A model reduction approach for inverse problems with operator valued data

Matthias Schlottbom
joint work with Jürgen Dölz (U Bonn), Herbert Egger (TU Darmstadt/Linz)

CASA Colloquium

TU Eindhoven
June 30th, 2021

Preprint available at arxiv.org/abs/2004.11827

UNIVERSITY OF TWENTE.

Outline

Fluorescence diffuse optical tomography
Model
Inverse problem
Outline of model reduction approach

Abstract Analysis: Model reduction for $\mathcal{T} c=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}$
Properties of the forward operator
Step 1: Tensor product approximation
Step 2: Quasi-optimal compression

Model reduction in action: Application to FDOT
Truth approximation and implementation
Complexity estimates
Runtimes and ranks

Conclusion

Fluorescence diffuse optical tomography Model Inverse problem Outline of model reduction approach

```
Abstract Analysis: Model reduction for }\mathcal{T}c=\mp@subsup{\mathcal{V}}{}{\prime}\mathcal{D}(c)\mathcal{U
    Properties of the forward operator
    Step 1: Tensor product approximation
    Step 2: Quasi-optimal compression
Model reduction in action: Application to FDOT
    Truth approximation and implementation
    Complexity estimates
    Runtimes and ranks
```

Conclusion

Fluorescence optical tomography: forward problem: $c \mapsto M$

concentration
[Arridge, Schotland: Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009)]
[Egger et al: On forward and inverse models in fluorescence diffuse optical tomography, IPI, 4 (2010)]

Fluorescence optical tomography: forward problem: $c \mapsto M$

concentration

excitation

Excitation field generated by source q_{j}

$$
\begin{aligned}
-\nabla \cdot\left(\kappa_{x} \nabla u_{x, j}\right)+\mu_{x} u_{x, j} & =0 & \text { in } \Omega \\
\kappa_{x} \partial_{n} u_{x, j}+\rho_{x} u_{x, j} & =q_{j} & \text { on } \partial \Omega
\end{aligned}
$$

[Arridge, Schotland: Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009)]
[Egger et al: On forward and inverse models in fluorescence diffuse optical tomography, IPI, 4 (2010)]

Fluorescence optical tomography: forward problem: $c \mapsto M$

concentration

excitation

emission

Excitation field generated by source q_{j}

$$
\begin{aligned}
-\nabla \cdot\left(\kappa_{x} \nabla u_{x, j}\right)+\mu_{x} u_{x, j} & =0 \quad \text { in } \quad \Omega \\
\kappa_{x} \partial_{n} u_{x, j}+\rho_{x} u_{x, j} & =q_{j}
\end{aligned} \quad \text { on } \partial \Omega
$$

Emission field for fluorophore concentration c and excitation field $u_{x, j}$

$$
\begin{aligned}
-\nabla \cdot\left(\kappa_{m} \nabla u_{m, j}\right)+\mu_{m} u_{m, j} & =c u_{x, j} & & \text { in } \Omega \\
\kappa_{m} \partial_{n} u_{m, j}+\rho_{m} u_{m, j} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

[Arridge, Schotland: Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009)]
[Egger et al: On forward and inverse models in fluorescence diffuse optical tomography, IPI, 4 (2010)]

Fluorescence optical tomography: forward problem: $c \mapsto M$

concentration

excitation

emission

measurements

Excitation field generated by source q_{j}

$$
\begin{aligned}
-\nabla \cdot\left(\kappa_{x} \nabla u_{x, j}\right)+\mu_{x} u_{x, j} & =0 \\
\kappa_{x} \partial_{n} u_{x, j}+\rho_{x} u_{x, j} & =q_{j}
\end{aligned} \quad \text { on } \partial \Omega
$$

Emission field for fluorophore concentration c and excitation field $u_{x, j}$

$$
\begin{aligned}
-\nabla \cdot\left(\kappa_{m} \nabla u_{m, j}\right)+\mu_{m} u_{m, j} & =c u_{x, j} & & \text { in } \Omega \\
\kappa_{m} \partial_{n} u_{m, j}+\rho_{m} u_{m, j} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Measurements at detector (pixel) $d_{i}: M_{i j}=\int_{\partial \Omega} d_{i}(x) u_{m, j}(x) d \sigma(x)$
[Arridge, Schotland: Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009)]
[Egger et al: On forward and inverse models in fluorescence diffuse optical tomography, IPI, 4 (2010)]

Inverse Problem

- $\mathrm{M} \approx \mathcal{M}=\mathcal{M}(c): q \rightarrow u_{m \mid \partial \Omega}$ (infinite dim.) measurement operator
- Use of \mathcal{M} yields algorithms that are independent of the discretization

concentration c

$$
\text { solve } \mathcal{T} c=\mathcal{M}^{\delta}
$$

measurements: \mathcal{M}

Inverse Problem

- $\mathrm{M} \approx \mathcal{M}=\mathcal{M}(c): q \rightarrow u_{m \mid \partial \Omega}$ (infinite dim.) measurement operator
- Use of \mathcal{M} yields algorithms that are independent of the discretization

Inverse Problem

- $\mathrm{M} \approx \mathcal{M}=\mathcal{M}(c): q \rightarrow u_{m \mid \partial \Omega}$ (infinite dim.) measurement operator
- Use of \mathcal{M} yields algorithms that are independent of the discretization

concentration c
Tikhonov regularization
Regularized normal equations

$$
\text { solve } \mathcal{T} c=\mathcal{M}^{\delta}
$$

measurements: \mathcal{M}

$$
\left\|\mathcal{T} c-\mathcal{M}^{\delta}\right\|^{2}+\alpha\|c\|^{2} \rightarrow \min
$$

$$
\left(\mathcal{T}^{\star} \mathcal{T}+\alpha \mathcal{I}\right) c_{\alpha}^{\delta}=\mathcal{T}^{\star} \mathcal{M}^{\delta}
$$

- solve with conjugate gradients (apply $\mathcal{T} c$ and $\mathcal{T}^{\star} M$ (its truth approximation))
- expensive for large parameter space and many measurements
[Freiberger et al: High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware, Biomed. Opt. Express, 2 (2011)]

Pathway to model reduction via projections

Projection

$$
\mathcal{T}_{N}=\mathcal{Q}_{N} \mathcal{T}
$$

Error bound

$$
\left\|\mathcal{Q}_{N} \mathcal{T}-\mathcal{T}\right\| \leq \delta
$$

Reconstruction

$$
\left(\mathcal{T}_{N}^{\star} \mathcal{T}_{N}+\alpha \mathcal{I}_{N}\right) c_{\alpha, N}^{\delta}=\mathcal{T}_{N}^{\star} \mathcal{M}_{N}^{\delta}
$$

Reconstruction error bound

$$
\left\|c_{\alpha, N}^{\delta}-c_{\alpha}^{\delta}\right\| \leq C(\alpha) \delta
$$

[Bakushinsky, Kokurin: Iterative Methods for Approximate Solution of Inverse Problems. Springer 2004]
[Neubauer: An a posteriori parameter choice for Tikhonov regularization in the presence of modeling errors. APNUM 4 (1988)]

Offline-Online decomposition

Offline. Setup of the approximations $\mathcal{Q}_{N}, \mathcal{T}_{N}^{\star}$, and $\mathcal{T}_{N} \mathcal{T}_{N}^{\star}$.
Online. Computation of the regularized solution requires

step	computations	complexity	memory
compression	$\mathcal{M}_{N}^{\delta}=\mathcal{Q}_{N} \mathcal{M}^{\delta}$	$N k^{2}$	$N k^{2}$
analysis	$z_{\alpha, N}^{\delta}=g_{\alpha}\left(\mathcal{T}_{N} \mathcal{T}_{N}^{\star}\right) \mathcal{M}_{N}^{\delta}$	N^{2}	N^{2}
synthesis	$C_{\alpha, N}^{\delta}=\mathcal{T}_{N}^{\star} z_{\alpha, N}^{\delta}$	$N m$	$N m$

Truth approximation $\mathcal{T} \in \mathbb{R}^{m \times k^{2}}$

Offline-Online decomposition

Offline. Setup of the approximations $\mathcal{Q}_{N}, \mathcal{T}_{N}^{\star}$, and $\mathcal{T}_{N} \mathcal{T}_{N}^{\star}$.
Online. Computation of the regularized solution requires

step	computations	complexity	memory
compression	$\mathcal{M}_{N}^{\delta}=\mathcal{Q}_{N} \mathcal{M}^{\delta}$	$N k^{2}$	$N k^{2}$
analysis	$z_{\alpha, N}^{\delta}=g_{\alpha}\left(\mathcal{T}_{N} \mathcal{T}_{N}^{\star}\right) \mathcal{M}_{N}^{\delta}$	N^{2}	N^{2}
synthesis	$c_{\alpha, N}^{\delta}=\mathcal{T}_{N}^{\star} z_{\alpha, N}^{\delta}$	$N m$	$N m$

Truth approximation $\mathcal{T} \in \mathbb{R}^{m \times k^{2}}$
\mathcal{T}_{N} being a truncated SVD of \mathcal{T} is the benchmark, but expensive!
see, e.g., [Hochstenbach 2001, Markel et al 2003, Stoll 2012, Chaillat et al 2012, Musco et al 2015,...]

A decomposition of the forward operator: $\mathcal{T}=\mathcal{V}^{\prime} \mathcal{D}(\cdot) \mathcal{U}$

Adjoint emission problem

$$
\begin{aligned}
-\nabla \cdot\left(\kappa_{m} \nabla v_{m}\right)+\mu_{m} v_{m} & =0 \quad
\end{aligned} \quad \text { in } \quad \Omega,
$$

Solution operators of excitation and adjoint emission problem

$$
\begin{aligned}
& \mathcal{U}: q_{x} \mapsto \mathcal{U} q_{x}:=u_{x} \\
& \mathcal{V}: q_{m} \mapsto \mathcal{V} q_{m}:=v_{m} .
\end{aligned}
$$

Multiplication operator

$$
\mathcal{D}(c) u=c u, \quad \text { i.e. } \quad\langle\mathcal{D}(c) u, v\rangle=\int_{\Omega} c u v d x
$$

One can show that $u_{m \mid \partial \Omega}=\mathcal{V}^{\prime} \mathcal{D}(c) u_{x}$ in correct functional analytic setting, i.e.,

$$
\mathcal{T} c=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}
$$

[Egger et al: On forward and inverse models in fluorescence diffuse optical tomography, IPI, 4 (2010)]

Procedure for setting up the projection for $\mathcal{T}=\mathcal{V}^{\prime} \mathcal{D}(\cdot) \mathcal{U}$

1. Accurate projections

$$
\mathcal{U}_{K}=\mathcal{U} \mathcal{Q}_{K, \mathcal{U}} \quad \text { and } \quad \mathcal{V}_{K}=\mathcal{V} \mathcal{Q}_{K, \mathcal{V}}
$$

lead to

$$
\mathcal{T}_{K, K} c=\mathcal{Q}_{K, K} \mathcal{T} c=\mathcal{V}_{K}^{\prime} \mathcal{D}(c) \mathcal{U}_{K}, \quad \mathcal{M}_{K, K}^{\delta}=\left(\mathcal{Q}_{K, \mathcal{V}}^{\prime} \mathcal{M}^{\delta}\right) \mathcal{Q}_{K, \mathcal{U}}
$$

with error bound $\left\|\mathcal{T}_{K, K}-\mathcal{T}\right\| \leq \delta$
2. Further compression of $\mathcal{T}_{K, K}$ gives rise to desired projection

$$
\mathcal{Q}_{N}=\mathcal{P}_{N} \mathcal{Q}_{K, K}, \quad \mathcal{M}_{N}^{\delta}=\mathcal{P}_{N} \mathcal{M}_{K, K}^{\delta}
$$

Remark. Computation of $\mathcal{M}_{K, K}^{\delta}=\left(\mathcal{Q}_{K, \mathcal{V}}^{\prime} \mathcal{M}^{\delta}\right) \mathcal{Q}_{K, \mathcal{U}}$ requires only $O\left(K k+K^{2}\right)$ mem instead of $O\left(N k^{2}\right)$ if tensor structure is used.

Related to step 1.: [Herrmann et al 2009, Krebs et al 2009, Roosta-Khorasani et al 2014, Markel et al 2019]

Model reduction in action: Application to FDOT
 Truth approximation and implementation
 Complexity estimates
 Runtimes and ranks

Conclusion

Abstract setting

Assumptions. $\mathbb{U}, \mathbb{V}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}$ separable Hilbert spaces

$$
\mathcal{U} \in \mathbb{H} \mathbb{S}(\mathbb{Y}, \mathbb{U}), \quad \mathcal{V} \in \mathbb{H} \mathbb{S}(\mathbb{Z}, \mathbb{V}), \quad \mathcal{D} \in \mathcal{L}\left(\mathbb{X}, \mathcal{L}\left(\mathbb{U}, \mathbb{V}^{\prime}\right)\right)
$$

recall: Any $\mathcal{S} \in \mathcal{L}(\mathbb{A}, \mathbb{B})$ compact has singular value decomposition (SVD)

$$
\mathcal{S} a=\sum_{k=1}^{\infty}\left(a, a_{k}\right)_{\mathbb{A}} \sigma_{k, \mathcal{S}} b_{k}
$$

with ONBs $\left\{a_{k}\right\} \subset \mathbb{A}$ and $\left\{b_{k}\right\} \subset \mathbb{B}$. Truncated SVD

$$
\mathcal{S}_{K} a=\sum_{k=1}^{K}\left(a, a_{k}\right)_{\mathbb{A}} \sigma_{k, \mathcal{S}} b_{k}
$$

Error $\left\|\mathcal{S}-\mathcal{S}_{K}\right\|_{\mathcal{L}(\mathbb{A}, \mathbb{B})}=\sigma_{K+1, \mathcal{S}}$,
$\mathcal{S} \in \mathbb{H} \mathbb{S}(\mathbb{A}, \mathbb{B})$ iff $\left\{\sigma_{k, \mathcal{S}}\right\}_{k} \in \ell_{2}$, and $\|\mathcal{S}\|_{\mathbb{H} \mathbb{S}(\mathbb{A}, \mathbb{B})}^{2}=\sum_{k=1}^{\infty} \sigma_{k, \mathcal{S}}^{2}$
see, e.g., [Hackbusch: Tensor spaces and numerical tensor calculus. Springer. 2014]

Properties of the forward operator

$\mathbb{U}, \mathbb{V}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}$ separable Hilbert spaces

$$
\mathcal{U} \in \mathbb{H} \mathbb{S}(\mathbb{Y}, \mathbb{U}), \quad \mathcal{V} \in \mathbb{H} \mathbb{S}(\mathbb{Z}, \mathbb{V}), \quad \mathcal{D} \in \mathcal{L}\left(\mathbb{X}, \mathcal{L}\left(\mathbb{U}, \mathbb{V}^{\prime}\right)\right)
$$

Lemma. $\mathcal{T}(c)=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}$ defines a bounded linear compact operator $\mathcal{T}: \mathbb{X} \rightarrow \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)$.

Properties of the forward operator

$\mathbb{U}, \mathbb{V}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}$ separable Hilbert spaces

$$
\mathcal{U} \in \mathbb{H} \mathbb{S}(\mathbb{Y}, \mathbb{U}), \quad \mathcal{V} \in \mathbb{H} \mathbb{S}(\mathbb{Z}, \mathbb{V}), \quad \mathcal{D} \in \mathcal{L}\left(\mathbb{X}, \mathcal{L}\left(\mathbb{U}, \mathbb{V}^{\prime}\right)\right)
$$

Lemma. $\mathcal{T}(c)=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}$ defines a bounded linear compact operator $\mathcal{T}: \mathbb{X} \rightarrow \mathbb{H} \mathbb{S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)$.

Proof (sketch).

- Consider TSVDs: $\mathcal{U}_{K}=\mathcal{U} \mathcal{Q}_{\kappa, \mathcal{U}}$ and $\mathcal{V}_{K}=\mathcal{V} \mathcal{Q}_{K, \mathcal{V}}$ with rank K such that

$$
\left\|\mathcal{U}-\mathcal{U}_{K}\right\|_{\mathcal{L}(\mathbb{Y}, \mathbb{U})} \lesssim K^{-1 / 2} \quad \text { and } \quad\left\|\mathcal{V}-\mathcal{V}_{K}\right\|_{\mathcal{L}(\mathbb{Z}, \mathbb{V})} \lesssim K^{-1 / 2}
$$

- Define $\mathcal{T}_{K, K}: \mathbb{X} \rightarrow \mathbb{H} \mathbb{S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)$ by $\mathcal{T}_{K, K} c=\mathcal{V}_{K}^{\prime} \mathcal{D}(c) \mathcal{U}_{K}$
- $\operatorname{rank} \mathcal{T}_{K, K} \leq K^{2}$.
- Show $\left\|\mathcal{T}-\mathcal{T}_{K, K}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \lesssim K^{-1 / 2}$ via triangle inequality.

Step 1: Tensor product approximation of \mathcal{T}

Corollary. For any $\delta>0$ there exists $K \in \mathbb{N}$ with $K \lesssim \delta^{-2}$ such that

$$
\left\|\mathcal{U}-\mathcal{U}_{K}\right\|_{\mathcal{L}(\mathbb{Y}, \mathbb{U})} \leq \delta \quad \text { and } \quad\left\|\mathcal{V}-\mathcal{V}_{K}\right\|_{\mathcal{L}(\mathbb{Z}, \mathbb{V})} \leq \delta
$$

and $\mathcal{T}_{K, K} c=\mathcal{V}_{K}^{\prime} \mathcal{D}(c) \mathcal{U}_{K}$ satisfies

$$
\left\|\mathcal{T}-\mathcal{T}_{K, K}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \lesssim \delta
$$

If $\sigma_{k, \mathcal{U}}, \sigma_{k, \mathcal{V}} \lesssim k^{-\alpha}$ for $\alpha>1 / 2$, then $K \simeq \delta^{-1 / \alpha}$ and $\operatorname{rank}\left(T_{K, K}\right) \lesssim \delta^{-2 / \alpha}$.

[^0]
Step 1: Tensor product approximation of \mathcal{T}

Corollary. For any $\delta>0$ there exists $K \in \mathbb{N}$ with $K \lesssim \delta^{-2}$ such that

$$
\left\|\mathcal{U}-\mathcal{U}_{K}\right\|_{\mathcal{L}(\mathbb{Y}, \mathbb{U})} \leq \delta \quad \text { and } \quad\left\|\mathcal{V}-\mathcal{V}_{K}\right\|_{\mathcal{L}(\mathbb{Z}, \mathbb{V})} \leq \delta
$$

and $\mathcal{T}_{K, K} c=\mathcal{V}_{K}^{\prime} \mathcal{D}(c) \mathcal{U}_{K}$ satisfies

$$
\left\|\mathcal{T}-\mathcal{T}_{K, K}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \lesssim \delta
$$

If $\sigma_{k, \mathcal{U}}, \sigma_{k, \mathcal{V}} \lesssim k^{-\alpha}$ for $\alpha>1 / 2$, then $K \simeq \delta^{-1 / \alpha}$ and $\operatorname{rank}\left(T_{K, K}\right) \lesssim \delta^{-2 / \alpha}$.
Can we do better?

Compare to: [Markel et al: Fast linear inversion for highly overdetermined inverse scattering problems, Inverse Problems, 35 (2019)]

Step 1': Hyperbolic cross approximation of \mathcal{T}

Lemma. Let $\sigma_{k, \mathcal{U}} \lesssim k^{-\beta}$ and $\sigma_{k, \mathcal{V}} \lesssim k^{-\alpha}$ for $\beta>1 / 2$ and $\alpha>\beta+1 / 2$. Then for any $\delta>0$, we can construct $\mathcal{T}_{\widehat{\kappa}}$ with rank $\lesssim \delta^{-1 / \beta}$:

$$
\left\|\mathcal{T}-\mathcal{T}_{\widehat{K}}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \lesssim \delta .
$$

Step 1': Hyperbolic cross approximation of \mathcal{T}

Lemma. Let $\sigma_{k, \mathcal{U}} \lesssim k^{-\beta}$ and $\sigma_{k, \mathcal{V}} \lesssim k^{-\alpha}$ for $\beta>1 / 2$ and $\alpha>\beta+1 / 2$. Then for any $\delta>0$, we can construct $\mathcal{T}_{\widehat{K}}$ with rank $\lesssim \delta^{-1 / \beta}$:

$$
\left\|\mathcal{T}-\mathcal{T}_{\widehat{K}}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \lesssim \delta
$$

Remarks.

(i) $\operatorname{rank} \mathcal{T}_{K, K}=K^{2} \simeq \delta^{-2 / \alpha}$, with $\mathcal{T}_{K, K} c=\mathcal{V}_{K}^{\prime} \mathcal{D}(c) \mathcal{U}_{K}$
(ii) $\operatorname{rank} \mathcal{T}_{\widehat{K}} \lesssim \delta^{-1 /(\alpha-(1 / 2+\epsilon))} \Longrightarrow \operatorname{rank} \mathcal{T}_{K, K}$ is not optimal if $\alpha>1$
(iii) $\mathcal{T}_{\widehat{K}}$ can be realized as a hyperbolic cross approximation of $\mathcal{T}_{K, K}$.

Step 1': Hyperbolic cross approximation of \mathcal{T}

Lemma. Let $\sigma_{k, \mathcal{U}} \lesssim k^{-\beta}$ and $\sigma_{k, \mathcal{V}} \lesssim k^{-\alpha}$ for $\beta>1 / 2$ and $\alpha>\beta+1 / 2$. Then for any $\delta>0$, we can construct $\mathcal{T}_{\widehat{K}}$ with rank $\lesssim \delta^{-1 / \beta}$:

$$
\left\|\mathcal{T}-\mathcal{T}_{\widehat{K}}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \lesssim \delta
$$

Remarks.

(i) $\operatorname{rank} \mathcal{T}_{K, K}=K^{2} \simeq \delta^{-2 / \alpha}$, with $\mathcal{T}_{K, K} c=\mathcal{V}_{K}^{\prime} \mathcal{D}(c) \mathcal{U}_{K}$
(ii) $\operatorname{rank} \mathcal{T}_{\widehat{K}} \lesssim \delta^{-1 /(\alpha-(1 / 2+\epsilon))} \Longrightarrow \operatorname{rank} \mathcal{T}_{K, K}$ is not optimal if $\alpha>1$
(iii) $\mathcal{T}_{\widehat{K}}$ can be realized as a hyperbolic cross approximation of $\mathcal{T}_{K, K}$.

Proof (sketch). Let $\left\{\sigma_{k, *}, a_{k, *}, b_{k, *}\right\}$ denote the singular systems for \mathcal{U} and \mathcal{V}^{\prime}, respectively. The hyperbolic cross approximation

$$
\mathcal{T}_{\widehat{\kappa}}(c)=\sum_{k \geq 1} \sum_{\ell=1}^{L_{k}} \sigma_{\ell, \mathcal{U}} \sigma_{k, \mathcal{V}^{\prime}}\left(\cdot, a_{\ell, \mathcal{U}}\right)_{\mathbb{Y}}\left\langle\mathcal{D}(c) b_{\ell, \mathcal{U}}, a_{k}, \mathcal{V}^{\prime}\right\rangle_{\mathbb{V}^{\prime} \times \mathbb{V}} b_{k, \mathcal{V}^{\prime}}
$$

with the choice $L_{k}=\left\lfloor\widehat{K} / k^{1+\epsilon}\right\rfloor, \widehat{K} \simeq \delta^{-1 / \beta}$, and $\epsilon=(\alpha-\beta-1 / 2) /(2 \beta)>0$ has the required properties.

[^1]
Step 2: Quasi-optimal low-rank approximation via TSVD

Lemma. Let $\delta>0$ and let $\mathcal{T}^{\delta}: \mathbb{X} \rightarrow \mathbb{H} \mathbb{S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)$ be a linear compact operator such that $\left\|\mathcal{T}^{\delta}-\mathcal{T}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \leq C \delta$ for some $C>0$. Let $\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}$ denote the truncated singular value decomposition of \mathcal{T}^{δ} with minimal rank N^{δ} such that

$$
\left\|\mathcal{T}^{\delta}-\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \leq(C+1) \delta
$$

Then $N^{\delta} \leq N^{\text {svd }}$, the rank of the TSVD of \mathcal{T} that yields a δ error, and

$$
\left\|\mathcal{T}-\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)} \leq(2 C+1) \delta
$$

i.e., $\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}$ is a δ-approximation for \mathcal{T} with quasi-optimal rank.

Proof: Step 1. Perturbation of singular values

Claim. (cf [Kato1966]): Let $\left\|\mathcal{T}^{\delta}-\mathcal{T}\right\| \leq C \delta$. For each $k \in \mathbb{N}$ one has

$$
\sigma_{k}-C \delta \leq \sigma_{k}^{\delta} \leq \sigma_{k}+C \delta
$$

where $\left\{\sigma_{k}\right\}$ and $\left\{\sigma_{k}^{\delta}\right\}$ denote the singular values of \mathcal{T} and \mathcal{T}^{δ}, respectively.
Choose $\varepsilon>0$, and let $\mathcal{P}_{M}^{\text {svd }} \mathcal{T}$ denote the TSVD of \mathcal{T} with optimal rank M s.t.

$$
\left\|\mathcal{P}_{M}^{\text {svd }} \mathcal{T}-\mathcal{T}\right\| \leq \varepsilon .
$$

Optimality of M and the non-expansiveness of the projection implies

$$
\begin{aligned}
\sigma_{M+1}^{\delta}=\left\|\left(\mathcal{I}-\mathcal{P}_{M}^{\delta}\right) \mathcal{T}^{\delta}\right\| & \leq\left\|\left(\mathcal{I}-\mathcal{P}_{M}^{\text {svd }}\right) \mathcal{T}^{\delta}\right\| \\
& \leq\left\|\left(\mathcal{I}-\mathcal{P}_{M}^{\text {svd }}\right) \mathcal{T}\right\|+\left\|\left(\mathcal{I}-\mathcal{P}_{M}^{\text {svd }}\right)\left(\mathcal{T}-\mathcal{T}^{\delta}\right)\right\| \leq \varepsilon+C \delta .
\end{aligned}
$$

For $\varepsilon=\sigma_{k+1}$, we have $M=M(\varepsilon)=k$, and we conclude that

$$
\sigma_{k+1}^{\delta} \leq \sigma_{k+1}+C \delta
$$

The second inequality follows by interchanging the roles of \mathcal{T} and \mathcal{T}^{δ}.

Proof: Step 2.

Let N^{δ} be as in the lemma: $\sigma_{N^{\delta}+1}^{\delta} \leq(C+1) \delta<\sigma_{N^{\delta}}^{\delta}$.
Let $N^{\text {svd }}=M(\delta)$ as defined in Step 1: $\sigma_{N^{\text {svd }}+1} \leq \delta$.
The claim implies

$$
\sigma_{N^{\text {svd }}+1}^{\delta} \leq \sigma_{N^{\text {svd }}+1}+C \delta \leq(C+1) \delta
$$

Monotonicity of the singular values: $N^{\delta} \leq N^{\text {svd }}$.
Finally,

$$
\left\|\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}-\mathcal{T}\right\| \leq\left\|\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}-\mathcal{T}^{\delta}\right\|+\left\|\mathcal{T}^{\delta}-\mathcal{T}\right\| \leq(2 C+1) \delta
$$

i.e., $\mathcal{P}_{N^{\delta}}^{\delta} \mathcal{T}^{\delta}$ is a δ-approximation for \mathcal{T} with quasi-optimal rank $N^{\delta} \leq N^{\text {svd }}$.

Fluorescence diffuse optical tomography
Model
Inverse problem
Outline of model reduction approach

Abstract Analysis: Model reduction for $\mathcal{T} c=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}$
Properties of the forward operator
Step 1: Tensor product approximation
Step 2: Quasi-optimal compression

Model reduction in action: Application to FDOT
Truth approximation and implementation
Complexity estimates
Runtimes and ranks

Conclusion

Function space setting

recall: Assumptions of abstract theory: $\mathbb{U}, \mathbb{V}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}$ separable Hilbert spaces,

$$
\mathcal{U} \in \mathbb{H} \mathbb{S}(\mathbb{Y}, \mathbb{U}), \quad \mathcal{V} \in \mathbb{H} \mathbb{S}(\mathbb{Z}, \mathbb{V}), \quad \mathcal{D} \in \mathcal{L}\left(\mathbb{X}, \mathcal{L}\left(\mathbb{U}, \mathbb{V}^{\prime}\right)\right)
$$

Solution operators

$$
\begin{array}{ll}
\mathcal{U}: H^{1}(\partial \Omega) \rightarrow H^{1}(\Omega), & q_{x} \mapsto \mathcal{U} q_{x}:=u_{x} \\
\mathcal{V}: H^{1}(\partial \Omega) \rightarrow H^{1}(\Omega), & q_{m} \mapsto \mathcal{V} q_{m}:=v_{m}
\end{array}
$$

Multiplication operator

$$
\mathcal{D}: L^{2}(\Omega) \rightarrow \mathcal{L}\left(H^{1}(\Omega), H^{1}(\Omega)^{\prime}\right), \quad \mathcal{D}(c) u=c u
$$

Function spaces

$$
\mathbb{U}=\mathbb{V}=H^{1}(\Omega), \mathbb{Y}=\mathbb{Z}=H^{1}(\partial \Omega), \mathbb{X}=L^{2}(\Omega)
$$

Lemma. The operators \mathcal{U} and \mathcal{V} are Hilbert-Schmidt and their singular values decay like $\sigma_{k, \mathcal{U}} \lesssim k^{-3 /(2 d-2)}$ and $\sigma_{k, \mathcal{V}} \lesssim k^{-3 /(2 d-2)}$.

Truth approximation via standard FEM

- T_{h} a quasi-uniform conforming triangulation of the domain Ω
- \mathbb{P}_{1}-Lagrange finite elements: $\mathbb{U}_{h}, \mathbb{V}_{h} \subset H^{1}(\Omega), \mathbb{X}_{h} \subset \mathbb{X} ; \operatorname{dim}=m \approx h^{-d}$
- induced boundary finite elements: $\mathbb{Y}_{h}, \mathbb{Z}_{h} \subset H^{1}(\partial \Omega) ; \operatorname{dim}=k \approx h^{-d+1}$
$\mathrm{U} \in \mathbb{R}^{m \times k}$ discrete counterpart of the operator \mathcal{U} :

$$
\left(K_{x}+M_{x}+R_{x}\right) U=E_{x} Q_{x}
$$

$\mathrm{V} \in \mathbb{R}^{m \times k}$ discrete counterpart of the operator \mathcal{V} :

$$
\left(K_{m}+M_{m}+R_{m}\right) V=E_{m} Q_{m} .
$$

Algebraic form of the truth approximation

$$
\mathrm{T}(\mathrm{c})=\mathrm{V}^{\top} \mathrm{D}(\mathrm{c}) \mathrm{U}
$$

Discrete measurement

$$
\mathrm{M}_{i j}=\left(\mathrm{V}^{\top} \mathrm{D}(\mathrm{c}) \mathrm{U}\right)_{i j}=\mathrm{V}(:, i)^{\top} \mathrm{D}(\mathrm{c}) \mathrm{U}(:, j)
$$

Numerical example: setup

Computational domain and coarse mesh

Dimensions: $m=\operatorname{dim}\left(\mathbb{X}_{h}\right)=\operatorname{dim}\left(\mathbb{U}_{h}\right)=\operatorname{dim}\left(\mathbb{V}_{h}\right)$ and $k=\operatorname{dim}\left(\mathbb{Y}_{h}\right)=\operatorname{dim}\left(\mathbb{Z}_{h}\right)$ discretization error: $d e_{h}=\left\|\mathcal{T}_{h}-\mathcal{T}\right\|_{\mathcal{L}\left(\mathbb{X}, \mathbb{H S}\left(\mathbb{Y}, \mathbb{Z}^{\prime}\right)\right)}$

ref	0	1	2	3	4	5
m	993	3881	15345	61025	243393	927161
k	88	176	352	704	1408	2816
$d e_{h}$	$6.31 \cdot 10^{-4}$	$1.69 \cdot 10^{-4}$	$4.34 \cdot 10^{-5}$	$1.10 \cdot 10^{-5}$	$2.75 \cdot 10^{-6}$	-

Remark. For ref $=5, \mathrm{~T}: \mathbb{R}^{927161} \rightarrow \mathbb{R}^{2816 \times 2816}$; storage 56TB of memory; one single evaluation of $\mathrm{T}(\mathrm{c})$ require approximately 7 T flops.

Memory and operation cost

Offline

- Compression of $\mathrm{U}, \mathrm{V} \in \mathbb{R}^{m \times k}$: mem $O(k m)$, ops $O\left(k^{2} m+k^{3}\right)$ These steps are at most as expensive as one application of T .
- Compression: mem $O(\mathrm{Km})$
- tensor product TKK: ops $O\left(\mathrm{~K}^{2} m\right)$
- hyperbolic cross TK: ops $O(m \mathrm{~K} \ln \mathrm{~K})$
- Recompression to obtain TN with quasi-optimal rank N
- of tensor product: ops $O\left(m K^{4}+K^{6}\right)$
- of hyperbolic cross: ops $O\left(m(\mathrm{~K} \ln \mathrm{~K})^{2}+(\mathrm{K} \ln \mathrm{K})^{4}\right)$

Use hyperbolic cross approximation TK to compute TN.
Online (inverse problem)

- Data compression: mem $O(\mathrm{~K} k)$, ops $O\left(\mathrm{~K}^{2} k+\mathrm{K} k^{2}\right)$
- Analysis: depends on N only (cheap!)
- Synthesis: mem $O(m \mathrm{~N})$, ops $O(m \mathrm{~N})$

Truncation ranks N and timings for SVD

of T (full operator), TKK (tensor product approx.) and TK (hyperbolic cross approx.)

refinements	0	1	2	3	4	5
svd(T) in sec	6.46	28.23	284.33	-	-	-
N(T)	231	303	473	-	-	-
svd(TKK) in sec	6.45	15.05	48.40	248.42	994.66	-
N(TKK)	231	276	296	310	314	-
setup of TK, TKTKt in sec	0.01	0.013	1.38	6.31	30.48	140.32
rank(TK)	403	933	1725	1867	1905	1917
svd(TK) in sec	0.08	0.87	2.57	3.51	3.87	4.03
N(TK)	166	266	391	396	401	403

Timings and error $\left\|c_{\alpha}^{\delta}-c^{\dagger}\right\|$ for solving the inverse problem

Full operator (T) and tensor product approximation (TKK)

refinements	0	1	2	3	4	5
time(T) in sec	1.24	13.91	320.73	-	-	-
time(TKK) in sec	1.22	10.07	65.02	382.76	-	-

Reduced order model

ref	0	1	2	3	4	5
data compression	0.001	0.005	0.028	0.114	0.457	1.831
regularized normal equations	0.002	0.001	0.002	0.003	0.003	0.003
synthesis	0.001	0.001	0.004	0.015	0.061	0.107
reconstruction error	0.112	0.108	0.107	0.107	0.107	0.107

Fluorescence diffuse optical tomography
Model
Inverse problem
Outline of model reduction approach

Abstract Analysis: Model reduction for $\mathcal{T} c=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}$
Properties of the forward operator
Step 1: Tensor product approximation
Step 2: Quasi-optimal compression

Model reduction in action: Application to FDOT

Truth approximation and implementation
Complexity estimates
Runtimes and ranks

Conclusion

Conclusion and final remarks

- Derived a systematic way to obtain a certified reduced order model of quasi-optimal rank for linear operators of the form $\mathcal{T} c=\mathcal{V}^{\prime} \mathcal{D}(c) \mathcal{U}$
- Advantages:
- Fast setup time (cost = one single evaluation of forward operator)
- Partial compression during recording (access to full data is never required)
- Problems with a similar structure $\mathcal{T}=\mathcal{V}^{\prime} \mathcal{D}(\cdot) \mathcal{U}$:
- Inverse scattering [Colton \& Kress, Grinberg \& Kirsch, Somersalo et al 1992]
- Aeroacoustic source problems [Hohage et al 2020]
- Compression of \mathcal{U} and \mathcal{V} is related to
- optimal sources and detectors [Herrmann et al 2009, Krebs et al 2009, van den Doel 2012, Roosta-Khorasani et al 2014]
- optimal experimental design [Pukelsheim 2006]

[^2]
[^0]: Compare to: [Markel et al: Fast linear inversion for highly overdetermined inverse scattering problems, Inverse Problems, 35 (2019)]

[^1]: cf. [Dung et al: Hyperbolic cross approximation, Birkhäuser/Springer, Cham, 2018.]

[^2]: [J. Dölz, H. Egger, M. Schlottbom: A model reduction approach for inverse problems with operator valued data https://arxiv.org/abs/2004.11827)]

