2 � 28
4 103 0 � 6228 2 10 � 105 0 � 22737 1 � 6
5 103 0 � 9087 2 10 � 105 0 � 33040 2 � 0
6 103 0 � 6055 2 10 � 105 0 � 32944 1 � 72
7 103 0 � 6791 2 10 � 105 0 � 16709 1 � 2
8 103 2 � 9875 2 10 � 105 0 � 43953 1 � 64
9 103 0 � 6200 2 10 � 105 0 � 11808 1 � 12
10 103 1 � 3549 2 10 � 105 0 � 05876 0 � 88
11 103 1 � 2440 2 10 � 105 0 � 02604 0 � 56
12 103 1 � 2856 2 10 � 105 0 � 02291 0 � 6
13 103 1 � 2769 2 10 � 105 0 � 02488 0 � 56
13 104 1 � 3019 2 10 � 105 0 � 00792 0 � 24
14 104 1 � 3246 2 10 � 105 0 � 00743 0 � 24

Table 8.2: Experimental results for two queues in tandem.

The lower part of Figure 8.7 shows how the three transition probabilities vary
in the course of the iterations4, for some selected states (namely (1,0), (3,1) and
(1,1), as indicated in the graphs); it is of course not practical to show such graphs
for all 25 states. Clearly, in some states the transition probabilities converge
earlier to their final values than they do in some other states. Also, the value of
d of these states is plotted: this tells us whether the transition probabilities are a
relatively local estimate, or an estimate based on grouping many states. There is

4Note that these are the values of the transition probabilities used at the present iteration, i.e.,
resulting from the previous iteration. Thus, the transition probabilities plotted at iteration number
1 are simply the initial state-independent probabilities.
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clearly a correlation between the lowering of d (thus a more local estimate) and
the convergence of the transition probabilities to their final values, as was to be
expected.
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Figure 8.8: State-dependent transition probabilities for two queues in tandem.

Finally, Figure 8.8 shows the dependence of the three transition probabilities
on the levels of the two buffers (n1 and n2), as obtained after the 6th iteration
without the local average method. Note that due to the application of the bound-
ary layer method, level 4 actually represents all levels � 4. The fact that at
n1 � 3 or n2 � 3 the probabilities are not much different from those at n1 � 4 or
n2 � 4, respectively, is an indication that 4 boundary layers are indeed enough.
In this particular case, the graphs suggest that queue 1 could have done with
fewer boundary layers (since for n1 � 2 the probabilities hardly change with n1),
but queue 2 could not.

8.3.3 Four queues in tandem

In this example, we consider a network consisting of four queues in tandem.
As in the previous example, the parameters are chosen in the region where the
standard state-independent tilting (exchanging the arrival rate with the bottle-
neck service rate) does not work well according to [GK95]: the arrival rate is 0.09,
and the service rates of the first through fourth queue are 0.23, 0.227, 0.227 and
0.226, respectively. The rare event of interest is again the total network popula-
tion reaching a high level, starting from 0, and before returning to 0 again.

Results for overflow level 50

The results for an overflow level of 50 are presented in Figure 8.9. For the curves
in the left part of the graph, the local-average method and the boundary-layer
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method (with 10 boundary layers) were used; for the curves in the right part,
additionally the spline smoothing was used5. Up to the 23rd iteration (without
splines) and the 9th iteration (with splines), each iteration contained 104 replic-
ations.
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Figure 8.9: Results for four queues in tandem, overflow level = 50.

Obviously, the spline method is quite beneficial to the convergence in this
case. The without-splines part of the graph shows a rather slow and irregular
convergence, with a major excursion around the 13th iteration, whereas with
the splines method the convergence is quick and monotonous, and the resulting
relative error is smaller by almost a factor of 2.

Furthermore, note what happens when the number of replications is in-
creased. The 23rd (without splines) and the 9th (with splines) simulation were
performed twice: once with 104 replications, and once with 105 replications; the
iterations were continued with 105 replications. Without splines, the same effects
as observed in Section 8.3.1 are seen here: at first, the relative error decreases
by about Õ 10, but upon iterating further, it decreases by a factor of 10 in the end;
again, the cause of this is the improved estimation of the transition probabilities.
With splines this effect does not happen, and the final error with 105 replications
is larger with splines than without; apparently, the spline form does not fit the
true functions well enough to allow a further decrease of the relative error. See
also the discussion of the “fitting error” on page 150.

5The spline basepoints (see Section 8.2.3) were set at levels 0, 1, 5 and 10.
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Figure 8.10: State-dependent transition probabilities (service completion at first
queue) for four queues in tandem (n3 � n4 � 0).

In the two-queue example, plots of the state-dependent transition probabil-
ities as functions of the state were presented (Figure 8.8). Doing the same for
the present example is not feasible, because its state space is four-dimensional
instead of just two-dimensional. At best, a two-dimensional “slice” of the state-
space can be plotted, and this is done in Figure 8.10. All these plots show the
transition probability corresponding to service completion at the first queue as
a function of the content of the first and second queues, while the third and the
fourth queues are empty. Clearly, the splines perform a very effective smooth-
ing: most of the noise disappears. On the other hand, the splines used here are
apparently not able to completely follow the true functions: the “dip” at n2 � 1
is much deeper without splines (only sufficiently visible in the 105-replications
plot) than with splines. This agrees with the experimental observation that at
105 replications, the final estimate is more accurate when the state-dependence
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Figure 8.11: Results for four queues in tandem, overflow level = 200.

of the transition probabilities is not restricted by applying splines.

Results for overflow level 200

For the case of an overflow level of 200, Figure 8.11 shows the simulation res-
ults. For this problem, all three techniques (local average, 10 boundary layers,
and splines) were used initially (up to iteration 16), with 104 replications per
iteration. After convergence had been achieved with this, the iterations were
continued with 105 replications each, and both with and without splines, result-
ing in two branches in the graph. Some points are noteworthy:

First, it takes about seven iterations before the estimate is near the correct
value; during those iterations, it increases monotonously. Thus, the increasing-
estimate phase (as it was called in the previous example) is quite pronounced
here. Actually, it is somewhat surprising that while the rare-event probability
of interest is estimated completely wrong, the procedure still converges. Consec-
utive iterations are only linked by the transition probabilities, so it seems that
these are still estimated more or less correctly.

Second, at 105 replications, the splines still work quite well, but switching
them off makes the relative error smaller. This is again the trade-off between
“fitting errors” and simulation noise, discussed on page 150.
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iteration replications estimate rel.error avg. d
1 105 6 � 3321 2 10 � 15 0 � 5375 3 � 25
2 105 4 � 9917 2 10 � 15 0 � 0254 0 � 53
3 105 5 � 1039 2 10 � 15 0 � 0091 0 � 65
4 105 5 � 0925 2 10 � 15 0 � 0093 0 � 71
5 105 5 � 1688 2 10 � 15 0 � 0092 0 � 56
5 106 5 � 2128 2 10 � 15 0 � 0030 0 � 25
6 106 5 � 1991 2 10 � 15 0 � 0029 0 � 25
7 106 5 � 1838 2 10 � 15 0 � 0029 0 � 25
8 106 5 � 1811 2 10 � 15 0 � 0029 0 � 22

Table 8.3: Results for the three bounded queues.

8.3.4 Three queues in tandem with bounded buffers

The following system was considered as an example for RESTART simulation
in [Gar00]. It comprises three queues in tandem. Each of the queues is bounded,
and each server has an exponentially distributed service time. The interarrival
time at the first queue is also exponentially distributed. The system starts in a
state with one customer in the first and the second queue, and none in the third
queue. The rare event probability of interest is the probability that the third
queue reaches a given high level before becoming empty for the first time.

The following parameter values are used: arrival rate � 1, service rate of first
and second queue � 2, service rate of third queue � 4, size of first buffer (includ-
ing the customer being served) � 40, second buffer � 20, and overflow level of
the third queue � 20. Note that the third queue, whose overflow probability is to
be determined, is not the bottleneck queue.

Since we are not looking for overflow of the total network population or of
the bottleneck queue, the standard heuristic of exchanging the arrival rate with
the bottleneck service rate is not applicable. Furthermore, the adaptive state-
independent tilting method from Chapter 7 turns out to be not effective either, so
we resort to state-dependent tilting. Four boundary-layers and the local-average
techniques were used. For every iteration, 105 replications were simulated. To
get things started, two iterations with the state-independent method were per-
formed first; Table 8.3 shows the results for the subsequent state-dependent it-
erations. For comparison, the exact probability is 5 � 1863 2 10 � 15, according to the
method from Chapter 2. The agreement between the simulation results and this
numerical result clearly is good.
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8.3.5 A five-node Jackson network with feedback and rout-
ing

As a final example, consider the overflow probability of the total population in
the network of five queues shown in Figure 8.12. Customers arrive according to
a Poisson process with rate � , and the service times are exponentially distrib-
uted with rates � 1 through � 5, as indicated in the drawing. Furthermore, at the

) 1

) 2

) 3 ) 5) 4�
Figure 8.12: A five-node Jackson network.

outputs of queues 1, 2 and 5, random routing takes place: customers are equally
likely to choose one of two routes. We use the following rates:�r� 3 � 1 � 40 � 2 � 20 � 3 � 50 � 4 � 50 � 5 � 60

Note that this choice makes the load of every queue 0 � 1. Generally, state-
independent tilting seems to work badly for systems with several equally loaded
queues, and indeed, the adaptive state-independent method does not work well
with this problem.

However, applying the state-dependent method is not trivial either. Because
of the large number of queues, it is desirable to use a low number of bound-
ary layers, in order to keep the state space manageable. An experiment using
4 boundary layers and the local-average method to estimate the overflow prob-
ability of level 50 failed, both with 104 and with 105 replications per iteration:
after few iterations, several of the transition probabilities tended to zero, and the
average value of d tended to 4 (which is the maximum when using 4 boundary
layers).

Fortunately, another approach turned out to work surprisingly well: first use
104 replications per iteration to estimate the overflow probability of level 20, and
then use the obtained state-dependent transition probabilities as a starting point
for estimating the overflow probability of level 50. For the latter estimation,
104 replications per iterations turned out to be insufficient, so 105 were used
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iteration
overflow

level
replications

boundary
layers

estimate
relative

error
1 20 104 4 7 � 263 2 10 � 16 0 � 1323
2 20 104 4 9 � 100 2 10 � 16 0 � 1011
3 20 104 4 8 � 326 2 10 � 16 0 � 0703
4 20 104 4 7 � 352 2 10 � 16 0 � 0280
5 20 104 4 7 � 752 2 10 � 16 0 � 0247
6 50 105 4 2 � 720 2 10 � 44 0 � 0473
7 50 105 4 2 � 556 2 10 � 44 0 � 0186
8 50 105 4 2 � 600 2 10 � 44 0 � 0103
9 50 105 4 2 � 619 2 10 � 44 0 � 0100
10 50 105 4 2 � 612 2 10 � 44 0 � 0079
11 50 105 4 2 � 643 2 10 � 44 0 � 0123
12 50 105 4 2 � 591 2 10 � 44 0 � 0078
13 50 105 4 2 � 586 2 10 � 44 0 � 0079
13 50 106 4 2 � 605 2 10 � 44 0 � 0025
14 50 106 4 2 � 609 2 10 � 44 0 � 0015
15 50 106 4 2 � 610 2 10 � 44 0 � 0014
15 100 105 7 3 � 979 2 10 � 93 0 � 0174
16 100 105 7 4 � 174 2 10 � 93 0 � 0288
17 100 105 7 3 � 982 2 10 � 93 0 � 0274
18 100 105 7 3 � 761 2 10 � 93 0 � 0194
19 100 105 7 3 � 935 2 10 � 93 0 � 0150
20 100 105 7 3 � 940 2 10 � 93 0 � 0208
21 100 105 7 3 � 954 2 10 � 93 0 � 0158
22 100 105 7 4 � 045 2 10 � 93 0 � 0257
23 100 105 7 3 � 846 2 10 � 93 0 � 0175
23 100 106 7 3 � 921 2 10 � 93 0 � 0061
24 100 106 7 3 � 951 2 10 � 93 0 � 0036
25 100 106 7 3 � 955 2 10 � 93 0 � 0024
26 100 106 7 3 � 950 2 10 � 93 0 � 0019
27 100 106 7 3 � 964 2 10 � 93 0 � 0017
28 100 106 7 3 � 968 2 10 � 93 0 � 0016
29 100 106 7 3 � 949 2 10 � 93 0 � 0016
30 100 106 7 3 � 959 2 10 � 93 0 � 0015
31 100 106 7 3 � 969 2 10 � 93 0 � 0017

Table 8.4: Results for the five-node Jackson network.
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(and later 106, for extra accuracy and verification). After convergence had been
achieved for overflow level 50, overflow level 100 was tried. For this, 105 and
even 106 replications per iteration were not sufficient: the relative error kept
increasing; also using the splines approximation did not help. What did help,
however, was increasing the number of boundary layers to 7, resulting in a small
relative error again, even with 105 replications. Table 8.4 shows the results.
Note: for getting things started, two iterations of the state-independent method
were used (with overflow level 20 and 104 replications per iteration); these are
(as usual) not shown in the table.

The above example shows that temporarily making the target event less rare
(in this case by lowering the overflow level) can be beneficial to help the it-
erative method to “find” the optimal tilting. Temporarily lowering the target
event’s rarity has been discussed before, in Sections 8.2.4 and 7.1.3, and origin-
ally in [Rub97]. However, the purpose in those cases was different: lowering the
rarity served to ensure that the event would be observed often enough. In the
present case, the event would be observed often enough even if we would not
lower the overflow level (because the first iteration already makes the system
unstable, so any high level would be reached often).

In Section 8.2.4, it was noted that temporarily lowering an overflow level
could produce implementation problems, since it is unclear what transition prob-
abilities should be assigned to the states that are added when the overflow level
is raised again. In the present example, this problem did not occur, mostly due to
the application of the boundary-layer technique: this technique groups most of
the states removed by the lower overflow level with states that were not removed
and for which transition probabilities could still be estimated.

8.3.6 Asymptotic efficiency

Table 8.5 shows the simulation results (and, as far as available, numerical res-
ults according to Chapter 2) for some of the systems discussed above for several
different values of the overflow levels. The relative error typically grows no more
than linearly with the overflow level, while the probability estimate decreases ex-
ponentially. Thus, the method is asymptotically efficient, at least in all of these
examples.

8.4 Mathematical foundations

In this section, the adaptive state-dependent method will be studied mathem-
atically. A complete description will not be given. But under some simplifying
assumptions, interesting insight can still be gained.
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model level exact estimate rel.error

two queues
in tandem
(104 repl.)

12 1 � 469 2 10 � 11 1 � 462 2 10 � 11 0 � 0041
25 2 � 872 2 10 � 25 2 � 879 2 10 � 25 0 � 0057
50 6 � 033 2 10 � 52 5 � 988 2 10 � 52 0 � 0068

100 1 � 327 2 10 � 105 1 � 325 2 10 � 105 0 � 0074
150 2 � 188 2 10 � 159 2 � 177 2 10 � 159 0 � 0074

four queues
in tandem
(105 repl.)

25 3 � 528 2 10 � 7 3 � 504 2 10 � 7 0 � 0026
50 – 2 � 396 2 10 � 16 0 � 0042

100 – 1 � 422 2 10 � 35 0 � 0044
200 – 6 � 722 2 10 � 75 0 � 0082

three bounded
queues (105 repl.)

10 1 � 183 2 10 � 7 1 � 182 2 10 � 7 0 � 0045
20 5 � 186 2 10 � 15 5 � 120 2 10 � 15 0 � 0096
40 1 � 762 2 10 � 29 1 � 761 2 10 � 29 0 � 0189
80 – 1 � 448 2 10 � 58 0 � 0520

160 – 1 � 133 2 10 � 116 0 � 1605

Table 8.5: Test of asymptotic efficiency.

First, we will show that in principle, the method tends to converge to precisely
that set of transition probabilities which would give a zero variance estimation
of the quantity of interest. These considerations will lead to an alternative view
of how the method works.

Second, the influence of the statistical error in the transition probabilities
(due to the fact that they are simulation results themselves) will be investigated.
This leads to an explanation for the experimental observation that the variance
of the rare-event probability estimator can decrease proportional to the square of
the number of replications used.

8.4.1 Zero variance

Start by rewriting the denominator of (8.1) as follows:�
0I(Z)

�
i:zi � l

1 ��D�
i � 1

�
0I(Z)1(zi � l) ��D�

i � 1

\
(I(Z) � 1 ¦ zi � l)��D�

i � 1

\
(I(Z) � 1 � zi � l)

\
(zi � l) ��D�

i � 1

� l
\

(zi � l) 
where � l is defined as the probability of reaching the rare event before an ab-
sorbing state is reached, starting from state l; note that � z1 is the rare-event
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probability of interest. Rewrite the numerator similarly:
�

0I(Z)
�

i:zi � l

1(zi � 1 � m)� D�
i � 1

�
0I(Z)1(zi � l)1(zi � 1 � m)��D�

i � 1

\
(I(Z) � 1 ¦ zi � l ¦ zi � 1 � m)��D�

i � 1

\
(I(Z) � 1 � zi � l ¦ zi � 1 � m) 2 \ (zi � 1 � m � zi � l) 2 \ (zi � l)� D�

i � 1

� mplm
\

(zi � l) 
where plm is the untilted transition probability from state l to state m. By sub-
stituting the above into (8.1), we find the following expression for the optimal
transition probabilities:

qlm � � &lm_ k � &lk � _ Di � 1 � mplm
\

(zi � l)_ Di � 1 � l
\

(zi � l)
� � mplm _ Di � 1

\
(zi � l)� l _ Di � 1
\

(zi � l)
� � mplm� l

� (8.5)

One can easily recognise the right-hand side as the conditional probability of
going from state l to state m, given that the rare event will be reached.

Now consider a random path Z leading to the rare event, containing nZ steps.
The probability of this path in the tilted simulation is

nZÑ
i � 1

qzizi � 1 � pz1z2 � z2� z1

2 pz2z3 � z3� z2

2	2
2 pznZ znZ � 1 � znZ � 1� znZ

� � znZ � 1� z1

nZÑ
i � 1

pzizi � 1 �
The probability of the same path in the untilted system is just ? nZ

i � 1 pzizi � 1 , so
the likelihood ratio is � z1

� � znZ
. Since Z was defined as a path leading to the

rare event, its last state znZ � 1 must be the rare event itself; therefore � znZ � 1 � 1.
Consequently, the likelihood ratio of the path is just � z1 , which is (by definition)
the rare-event probability, and thus a constant independent of the path. Since all
sample paths in the tilted system reach the rare event (see6 the last paragraph
of Section 8.1.4), and thus have this same likelihood ratio, the variance of the
estimator is zero7.

6Or observe that the expectation (in the tilted system) of I(Z)L(Z) is the probability of interest @ z1 .
We have just shown that, given I(Z) � 1, L itself equals @ z1 , so the expectation of I(Z)L(Z) can be
equal to @ z1 only if I(Z) � 1 for any sample path in the tilted system (remember that I(Z) is an
indicator function and thus is either 0 or 1). Thus, every sample path in the tilted system reaches
the rare event.

7Zero-variance estimators in Markov chains have been discussed before in the literature; e.g.,
Section VI.2.4 in [Erm75].
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In practice, zero variance is not reached of course. There are two reasons for
this:

• The new transition probabilities are estimated from simulation results,
which obviously have a statistical error; the effect of this is the subject
of the next section. Note that this error can be made arbitrarily small by
increasing the number of replications used in the simulation.

• The techniques for dealing with the large state space discussed in Sec-
tion 8.2 introduce errors. E.g., the boundary-layer method makes all trans-
ition probabilities far away from the boundaries equal, and the spline ap-
proximation only allows transition probabilities which fit the form of the
splines used; these errors don’t disappear with increasing number of rep-
lications. The local average technique is different in this respect: with in-
creasing number of replications, fewer states need to be grouped, so the
error introduced also decreases.

An alternative view of the method

Up to here, the adaptive state-dependent importance sampling simulation meth-
od was basically considered as a way to automatically find the optimal paramet-
ers for reducing the variance in an importance-sampling simulation. An altern-
ative view is possible, however.

Let us consider what would happen if indeed the optimal values of the trans-
ition probabilities were found. In that case, all sample paths leading to the rare
event would have the same likelihood ratio, as shown above; that likelihood ratio
would in fact be equal to the probability of interest ( � z1). So simulating only one
sample path would already provide us with a perfect estimate of the rare-event
probability of interest. Thus, the problem has been converted from a problem
where the quantity of interest is simulated directly, to a problem where the con-
ditional transition probabilities are obtained through simulation, and the quant-
ity of interest is obtained through a calculation (namely, following one sample
path, which doesn’t need to be random) based on those simulation results.

In practice, approximations to the optimal transition probabilities are ob-
tained by simulation, and thus subject to statistical errors. These errors cause
the likelihood ratio along sample paths to the rare event to become variable, so
in order to get an accurate estimation of the rare-event probability, the likelihood
ratios from many sample paths need to be averaged; this is what the simulation
in the next iteration does.
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8.4.2 Influence of the statistical error in the transition
probability estimates

As discussed above, the non-zero variance of the rare-event probability estimator
is caused by the statistical error in the transition probability estimates. In the
following, a model of these statistical errors is constructed, which is subsequently
used to calculate the resulting variance of the rare-event probability estimator.
This serves to give insight into the relative importance of the iteration which
estimates the transition probabilities, and the subsequent iteration which uses
these to estimate the rare-event probability.

For clarity, let us refer to the simulation iteration in which the rare-event
probability is estimated8 as the “last” simulation (or iteration). Then this simula-
tion uses transition probabilities which are simulation results from the “second-
last” simulation. On its turn, the second-last iteration uses transition probabil-
ities which are simulation results from the third-last simulation, and so on.

As before, define qlm as the optimal transition probability from state l to m.
Furthermore, define q̂lm as the simulation estimate of this probability (obtained
in the second-last iteration), which contains a statistical error. Assume that this
error has a normal distribution9 with relative variance Ù 2

lm, as follows:

q̂lm � qlm 2 (1 � flm) with flm
�BA � 0 sÙ 2

lm
� �

Using the optimal transition probabilities qlm, the likelihood ratio would be a con-
stant (independent of the sample path), but using the simulation estimates q̂lm,
this is not the case. The ratio of the ideal (LZ) and the practical (L̂Z) likelihood
ratio on a sample path Z is

LZ

L̂Z
� nZÑ

i � 1

(1 � fzizi � 1) � 1 � nZ�
i � 1

fzizi � 1 � nZ�
i � 1

nZ�
j � 1

fzizi � 1fzjzj � 1 �$�
�
�� 1 � nZ�
i � 1

fzizi � 1
�BA � 1  nZ�

i � 1

Ù 2
zizi � 1

� 
where it is assumed that typically Ù lm ] 1

�
nZ, so the higher order terms can in-

deed be neglected at the � sign. Furthermore, the above assumes that the errors
flm are independent of each other, and that the sample path does not (or rarely)

8Of course, one can estimate the rare-event probability (as a by-product) in every iteration, and
this was in fact done in the experiments in Section 8.3. However, for the purpose of discussing the
estimate’s variance, we need to refer clearly to one estimate; that’s why this definition is made.

9Although a normal distribution is usually an appropriate approximation for a simulation error, it
is not completely realistic here. It does not take into account the fact that all transition probabilities
from a state sum up to 1. Furthermore, it does not take into account that all transition probabilities
must be between 0 and 1: the normal distribution has infinite tails. However, for small variances
these effects can be neglected.
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visit a state twice; otherwise, the variance of the resulting normal distribution
would be different due to the dependencies.

We see that the variance of the likelihood ratio (which is the variance of the
estimator of the rare-event probability, since all sample paths reach the rare
event) is proportional to the variance of the individual transition probabilities.
Since these individual transition probabilities are simulation results from the
second-last simulation, their variance is inversely proportional to the number of
replications used in that simulation. Clearly, the variance of the rare-event prob-
ability estimator is also inversely proportional to the number of replications used
in the last simulation. Thus, we find that the variance of the final estimator is in-
versely proportional to the product of the number of replications used in the last
and in the second-last simulation; or, if the same number of replications is used
in both of them, the variance is inversely proportional to the square of the num-
ber of replications. This phenomenon has already been observed experimentally
in Sections 8.3.1 and 8.3.3.

One might be tempted to take this reasoning a step further: the accuracy
of the transition probabilities used in the last iteration not only depends on the
number of replications in the second-last iteration, but also on the accuracy of
the transition probabilities used in that second-last simulation; the latter de-
pends on the number of replications of the third-last iteration, so the accuracy
of the rare-event probability estimation should also depend on the number of
replications in the third-last iteration. This can indeed be the case, but it will
not nearly be as strong as the dependence on the number of replications in the
second-last iteration. The reason for this is that the estimation of the transition
probabilities is inherently not a zero-variance simulation: even if the third-last
iteration had yielded perfect estimates of the transition probabilities to be used
in the second-last simulation, the latter would not give zero-variance estimates
of the transition probabilities for the last simulation.

8.5 Conclusions and outlook

In this chapter, an adaptive importance sampling method has been proposed
in which the tilting is allowed to depend on the state of the system. This is
a natural extension of the state-independent tilting method from the previous
chapter, and it turns out to work very well, in particular in the cases in which the
state-independent method fails. The method has turned out to be asymptotically
efficient in all examples considered. Furthermore, all experiments done with
this method show good agreement with results from other methods (numerical
calculations in particular), whenever those are available.

A unique and somewhat unexpected property of the method is the rate at
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which the variance of the estimator decreases with increasing number of replica-
tions (spread over several iterations): in many cases, it decreases proportional to
the square of the total number of replications, instead of linearly. This has both
been observed experimentally, and justified analytically.

A few miscellaneous issues are worth noting. First, in this chapter the method
has only been used to estimate probabilities of the form reaching a (rare) overflow
state before reaching some other (absorbing) state; however, in regenerative sys-
tems, this can be used as a basis for finding steady-state probabilities. Second,
the method is well suited for parallel processing, since all the replications (typ-
ically thousands) within an iteration are independent of one another. Third, the
extra CPU time needed to do one iteration of the state-dependent instead of the
state-indepent method, is usually small: the simulation itself is hardly different,
so extra time would mainly be needed for the local average and spline calcula-
tions; but in almost all of the experiments, this turned out to take only a small
fraction of the time needed for the simulation itself.

Besides all its good properties, the method still has its limitations: it only ap-
plies to DTMC models, and the state space must not be too large. These problems
and possible solutions are discussed in more detail below.

8.5.1 Further improvements for large state space

The techniques discussed in Section 8.2 have been shown to be quite effective for
queueing network models containing up to about five queues. However, without
enhancements these techniques are bound to fail with larger networks: after
application of the boundary layer method the state space still contains (1 � b)n

states, where b is the number of boundary layers used, and n the number of
queues. Typically, 4 to 10 boundary layers are used, so for every additional queue
the state space increases by a factor of 5 to 11, and the amount of memory re-
quired increases proportionally. Furthermore, the CPU time needed for the local
average and spline calculations also increase with the size of the state space.

One possible way to deal with this problem is suggested by plots like Fig-
ure 8.8 and 8.10: these show that typically the state-dependent transition prob-
abilities do not depend strongly on all coordinates (queue contents), but only on
some of them. For the coordinates on which the probabilities do not (or hardly)
depend, fewer (possibly zero) boundary layers could be used, thus effectively re-
ducing the state space. Unfortunately, graphs like the ones mentioned above are
only available after the procedure has converged, so they cannot be used to help
the convergence by reducing the state space in advance. However, further invest-
igation of these dependencies for some typical examples may give more insight
to decide in advance which coordinates are important.
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8.5.2 Extension to non-Markovian models

Some non-Markovian models can easily be converted into DTMC models by ex-
tending the state space, so it contains (discrete) state information about the non-
exponential distribution involved. For example, this is possible if the model con-
tains phase-type distributions (such as Erlang and hyperexponential). In such
cases, the techniques discussed thus far can be applied to the DTMC version of
the model.

If non-phase-type distributions, such as deterministic or uniform, are in-
volved, it is no longer possible to reduce the model to a DTMC with a discrete
state-space. To fully describe the state of such a model, one or more continuous
variables are needed. In such models, two types of problems arise when trying
to apply the adaptive state-dependent tilting methods discussed in this chapter:

• Representation of the tilting as a function of continuous variables.

• Sampling from a random variable whose (tilted) distribution changes with
time due to the changing state.

These issues are discussed in more detail below. Some suggestions to deal with
the problems are given, but, due to time limitations, they have not yet been
implemented.

Representation of the tilting as a function of continuous variables

If inter-arrival and service times have non-exponential (and non-phase-type) dis-
tributions, or e.g. delays need to be estimated, the state of a queueing system is
no longer adequately described by just the number of customers in every queue
(and the phase of phase-type distributions). Instead, also the elapsed times since
the last arrival and/or service completions need to be stored; these are continuous
random variables, so they can take an (uncountably) infinite number of values:
the state space becomes (uncountably) infinite. Possible approaches to deal with
this include:

• Just ignore it: make the tilting independent of the elapsed times, so it only
depends on the discrete state variables.

• Partition the continuous state space into a finite number of bins, and make
the tilting depend only on the bin (which is a discrete variable).

• Model the state-dependent tilting as some function of the (continuous) state
variable. This could be similar to the spline fitting from Section 8.2.3.

Clearly, these approaches are listed in order of increasing complexity and de-
creasing “coarseness” of the dependence of the tilting on the (continuous) vari-
able.
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Sampling from a random variable with a changing distribution

The usual way of simulating a non-DTMC system is an event-based mechanism:
at some point (e.g., upon an arrival to an empty queue) a sample is taken from
some distribution (e.g., the service-time distribution of that queue), from which
the time for some future event (e.g., service completion at that queue) is calcu-
lated (e.g., “now” + “service time sample”), and the event is recorded in an event
list. Then, other (earlier) events in the event list are processed, before the event
considered above is finally processed.

Naı̈vely, a state-dependent tilting could be implemented simply by using the
tilting belonging to the current state at the moment the sample is taken. How-
ever, this may not be optimal: between the taking of a sample, and the pro-
cessing of the event scheduled based on that sample, the state of the system can
change quite significantly. It would be preferable if the sample could somehow
be updated when the system state changes. This could be done by resampling
the random variable every time the system changes; a suitable procedure is de-
scribed in [NNHG90]. An alternative approach is uniformization, as decribed
in [NHS92]: in this approach, no scheduling in the usual sense is used. In-
stead, one keeps track of which events have been scheduled since when, and this
information is used to choose the next event to happen with the correct (time-
dependent) probabilities.

Appendix

8.A Exact optimal transition probabilities for
M @ M @ 1 @ k

In this appendix, the optimal transition probabilities as given by (8.1) are calcu-
lated exactly for the M

�
M
�
1
�
k queue.

0 1 2

p p

q q q

empty initial state

k

p p

q

k � 1

full buffer

Figure 8.13: The birth-death process corresponding to an M
�
M
�
1
�
k queue.

Model the M
�
M
�
1
�
k queue as a birth-death process, as illustrated in Fig-
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ure 8.13. The states range from 0 (empty state, regeneration state) up to k
(full buffer). The probability of an arrival (i.e., jump to the next higher state)
is p �p� � ( �T�M� ), and of a service completion (jump to the next lower state) is
q � 1 � p.

In Section 8.4.1, this equation for the optimal probabilities has been rewrit-
ten as (8.5), which expresses the optimal probabilities in terms of the “untilted”
probabilities plm and the probabilities � l of reaching the rare event before empty-
ing, starting from state l. The following analytical expression for � l can be found
from Section 2.2.1 or [NH96]: � l � � 0 / � l � 1� 0 / � k � 1

�
Substituting this into (8.5) we find for the optimal arrival probability in state l:

p &l � p
� 0 / � l � 1 � 1� 0 / � l � 1

� ql � 1 � pl � 1

ql � pl


where the fact that � � ��� q
�
p was used. The optimal service probability follows

from

q &l � 1 � p &l � 1 � ql � 1 � pl � 1

ql � pl
�

Note that these optimal transition probabilities are independent of the overflow
level k.

A plot of p &l for various values of the load (p
�
q) of the queue is shown in Fig-

ure 8.14. Clearly, unless the queue is heavily loaded, the optimal transition
probabilities differ from the large-deviations result (p ¸�� q, q ¸�� p) significantly
only in the states close to the empty state.
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l

p &l p � 0 � 1, q � 0 � 9
p � 0 � 3, q � 0 � 7
p � 0 � 499, q � 0 � 501
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Figure 8.14: Optimal state-dependent arrival probability p & .
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Chapter 9

Conclusions
?

n this chapter, the main contributions of this thesis are listed and some pos-
sible future extensions of the work are discussed.

9.1 Main contributions
Consecutive cell loss

One problem studied in this thesis is the estimation of consecutive (cell) loss
probabilities and frequencies in simple queueing models. This subject has re-
ceived little attention in the literature, and this was mostly limited to models of
very specific ATM subsystems. The present thesis has focused on more general
queueing models, resulting in the following contributions:

• Analytical (numerical) calculation for M
�
G
�
1 and G

�
M
�
m queues.

• Analytical (numerical) calculation for one stream in a multiple-stream
M
�
M
�
1 queue.

• Asymptotically efficient (for large number of consecutive cells lost) import-
ance sampling simulation for M

�
G
�
1 queues where the service time distri-

bution is upper-bounded. This is actually a hybrid approach: analysis is
used to express the probability of interest in terms of four other probabilit-
ies, each of which is estimated by simulation. Alternatively, these can also
be approximated by asymptotic analysis.

Overflows in networks of queues

The estimation of overflow probabilities in queueing networks has received con-
siderable attention in the importance sampling simulation literature. Most of the
literature has concentrated on heuristically derived changes of measure, which
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perform well in many, but not all, models. Adaptive methods (i.e., methods which
try to iteratively approach the optimal change of measure) have only been ap-
plied to queueing problems in [DT93a], in which a different adaptive method is
used than in the present work, and [RM98], where only a few simple models are
considered.

In this thesis, several adaptive importance sampling simulation methods for
the estimation of overflow probabilities in queueing networks are developed (on
the basis of [RM98]) and their performance is compared. These methods can be
classified as follows:

• State-independent tilting via variance minimization

• State-independent tilting via cross-entropy minimization

• State-independent tilting via cross-entropy minimization, for Markovian
models

• State-dependent tilting via cross-entropy minimization, for Markovian mod-
els

The first three of these use a state-independent change of measure: the tilt-
ing does not depend on the state of the system (i.e., number of customers in
the queues). These three methods differ in whether they explicitly minimize
the simulation variance, or do this indirectly by minimizing a related quantity
(the cross-entropy), which has some computational advantages and turns out to
give equally good results. The third method contains some enhancements spe-
cific for Markovian models. It is found experimentally that these three meth-
ods generally work quite well, although some counterexamples are shown in
which irregularities or even completely wrong estimates are observed. For these
counterexamples, no asymptotically efficient state-independent change of meas-
ure seems to exist.

The last method allows the change of measure to depend on the state. This
makes the change of measure much more flexible; as a consequence, better sim-
ulation performance is obtained. On the other hand, determining such a change
of measure is more complicated, especially if the state space is large; several
techniques to deal with this problem have been discussed. The results with
this method are consistently good: asymptotically efficient estimation of over-
flow probabilities is possible even for models in which the methods with a state-
independent change of measure do not work well. The method has only been
fully developed for Markovian models; possible solutions to the additional com-
plexities of non-Markovian models have been discussed briefly.

For verification of the simulation results, a simple way to numerically calcu-
late overflow probabilities in Jackson networks has also been demonstrated.
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Other results

In the course of the research, several sub-problems have been solved; the results
could also have applications in other contexts. These results include:

• Asymptotic expressions for the past and remaining service times upon
reaching a high level (full buffer) in M

�
G
�
1 queues; besides the applica-

tions to the estimation of consecutive cell loss probabilities demonstrated
in this thesis, it has also been applied in RESTART simulations [Gar00].

• Asymptotically efficient (for large n) simulation methods for the estimation
of probabilities of the form _ n

i Xi ] Y; such probabilities play a role in
many practical problems, including reliability models, signal detection and
queueing.

• An extension of the central limit theorem to exponentially tilted random
variables; this is useful in asymptotic efficiency proofs for importance
sampling schemes.

• The numerical evaluation method for overflow probabilities in Jackson net-
works; it was developed here for the validation of simulation results, but
can of course be applied in practical queueing network models of telecom-
munications systems, manufacturing systems, etc.; furthermore, it can be
applied to discrete-time Markov chains arising in non-queueing contexts.

9.2 Future work
Cell loss patterns

Some extension of the work presented here on consecutive cell loss is of interest,
e.g., extension of the analysis to other queues than M

�
G
�
1 and G

�
M
�
m, and to

more complicated per-stream models than just M
�
M
�
1. Developing a provably

asymptotically efficient simulation method for systems with unbounded service
time distributions would also be of interest, but this runs into a fundamental
problem: it would be necessary to change the distribution of the duration of the
full buffer periods (cf. Chapter 6), but since that duration is a simulation result
itself, it cannot readily be changed. The results regarding i.i.d. sums derived in
this thesis may still be useful for developing an efficient simulation method for
consecutive cell loss in queues with bounded service times but non-Markovian
interarrival times.

However, for practical applications it would probably be of more interest to
focus on more general cell loss patterns, such as the probability of losing m out
of n consecutive cells. Such events can have a similar influence on the Quality
of Service of a telecommunications system as the loss of m consecutive cells, and
they are more likely.
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Overflows in networks of queues

Two obvious important directions for future research are extension of the state-
dependent tilting method to non-Markovian systems, and development of better
techniques for handling very large state spaces. Some ideas for this have already
been mentioned at the end of Chapter 8.

For practical applications, the simulation of models with many (independent)
non-Poisson sources is important. The importance sampling simulation as used
in Chapter 7 is not good at handling such models, if the sources are just imple-
mented and tilted independently. This problem is not specific to the adaptive
methods, but it does limit their applicability in realistic models; therefore, find-
ing a good way to handle such models is important.

Finally, it is desirable to develop a better mathematical understanding of the
working of the adaptive methods considered in this thesis. For example, it is
not understood well why the methods converge, particularly in the case of state-
dependent tilting. Also, it is not known whether the minimum cross-entropy
tilting is always close (and perhaps asymptotically identical) to the minimum-
variance tilting.
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Summary

In modern packet-switched telecommunication systems, information (such as e-
mail, sound, pictures) is transported in the form of small packets (or cells) of
data through a network of links and routers. The Quality of Service provided by
such a network can suffer from phenomena such as loss of packets (due to buffer
overflow) and excessive delays. These aspects of the system are adequately de-
scribed by queueing models, so the study of such models is of great relevance for
designing systems such that they provide the required QoS. This thesis contrib-
utes methods for the efficient estimation of several loss probabilities in various
queueing models of communications systems. The focus is on rare-event simula-
tion using importance sampling, but some analytical, asymptotic and numerical
results are also provided.

One part of this thesis is concerned with issues related to the estimation of
the probability of consecutive (cell) loss: the loss of several consecutive arrivals to
a queue. Analytical calculation of this is demonstrated for several simple queues
(M
�
G
�
1
�
k and G

�
M
�
m
�
k), and an importance sampling simulation procedure is

provided for M
�
G
�
1
�
k queues. Furthermore, an M

�
M
�
1
�
k queue with multiple

sources is considered, in which the probability of consecutive (cell) loss incurred
by one of these sources is calculated analytically.

The other part of this thesis is concerned with the estimation of overflow prob-
abilities in queueing networks. For estimating these probabilities, importance
sampling simulation methods are considered, in which several adaptive tech-
niques (mostly based on cross-entropy) are applied to approximate the optimal
change of measure. Two classes of change of measure are used: those which
do not depend explicitly on the state of the model (e.g., a “static” change of the
arrival and service rates), and those which do (e.g., changing the arrival and
service rates separately for each state). The methods using a state-independent
change of measure turn out to be quite effective and to result in an asymptotic-
ally efficient simulation in most cases; however, some counterexamples are also
observed. With a state-dependent change of measure, an asymptotically efficient
simulation is obtained in every example tried, including those for which no good
state-independent change of measure is known. The state-dependent method
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has only been applied to Markovian networks, but possible ways to extend it to
non-Markovian networks are briefly discussed. Furthermore, a simple numerical
method is proposed for the calculation of overflow probabilities in simple Jackson
networks, which is used to verify the correctness of the results from the above
simulation methods.

In the course of the work on the above two main problems, some interest-
ing subproblems and related issues were investigated. The obtained results
are also useful in other contexts, and include the following: (1) asymptotic ex-
pressions for the past and remaining service time distributions upon reaching
a high (overflow) level in M

�
G
�
1 queues; (2) asymptotically efficient importance

sampling simulation schemes for the estimation of probabilities of events of the
form _ n

i � 1 Xi ] Y, where Xi are positive i.i.d. random variables, and Y is also
a positive random variable (useful in e.g. reliability models); (3) an extension
of the central limit theorem to exponentially tilted random variables (useful for
asymptotic efficiency proofs).



Samenvatting

In moderne, pakket-geschakelde telecommunicatiesystemen wordt informatie
(zoals e-mail, geluid, beelden) getransporteerd in de vorm van kleine data-
pakketjes (of “cellen”) door een netwerk van verbindingen en routers. De Quality-
of-Service (kwaliteit van de telecommunicatiedienst) die door zo’n netwerk wordt
geleverd kan verslechteren door verschijnselen zoals het verloren raken van pak-
ketjes (ten gevolge van overstroming van buffers) en onwenselijk grote vertra-
gingen. Deze aspecten van het systeem worden goed beschreven door wachtrij-
modellen; daarom is de studie van dergelijke modellen zeer relevant voor het
zodanig ontwerpen van de systemen dat de telecommunicatiedienst met de ge-
wenste kwaliteit wordt gerealiseerd. Dit proefschrift beschrijft een aantal me-
thoden voor het efficiënt schatten van verlies-kansen in diverse wachtrijmodel-
len van communicatiesystemen. De nadruk ligt op de simulatie van zeldzame
gebeurtenissen met behulp van importance-sampling, maar enkele analytische,
asymptotische en numerieke resultaten komen ook aan de orde.

Een deel van dit proefschrift is gewijd aan zaken die te maken hebben met het
schatten van de kans op “consecutive loss”: het verliezen van meerdere opeen-
volgend bij het wachtsysteem aankomende cellen. Een analytische berekening
van deze kans wordt gegeven voor diverse elementaire wachrijen (M

�
G
�
1
�
k and

G
�
M
�
m
�
k), evenals een simulatieprocedure gebaseerd op importance sampling

voor M
�
G
�
1
�
k. Bovendien wordt een M

�
M
�
1
�
k-wachtsysteem met meerdere

bronnen beschouwd; in dit systeem wordt de kans op verlies van opeenvolgende
cellen van één van deze bronnen analytisch berekend.

Het andere deel van dit proefschrift gaat over de schatting van overstro-
mingskansen in netwerken van wachtsystemen. Hiertoe worden op importance-
sampling gebaseerde simulatiemethoden beschouwd, waarbij diverse adaptieve
technieken (meestal gebaseerd op cross-entropy) worden toegepast om de opti-
male kansmaatverandering te benaderen. Twee klassen van kansmaatverande-
ring worden beschouwd: die welke niet expliciet van de toestand van het mo-
del afhangen (bijv. een “statische” verandering van de aankomst- en bedienings-
snelheid), en die welke wel expliciet van de toestand van het model afhangen
(bijv. een aparte wijziging van de aankomst- en bedieningssnelheid voor elke toe-
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stand). De methoden met een toestandsonafhankelijke kansmaatverandering
blijken behoorlijk effectief te zijn, en resulteren in de meeste gevallen in een
asymptotisch efficiënte simulatie; er zijn echter ook enkele tegenvoorbeelden ge-
vonden. Gebruik van een toestandsafhankelijke kansmaatverandering leidt in
alle geteste gevallen tot een asymptotisch efficiënte simulatie, ook in die geval-
len waarin geen goede toestandsonafhankelijke kansmaatverandering bekend is.
De toestandsafhankelijke methode is alleen maar toegepast op Markovse netwer-
ken, maar enkele mogelijkheden om de methode uit te breiden tot niet-Markovse
netwerken worden kort besproken. Verder beschrijft dit proefschrift een een-
voudige numerieke methode om overstromingskansen in eenvoudige Jackson-
netwerken te berekenen; deze methode is gebruikt om de resultaten van boven-
genoemde simulatiemethoden te controleren.

In de loop van het werk aan de twee bovengenoemde hoofdproblemen zijn ook
nog enkele andere interessante subproblemen en gerelateerde zaken onderzocht.
De daarbij verkregen resultaten zijn ook nuttig in andere contexten: (1) asymp-
totische uitdrukkingen voor de kansverdeling van de verstreken en resterende
bedieningsduur op het moment dat de inhoud van een M

�
G
�
1 wachtsysteem een

hoog niveau bereikt; (2) asymptotisch efficiënte simulatiemethoden gebaseerd op
importance-sampling voor het schatten van kansen van gebeurtenissen van de
vorm _ n

i � 1 Xi ] Y, waar Xi positieve, onafhankelijke maar identiek verdeelde
stochastische variabelen zijn, en Y ook een positieve stochastische variabele is
(toepasbaar in bijv. betrouwbaarsheidsmodellen); (3) een uitbreiding van de cen-
trale limiet-stelling naar exponentieel getilte stochastische variabelen (toepas-
baar in bewijzen van asymptotische efficiëntie).
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