
ar
X

iv
:s

ub
m

it/
51

36
42

0 
 [

m
at

h.
ST

] 
 2

6 
Se

p 
20

23

Hebbian learning inspired estimation of the linear regression

parameters from queries

Johannes Schmidt-Hieber∗ and Wouter M. Koolen†

September 26, 2023

Abstract

Local learning rules in biological neural networks (BNNs) are commonly referred to as

Hebbian learning. [26] links a biologically motivated Hebbian learning rule to a specific

zeroth-order optimization method. In this work, we study a variation of this Hebbian

learning rule to recover the regression vector in the linear regression model. Zeroth-order

optimization methods are known to converge with suboptimal rate for large parameter

dimension compared to first-order methods like gradient descent, and are therefore thought

to be in general inferior. By establishing upper and lower bounds, we show, however, that

such methods achieve near-optimal rates if only queries of the linear regression loss are

available. Moreover, we prove that this Hebbian learning rule can achieve considerably

faster rates than any non-adaptive method that selects the queries independently of the

data.

Keywords: Biological neural networks, derivative-free methods, linear regression model, min-

imax estimation, sequential estimation, zeroth-order optimization.

MSC 2020: Primary: 62L20; secondary: 62J05

1 Introduction

While considerable efforts have been dedicated to develop the theoretical foundations underlying

artificial neural networks (ANNs), a theory for learning in biological neural networks (BNNs)

remains largely unexplored.

ANNs were designed to mimic BNNs but there are distinct differences in terms of the network

structure and the learning. ANNs are deterministic and pass real numbers through the network

whereas BNNs are stochastic and biological neurons send so-called spike trains. The information

in BNNs is decoded in the spike times, the moments when the neurons fire/discharge. The

brain updates the weights locally based on the state of the neurons that it connects. There
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are various quantitative and qualitative updating rules and they are commonly referred to as

Hebbian learning. Specifically, spike-time dependent plasticity rules are Hebbian learning rules

based on local spike times. It has been widely acknowledged in previous work that Hebbian

learning in BNNs cannot perform gradient descent [10, 20, 29]. The rationale behind is that

updating one parameter in a gradient descent scheme requires to evaluate a partial derivative

that depends on the other parameters. This cannot be implemented by a local learning rule.

The recent work [26] derives a specific derivative-free optimization method that captures key

characteristics of the spike time dependent plasticity rule underlying Hebbian learning in BNNs.

For mathematical tractability, we consider here a slight variation of this scheme.

We study this iterative scheme in a scenario where instead of the full data, one can only query

the linear regression model, see Section 2.2 for a definition and discussion. Based on k rounds of

querying, the aim of the method is to recover the d-dimensional regression vector. Estimation

in this setting is non-trivial. In particular, the data are not informative enough to compute

gradients and run gradient descent. A first contribution of this article is to derive a bound

for the convergence rate of the biologically inspired gradient-free learning rule in the query

model. It is moreover shown that up to a log-factor in the number of parameters d, the derived

convergence rates matches the lower bound for sample sizes k & d2 log(d). The derived minimax

lower bound is non-standard. The main obstacle is that sequential estimation procedures with

queries depending on previous observations induces dependence among the data. As we do not

constraint the queries, the induced dependence on the future data is hard to characterize and

to control. Compared to the earlier lower bounds for adaptive sensing [2] and derivative-free

stochastic optimization [27, 12], the main difficulty here is that the dependence on previous

queries and the parameter appears not in the mean but in the variance of the data distribution.

Any method achieving the optimal rate in the linear model with queries needs to carefully exploit

the information obtained from previous queries. Indeed, we show that naive methods that specify

the queries independently of the data will converge with a slower rate in the dimension parameter

d, see Corollary 1 for the precise statement. This should be contrasted with adaptive sensing

where it is known that the adaptation to previously seen data can improve the rate by, at most,

a log-factor [2].

The article is structured as follows. Section 2 provides more details on biological learning and the

link with gradient-free optimization. After formally stating the query model, the convergence

rates are given. A corresponding lower bound is stated in Section 3. Section 4 derives matching

upper and lower bounds for the convergence rate in the case of non-adaptive queries. This

enables us to quantify the gain in the convergence rate by integrating previously observed query

values into the query strategy. Related literature is summarized in Section 5. Proofs are deferred

to the Appendix.

Notation: For vectors the spectral norm coincides with the Euclidean norm, see Lemma 4.

Therefore, we can denote both norms by ‖ · ‖. Matrix inequalities are taken with respective to

the partial ordering of symmetric matrices (Loewner order).
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2 Upper bounds

2.1 Hebbian learning inspired update rule

Working in the supervised learning framework, suppose we want to learn a d-dimensional param-

eter vector θ from training data (X1, Y1), (X2, Y2), . . . , with d-dimensional design vectors/inputs

X1,X2, . . . and real-valued response variables Y1, Y2, . . . For our approach, it is sufficient to as-

sume that the number of parameters and the number of covariates are the same, that is, θ and

X1,X2, . . . are all vectors of length d.

Whereas gradient descent based methods are ubiquitous in machine learning, BNNs rely on local

updating rules and receive feedback through neurotransmitters such as dopamine. Anticipating

to solve a task well reduces the amount of released neurotransmitter in the brain. In reward-

based synaptic plasticity, the amount of released neurotransmitter is modelled as the difference

between a realized loss based on the current task and the anticipated loss that predicts the

current loss based on previously seen losses [14].

Zeroth-order optimization methods are derivative-free methods that use the evaluation of the

loss but do not involve the gradient of the loss. Since weight updates in BNNs are based on

evaluations of the loss, it seems natural to interpret the learning in BNNs as a specific zeroth-

order method. [26] extracts from the spike-time dependent local updating of the weights in a

BNN a global zeroth-order rule for learning the parameter vector θ. If θk denotes the k-th

update, L(θ,Xk, Yk) is the loss for parameter θ on the k-th training sample (Xk, Yk), Lk is the

anticipated loss in the k-th round based on previously seen losses, and Uk is a d-dimensional

uniform random vector Unif([A−, A]d), the biologically inspired update formula is

θk = θk−1 + αk

(
L(θk−1 +Uk,Xk, Yk)− Lk

)(
e−Uk − eUk

)
. (1)

The expressions e±Uk have to be understood componentwise, that is, if Uk = (Uk1, . . . , Ukd)
⊺,

then eUk = (eUk1 , . . . , eUkd)⊺ and e−Uk = (e−Uk1 , . . . , e−Ukd)⊺. The parameter A in the uni-

form distribution is a constant of the biological network but treated here as a hyperparam-

eter of the optimization method. There is little guidance from the neuroscience on how to

choose the anticipated loss Lk. In [26] the Lk was taken as the loss from the previous round

L(θk−2+Uk−1,Xk−1, Yk−1). For mathematical tractability, we assign instead the value L(θk−1+

U′
k,Xk, Yk) to Lk, for an independently sampled and uniformly distributed random vector

U′
k ∼ Unif([−A,A]d). Thus, we will study in this work convergence of the zeroth-order method

θk = θk−1 + αk

(
L(θk−1 +Uk,Xk, Yk)− L(θk−1 +U′

k,Xk, Yk)
)(
e−Uk − eUk

)
, k = 1, . . . (2)

Theorem 1 in [26] shows that in expectation, this rule does approximately gradient descent.

Working here with a slightly different anticipated loss does not change this result. Indeed, since

Uk is independent of all other randomness and E[e−Uk − eUk ] = 0, conditioning on everything

except for Uk gives

E

[
L(θk−1 +U′

k,Xk, Yk)
(
e−Uk − eUk

)]
= E

[
L(θk−1 +U′

k,Xk, Yk)E
[
e−Uk − eUk

]]
= 0.
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Thus, as in the original version, the anticipated loss vanishes in expectation and Theorem 1 in

[26] holds without any changes. While the connection to gradient descent is appealing, the main

obstacle for fast convergence of zeroth-order methods is the high variance.

2.2 The query model

A natural first step of a statistical analysis of biologically inspired learning is to study the

properties of the zeroth-order update rule (2) for standard statistical models. The overall aim

is to identify relevant models where this rule achieves the optimal convergence rates and/or

outperforms other standard methods.

A fundamental problem in statistics and machine learning is the case where we want to learn a

regression/feature vector θ⋆ such that for an independent draw (X, Y ) with the same distribution

as the (training) data (Xk, Yk), we have Y ≈ X⊺θ⋆. Considering squared loss

L(θ,X, Y ) =
(
Y −X⊺θ

)2
,

the update formula (2) can then be rewritten as

θk = θk−1 + αk

((
Yk −X

⊺

k(θk−1 +Uk)
)2 −

(
Yk −X

⊺

k(θk−1 +U′
k)
)2) (

e−Uk − eUk
)
. (3)

Interestingly, this formula does not require full knowledge of the covariate vector Xk and can

be computed from queries. Here a query is defined as follows. Based on earlier seen queried

observations and possibly extra randomness, the statistician chooses in the k-th round a query

vector vk. Instead of the full k-th training sample (Xk, Yk), one can only observe

Zk = Yk −X
⊺

kvk.

To realize (3), one needs to query each (Xk, Yk) twice. This means that in the k-th round, we

choose two query vectors vk,v
′
k based on previously seen query values and extra randomness.

As observations, we get

Zk = Yk −X
⊺

kvk, and Z ′
k = Yk −X

⊺

kv
′
k. (4)

To see that this observational scheme is indeed enough to compute the updates (3), we can argue

by induction, assuming that the initialization θ0 has been chosen independently of the data.

The induction assumption is then, that θk only depends on the queries (Z1, Z
′
1, . . . , Zk, Z

′
k) and

exogenous randomness. Then, vk+1 = θk+Uk and v′
k+1 = θk+U′

k are admissible query vectors

with corresponding queries Zk+1 = Yk+1−X
⊺

k+1(θk+Uk+1) and Z ′
k+1 = Yk+1−X

⊺

k+1(θk+U′
k+1).

The update formula implies that θk+1 only depends on the queries (Z1, Z
′
1, . . . , Zk+1, Z

′
k+1) and

exogenous randomness, completing the induction step.

Queries can be thought of as an attention mechanism that tell us where to look next to extract

useful information about the data. A query model seems appropriate if the full input vector

cannot be processed because, for instance, the data arrive too quickly. The information from

the queries is insufficient to compute gradients. Hence, gradient descent methods cannot be run

in this case.
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There is a wide variety of previously considered query models in the statistical literature. Ex-

amples are querying large graphs to avoid storage problems [21] or learning causal relationships

from path queries [7].

To finish the description of the model, we have to specify the distribution of the latent/unobserved

variables (X1, Y1), (X2, Y2), . . . We assume that those are i.i.d. and generated from the linear

regression model with random design, that is, X1,X2, . . . are drawn i.i.d. from some unknown

distribution PX and the response variables are

Yi = X
⊺

i θ
⋆ + εi, for i = 1, . . . (5)

for i.i.d. noise variables εi ∼ N (0, σ2) that are also independent of the covariates X1, . . . We

assume that σ > 0 is known.

Let (X, Y ) be a new and independent sample with the same distribution as the training samples.

Write

Q := E[XX⊺]

for the (uncentered) covariance matrix of the design vectors. Consider a possibly randomized

estimator θ̂. By construction, θ̂ is independent of a test point (X, Y ). Rewriting Y − X⊺θ̂ =

(Y −X⊺θ⋆) +X⊺(θ̂ − θ⋆), conditioning on θ̂ and using tower rule, the excess risk of θ̂ is

E

[
(Y −X⊺θ̂)2 − (Y −X⊺θ⋆)2

]
= E

[
2(Y −X⊺θ⋆)X⊺(θ̂ − θ⋆) + (θ̂ − θ⋆)⊺XX⊺(θ̂ − θ⋆)

]

= E

[
(θ̂ − θ⋆)⊺Q(θ̂ − θ⋆)

]

= tr(QS) (6)

with S := E
[(
θ̂ − θ⋆

)(
θ̂ − θ⋆

)⊺]
.

[9] relates gradient descent with dropout to a vector autoregressive (VAR) process with ran-

dom coefficients [24]. A similar argument can be made here. Defining Wk := θk − θ⋆,

Gk := I − 2αk

(
e−Uk − eUk

)(
U′

k − Uk

)⊺
XkX

⊺

k and ξk := 2αkεkX
⊺

k(U
′
k − Uk)

(
e−Uk − eUk

)
+

αk

(
(X⊺

kUk)
2 − (X⊺

kU
′
k)

2
) (

e−Uk − eUk
)
, the update formula can be written in the form of a lag

one VAR process

Wk = GkWk−1 + ξk, (7)

with independent random coefficients Gk and independent noise/innovation variables ξk. It can

be checked that the noise is centered, that is,

E[ξk] = 0. (8)

A proof of this fact and a derivation of (7) can be found in Appendix A. As we can tune the

learning rate αk and consider the parameter A from the uniform distribution as hyperparameter,

it is interesting to work out the scaling of the different terms in these parameters. For small A,

e−Uk − eUk ≈ −2Uk which is of order A. This means that the term 2αk

(
e−Uk − eUk

)(
U′

k −
Uk

)⊺
XkX

⊺

k in the definition of Gk will be of order αkA
2. The same is true for the first term of

ξk while the second term of ξk scales like O(αkA
3). This suggests to define

effective learning rate := αkA
2. (9)
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This quantity will remain constant if A is decreased by a factor γ < 1, and, concurrently, αk is

increased by a factor γ−2. Thus by making γ and thus A small, the term of the order O(αkA
3)

becomes negligible. While the considered optimization scheme is motivated by Hebbian learning

with A a small constant, treating A as a hyperparameter also suggests to choose a small A.

The updates (3) are independent of Q = E[XX⊺]. As common in the literature on gradient

descent, the chosen learning rate will, however, depend on the smallest eigenvalue of Q.

Applying (6) to the estimator θk, we need to control

Sk := E[(θk − θ⋆)(θk − θ⋆)⊺] = E[WkW
⊺

k].

We can relate this to the previous iterate viaWkW
⊺

k = GkWk−1W
⊺

k−1Gk+ξkξ
⊺

k+GkWk−1ξ
⊺

k+

ξkW
⊺

k−1Gk. Based on this identity, we will now derive a recursive formula for Sk. Assume that

U,U′ ∼ Unif[−A,A]d are independent and also independent of X. Set D = e−U − eU and let x

be a fixed d-dimensional vector. The following two matrices characterize the interaction between

the d-dimensional noise vectors (U,U′),

V (x) := E
[
x⊺(U′ −U)DD⊺(U′ −U)⊺x

]

W := E
[ (

(X⊺U)2 − (X⊺U′)2
)2

DD⊺
]
.

(10)

Lemma 1. (i) the interaction terms GkWk−1ξ
⊺

k and ξkW
⊺

k−1Gk have mean zero,

(ii) Cov(ξk) = E[ξkξ
⊺

k ] = 4α2
kσ

2
E [V (X)] + α2

kW,

(iii) if µ := −E[U(e−U − eU )] with U ∼ Unif([−A,A]), then,

Sk =
(
I − 2αkµQ

)
Sk−1

(
I − 2αkµQ

)
+ 4α2

k

{
E [X⊺Sk−1XV (X)]− µ2QSk−1Q

}

+ 4α2
kσ

2
E [V (X)] + α2

kW.

and moreover,

Sk ≤ ‖Sk−1‖
(
I − 4αkµQ+ 4α2

k E
[
‖X‖2V (X)

] )
+ 4α2

kσ
2
E [V (X)] + α2

kW. (11)

In summary, Sk is an affine function in Sk−1.

As discussed before, the last term α2
kW can be made negligible by choosing a sufficiently small pa-

rameter A in the uniform distribution. The term µ is O(A2) and, under moment assumptions on

X, the respective order of the terms ‖E [V (X)] ‖ and ‖E
[
‖X‖2V (X)

]
‖ is O(A4d) and O(A4d2).

To decrease the norm of the error matrix Sk in (11), the factor I − 4αkµQ+4α2
k E
[
‖X‖2V (X)

]

has to remain below the identity matrix. This implies that αkA
2Q & α2

kA
4d2I and motivates

to choose the effective learning rate αkA
2 in (9) to be bounded by . λmin(Q)/d2. Compared to

standard choices such as 1/k, the learning rate in the beginning is thus small and learning makes

little progress.

If k & d2, effective learning rate 1/k is possible by choosing αkA
2 ≍ 1/(k∨λmin(Q)d2). The rate

is then determined by the contributions 4α2
kσ

2‖E [V (X)] ‖ = O(σ2d/k2). The 1/k2 becomes a

1/k as the contributions from the previous O(k) iterates add up. Up to a log2(d)-factor, this

explains the convergence rate stated in (13) below.
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To simplify the exposition, we work now with specific choices for the parameter A in the uniform

distribution and the learning rate αk. The expressions also depend on the variance of the noise σ2

in the linear regression model, which is assumed to be known. To obtain a convenient expressions

for the upper bound, we moreover introduce

Mk := max
i=1,...,d

1 ∨ E
[
Xk

i

]
,

where Xi denotes the i-th component of X.

Theorem 1. Assume d ≥ 9. Let A = σ/
√
d, and choose the learning rate

αk =
11B log(d)

A2λmin(Q)(Bk + d2 log(d))
with B := 1 ∧ λmin(Q)2

2904M4
. (12)

Then there exists a constant C = C(M4, λmin(Q)), such that for all k > 2d2 log(d)/B, we have

∥∥E[(θk − θ⋆)(θk − θ⋆)⊺]
∥∥ ≤

(2d2 log(d)
Bk

)log(d)
‖S0‖+ C

σ2d log2(d)

k
. (13)

If moreover tr(Q) ≤ d, the excess risk (6) is bounded by

E [(θk − θ⋆)⊺Q(θk − θ⋆)] ≤ d
(2d2 log(d)

Bk

)log(d)
‖S0‖+ C

σ2d2 log2(d)

k
.

Assuming tr(Q) ≤ d is natural and includes in particular the case that Q = E[XX⊺] is the

identity matrix.

Initializing θ0 = 0 with the zero vector, we have S0 = θ⋆(θ⋆)⊺ and with Lemma 4, ‖S0‖ = ‖θ⋆‖2.

The rate consists of two terms. For any κ > 0, d > eκ, and k ≥ 2eγ+3κd2 log(d)/B, we have

(2d2 log(d)
Bk

)log(d)
.

1

dγkκ
. (14)

A proof of this inequality is given in Appendix A.4. The inequality states that for sufficiently

large k & d2 log(d), the first term is negligible and the rate is σ2d2 log2(d)/k. This rate is slower

than the usual rate σ2d/k if the full data are observed in the linear regression model. The log2(d)

factor seems to be an artifact of the proof and we will later derive nearly-matching lower bounds.

Why do we loose a factor d due to querying? It is tempting to assume that observed random

variables from the query model and the linear regression model are equally informative. Then one

can link the additional factor d for the query model to the loss of information in the data: While

in the linear regression model we observe in every round a d-dimensional covariate vector Xk

together with a real-valued response Yk, the query model observes in each round two real-valued

queries. The total number of observed random variables in the query model is thus decreased by

an order O(d). Differently speaking the query model needs O(d) more iterations to receive the

same number of observed variables. The concepts in [28] might be suitable to formalize such an

argument.

The result is similar in spirit to the bounds obtained in [8] for another biologically motivated

learning rule called (weight-perturbed) forward gradient descent [6, 25]. For a sequence of i.i.d.

7



random vectors ζ1, ζ2, . . .N (0, Id), forward gradient descent with learning rate α′
k is given by

the update rule

θk = θk−1 − α′
k

(
∇L(θk−1)

)⊺
ζkζk, k = 1, 2, . . .

The similarity is best explained for squared loss L. In this case, ∇L(θ) = −2
(
Yk −X

⊺

kθ
)
Xk. If

instead of an independent draw, we set U′
k := −Uk, then the optimization scheme (3) becomes

θk = θk−1 + αk

((
Yk −X

⊺

k(θk−1 +Uk)
)2 −

(
Yk −X

⊺

k(θk−1 −Uk)
)2) (

e−Uk − eUk
)

= θk−1 + 2αk∇L(θk−1)
⊺Uk

(
eUk − e−Uk

)
.

For small A, eUk − e−Uk ≈ 2Uk, which means that θk ≈ θk−1 +4αk∇L(θk−1)
⊺UkUk. Whereas

forward gradient descent has been proposed for normally distributed ζk, the gradient-free op-

timization scheme here is closely related to the case where these vectors are sampled from a

uniform distribution. The choice U′
k := −Uk leads to less remainder terms in the analysis and

less additional noise, but we find this choice less appealing to model Hebbian learning in the

brain.

3 Lower bound for adaptive queries

We now derive nearly-matching lower bounds. To make the lower bound rigorous, we need to

formalize the query model. The observed data consists of 2k query vectors v1,v
′
1, . . . ,vk,v

′
k and

a random vector (Z1, Z
′
1, . . . , Zk, Z

′
k) of length 2k.

The unobserved/latent i.i.d. pairs (Xℓ, Yℓ), ℓ = 1, . . . , k are generated from the linear regression

model (5). For the lower bounds we will moreover assume that the design distribution PX is

N (0, Id) with Id the d× d identity matrix. This implies that Q = E[XX⊺] = Id.

Let (Gℓ)ℓ≥0 be a filtration generated by exogenous randomness. We assume that for any ℓ =

1, 2, . . . , the query vectors vℓ,v
′
ℓ are measurable with respect to the σ-algebra

Fℓ−1 := σ
(
Z1, Z

′
1, . . . , Zℓ−1, Z

′
ℓ−1,v1,v

′
1, . . . ,vℓ−1,v

′
ℓ−1

)
× Gℓ−1.

This means that the query vectors might depend on past queries, past query vectors and exoge-

nous randomness. Given vℓ,v
′
ℓ, we observe in the ℓ-th step the queries (Zℓ, Z

′
ℓ) with

Zℓ = Yℓ −X
⊺

ℓvℓ, Z ′
ℓ = Yℓ −X

⊺

ℓv
′
ℓ. (15)

Finally, an estimator θ̂k is any measurable function in Fk. This means that an estimator is allowed

to depend on all observed queries, all observed query vectors and the exogenous randomness.

To allow for two queries instead of one makes the lower bounds considerable more involved as Zℓ

and Z ′
ℓ are dependent by virtue of sharing Xℓ, Yℓ. One query is, however, not enough to realize

the zeroth-order scheme (3).

Before stating the lower bounds, we derive an equivalent representation of this model. Two

statistical models (Pθ : θ ∈ Θ) and (Qθ : θ ∈ Θ) with the same parameter space Θ are

equivalent if there exist Markov kernels M,M ′ that are independent of unknown parameters

such that Qθ = MPθ and Pθ = M ′Qθ for all θ ∈ Θ.

8



Lemma 2. Consider the query model {Z1, Z
′
1, . . . , Zk, Z

′
k,v1,v

′
1, . . . ,vk,v

′
k} with (15) replaced

by

Zℓ = Yℓ −X
⊺

ℓvℓ, Z ′
ℓ = X

⊺

ℓv
′
ℓ, ℓ = 1, 2, . . . (16)

Both models are statistically equivalent.

For the lower bounds we will work in the transformed query model (16). If we choose the query

vector v′
ℓ = 0, then Z ′

ℓ = 0 and this is as informative as only querying the model once.

For the model with queries (16), we have

(
Zℓ

Z ′
ℓ

)∣∣∣∣vℓ,v
′
ℓ ∼ N

((
0

0

)
,

(
σ2 + ‖θ − vℓ‖2 〈θ − vℓ,v

′
ℓ〉

〈θ − vℓ,v
′
ℓ〉 ‖v′

ℓ‖2

))
. (17)

using that, we also assumed Xk ∼ N (0, I) and thus Q = Id.

The choice of the query vectors up to round k, will be called the query strategy (up to round k)

and is denoted by Vk. It is important to recall that the query strategy cannot depend on θ as it

is unknown.

The data distribution of (Z1, Z
′
1, . . . , Zk, Z

′
k,v1,v

′
1, . . . ,vk,v

′
k) will be denoted by Pθ,Vk

and

depends on the underlying parameter θ and the query strategy Vk. Since the choice of the query

strategy Vk is part of the estimation procedure, the right notion of the minimax estimation risk

is

inf
θ̂, Vk

sup
θ∈Θ

Eθ,Vk

[
‖θ̂ − θ‖2

]
,

where the infimum is taken over all query strategies and all estimators. The parameter space Θ

will be chosen as the Euclidean ball with radius R, that is,

BR(0) := {θ : ‖θ‖ ≤ R}.

Theorem 2. If d ≥ 3 and k ≥ d2, then,

inf
θ̂, Vk

sup
θ∈BR(0)

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ 1

162

(
1− 1√

2

)(
R2 ∧ d2

k
σ2

)
.

The statement assumes that k ≥ d2. A similar condition (k > 2d2 log(d)/B) appears also in the

corresponding upper bound in Theorem 1.

Interestingly, the rate does not depend on the radius R for large k. This indicates that the

statistical main difficulty is to recover the direction of the true regression vector.

The same upper and lower bounds hold if instead of (4), we observe the squared queries

(Z2
1 , (Z

′
1)

2, . . . , Z2
k , (Z

′
k)

2). Indeed the squares are sufficient to implement the biologically inspired

updating rule (3). Since (Z2
1 , (Z

′
1)

2, . . . , Z2
k , (Z

′
k)

2) is at most as informative as (Z1, Z
′
1, . . . , Zk, Z

′
k),

the lower bounds remain true.

9



4 Minimax risk for nonadaptive queries

What is the advantage to use previous information to select the next query vector? To answer

this, we now consider query vectors v1, . . . ,vk that are chosen before the data are revealed.

Denote by Mk the space of all such query strategies. For convenience, we will moreover assume

throughout this section that the design distribution is standard multivariate normal, this means

that

X1,X2, . . . ∼ PX = N (0, Id), i.i.d. (18)

We show in this section that the minimax estimation risk with non-adaptive query strategies in

Mk and parameter space Θ the Euclidean ball BR(0) is

inf
θ̂, Vk∈Mk

sup
θ∈BR(0)

Eθ,Vk

[
‖θ̂ − θ‖2

]
≍ R2 ∧ d2

k
(R ∨ σ)2. (19)

For the upper bound we construct the following estimator. If k ≤ 2d2((σ2/R2) ∨ 1), take θ̂ = 0.

If k > 2d2((σ2/R2) ∨ 1), we have d(k/(2d) + 1) = k/2 + d ≤ k and can therefore partition the

index set {1, . . . , k} into d blocks B1, . . . ,Bd such that each block has cardinality ≥ k/(2d). Set

vj = (R ∨ σ)es if j ∈ Bs with es the s-th standard basis vector. Thanks to (18), the data are

then given by

Zj ∼ N
(
0, σ2 + ‖θ − (R ∨ σ)es‖2

)
= N

(
0, σ2 + ‖θ‖2 − 2(R ∨ σ)θs + (R ∨ σ)2

)
, if j ∈ Bs

and the estimator for the s-th component of θ is in this case

θ̂s :=
σ2 + ‖θ‖2 + (R ∨ σ)2 − |Bs|−1

∑
r∈Bs

Z2
r

2(R ∨ σ)
, for s = 1, . . . , d, (20)

with |Bs| the cardinality of the set Bs. Whenever r ∈ Bs, we have E[Z2
r ] = σ2 + ‖θ‖2 − 2(R ∨

σ)θs + (R ∨ σ)2, implying that

θ̂ = (θ̂1, . . . , θ̂d)

is an unbiased estimator for θ.

Theorem 3. Assume (18). For the estimator θ̂ defined componentwise in (20), we have

sup
θ∈BR(0)

Eθ,Vk

[∥∥θ̂ − θ
∥∥2] ≤ 25

(
R2 ∧ d2

k
(R ∨ σ)2

)
.

The estimator uses knowledge of R and σ2. If these quantities are unknown, estimation seems

unequal harder, in particular if R is small.

The query vectors vj can be thought of as test functions or features for θ. In the construction

of the estimator, they have norm ‖vj‖ = (R ∨ σ). Interestingly, if σ > R, the norm exceeds R

and the vj are themselves not in the parameter space Θ = BR(0).

Proof. For k ≤ 2d2((σ2/R2) ∨ 1), θ̂ = 0 and the result follows since ‖θ̂ − θ‖2 = ‖θ‖2 ≤ R2.

10



It remains to show that for k > 2d2((σ2/R2) ∨ 1), the rate is bounded by 25 d2

k (R ∨ σ)2. The

bias-variance decomposition yields

Eθ,Vk

[∥∥θ̂ − θ
∥∥2] =

d∑

s=1

Eθ,Vk

[(
θ̂s − θs

)2]
=

d∑

s=1

Bias2θ,Vk

(
θ̂s

)
+

d∑

s=1

Varθ,Vk

(
θ̂s

)
.

As we have already shown that θ̂ is unbiased, it remains to bound the variances. For ξ ∼ N (0, a2),

we have Var(ξ2) = E[ξ4]−E
2[ξ2] = 3a4− a2 = 2a2. Using the definition of the estimator in (20),

the independence of Z1, . . . , Zk, that ‖θ‖2 ≤ R2, that σ2 + ‖θ‖2 − 2Rθs +R2 ≤ 5(R ∨ σ)2, and

that by construction of the blocks |Bs| ≥ k/(2d), we obtain for any j ∈ Bs,

Varθ,Vk

(
θ̂s

)
=

Var(Z2
j )

(2(R ∨ σ))2|Bs|
=

2(σ2 + ‖θ‖2 − 2Rθs +R2)2

4(R ∨ σ)2|Bs|
≤ 50(R ∨ σ)4

4(R ∨ σ)2|Bs|
≤ 25d

k
(R ∨ σ)2.

Summing over s = 1, . . . , d gives another factor d and thus the claim follows.

We now state the corresponding lower bound.

Theorem 4. Assume (18). If d ≥ 6, then for any k = 1, 2, . . .

inf
θ̂, Vk∈Mk

sup
θ∈BR(0)

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ 2−18

(
R2 ∧ d2

k
(R ∨ σ)2

)
.

Together with Theorem 3, this shows (19). While in the adaptive setting, we had to impose the

restriction k & d2 log(d) for the upper bound and k ≥ d2 for the lower bound, the derived rate

in the non-adaptive setting holds for all sample sizes k.

Compared to the adaptive case, proving the lower bound in the non-adaptive case is considerably

more involved. Reasons are that in this case, one additional regime occurs in the rate. To deal

with this regime requires to show that whatever the choice of the query vectors is, one can find

a regression vector θ⋆ in the parameter space that is far away. The fact that we allow for two

queries per sample (Xℓ, Yℓ) makes that ‘far away’ has to be interpreted with respect to some

tube that is generated by the pair of query vectors (vℓ,v
′
ℓ).

We believe that the constant 2−18 in the lower bound can be improved significantly at the

expense of a more technical proof.

The upper bound only needs one query per iteration and the lower bound is derived for two

queries per iteration. This already proves that if we can only query once in every iteration, the

minimax rate remains the same.

Based on the derived lower bound, we can now quantify the gap between adaptive and non-

adaptive design. A natural setting is to allow that all parameters are of order one. This means

that ‖θ‖2 =∑d
j=1 θ

2
j is of order O(d) and motivates to choose R =

√
d.

Corollary 1. Assume (18). If σ = 1, Q = I, θ0 = 0, and R =
√
d, then for all k ≥

2e5d2 log(d)/B (with B the constant in (12) ) and d ≥ 8, the upper for the adaptive design

yields the convergence rate

d2 log2(d)

k

11



while the minimax rate for the non-adaptive design is

d3

k
.

The result implies that constructing queries based on previously seen data improves the rate

by a factor d−1 (up to logarithms). The improvement will become even more pronounced if

R increases. Indeed, the upper bound in the adaptive query setting will remain d2 log2(d)/k,

while the minimax rate for the non-adaptive query setting becomes d2R2/k. We do not have

a convincing heuristic argument explaining the gap in the rates. However, it is clear that the

adaptive query setting can learn over time about the direction of the true θ∗, whereas in the

non-adaptive query setting one has to spread out the query vectors equally over all possible

directions. This is also clearly visible in the construction of the estimator in (20).

For the related problem of adaptive sensing, it has been found in [2] that adaptation improves

the rate by at most log-factors. In this setting there are no queries and one can choose in the i-th

iteration a design vectorXi based on past observations and will then observe Yi = X
⊺

i θ
⋆+εi with

independent εi ∼ N (0, σ2). If s is the number of non-zero components of θ⋆, it is shown that the

risk E[‖θ̂k − θ⋆‖2] of any estimator θ̂ based on k measurements is lower bounded by & σ2s/k.

On the contrary, in the non-adaptive setting with Xi chosen i.i.d. and independent of previous

data, the Dantzig selector θ̂D
k based on k & s log(d/s) measurements achieves estimation rate

E[‖θ̂D
k − θ⋆‖2] . σ2s log(d)/k. Thus the gain in the convergence rate of an adaptive sampling

strategy is here at most a factor log(d) in the rate. The reason why adaptation hardly improves

the rate in this setting is attributed in [2] to the difficulty to recover the support of the sparse

regression vector θ⋆.

5 Related literature

In zeroth-order stochastic convex optimization the task is to learn a minimizer of an unknown

convex function f(θ) = EΞ[f(θ,Ξ)]. The vanilla framework is to sequentially issue queries

θ1, θ2, . . . and receive noisy observations f(θk,Ξk) for i.i.d. unobserved Ξ1,Ξ2, . . .. The par-

ticular case of linear regression Y = X⊺θ∗ + ǫ corresponds to Ξ = (X, ǫ) with d-dimensional

covariate vectors X drawn from an unknown distribution, noise ǫ, and feedback f(θ, (X, ǫ)) =

(X⊺(θ⋆ − θ) + ǫ)2 = (Y − X⊺θ)2. In the literature (we refer to [19, 5] for excellent surveys),

rates for algorithms and lower bounds are organised based on three main distinctions:

- in the optimization literature the objective is the gap f(θ̂k) − minθ f(θ) of a proposed

evaluation point θ̂k, while in the bandit literature the objective is the regret of the queries

issued
∑k

t=1 (f(θt)−minθ f(θ)). The latter bounds the former by online to batch conver-

sion, but there are interesting separations in minimax rates [27].

- in one-point feedback the learner issues a point θ and observes f(θ,Ξ), where the noise Ξ

is i.i.d. between queries [13]. In two-point feedback the learner issues a pair of points θ, θ′

and observes f(θ,Ξ) and f(θ′,Ξ) with shared noise Ξ. Different rates can occur between

one and two-point feedback.

12



- in addition to convexity of f , one may get better rates by assuming that f(·) (or f(·, ξ) for
every ξ) are Lipschitz, smooth, higher-order β-smooth [4], and/or strongly convex.

In [12], upper and lower bounds are derived for the gap f(θ̂k)−minθ∈Θ f(θ). Under the imposed

conditions and ignoring the dependence on the number of parameters d, the gap decreases in

k with the rate 1/
√
k, which is slower than the 1/k rate obtained here. The lower bounds are

obtained for linear f(θ) = E[θ⊺X] = θ⊺
E[X] with unknown distribution X. In this case, the

Hessian is zero and the minimizer will lie at the boundary of the parameter space Θ. Therefore

the rates strongly depend on the choice of Θ.

In the case of linear regression, the function f(θ) = E[(Y −X⊺θ)2] is a convex quadratic defined

on the entire Euclidean space R
d, and as such strongly convex and smooth (of infinite order)

but not Lipschitz. For one-point feedback, [22] proves that, under suitable assumptions, the

averaged iterations θk = 1
k

∑k
ℓ=1 θℓ converge with rate d2

k (kd )
1/β for any β > 0.

Keeping the dimension d fixed and letting the number of iterations tend to infinity, [16] derives

a CLT for the average over all iterates (Ruppert-Polyak average).

To complete this literature overview, we briefly mention related approaches. [27] considers a

zeroth-order method to learn a minimizer of the function F (w) = w⊺Aw+b⊺w+c for unknown

d × d matrix A, d-dimensional vector b and scalar c. In every iteration, one can query the

function F once. This is not a statistical task, as there are no data. Under suitable conditions,

the considered zeroth-order method achieves the rate d2/k, with k the number of iterations and

it is moreover shown that this rate is optimal. Furthermore, optimal rates are also known in the

case that f is strongly convex and smooth [1, 27].

These rates can further be contrasted to those for stochastic first-order feedback, where the

feedback for a query θ is the stochastic gradient ∇f(θ,Ξ). Here [3] show a gap rate of order
σ2d+‖θ̂0−θ∗‖2

k for the average iterate of SGD with constant step size. In [11] these rates are further

improved with acceleration to order σ2d
k + ‖θ̂0−θ∗‖2

k2 , matching lower bounds in both contributions.

The results were extended beyond the least squares setting in [18] and the related problem of

logistic regression was analyzed in the stochastic optimization [4] and bandit settings [15]. For

logistic regression the function f is Lipschitz and higher-order smooth but not strongly convex.

A Proofs for the upper bound

Proof of (7): Expanding the squares yields

θk = θk−1 + αk

(
2(Yk −X

⊺

kθk−1)X
⊺

k(U
′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)

Setting Dk := e−Uk − eUk , the update can be rewritten as affine function in θk,

θk =
(
I − 2αkDk(U

′
k −Uk)

⊺XkX
⊺

k

)
θk−1 + αk

(
2YkX

⊺

k(U
′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)
Dk,

13



or

θk − θ⋆ =
(
I − 2αkDk

(
U′

k −Uk

)⊺
XkX

⊺

k

)
(θk−1 − θ⋆)

+ 2αk(Yk −X
⊺

kθ
⋆)X⊺

k(U
′
k −Uk)Dk

+ αk

(
(X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)
Dk.

Noticing that εk = Yk −X
⊺

kθ
⋆, (7) follows.

Proof of (8): We show that E[ξk] = 0. By definition ξk := 2αkεkX
⊺

k(U
′
k −Uk)

(
e−Uk − eUk

)
+

αk

(
(X⊺

kUk)
2 − (X⊺

kU
′
k)

2
) (

e−Uk − eUk
)
. The first term has expectation zero, since E[εk] = 0

and εk is independent of all the other variables. Since Uk and −Uk have the same distribution,

E[e−Uk − eUk ] = 0 and E[(X⊺

kUk)
2
(
e−Uk − eUk

)
] = 0. Using the independence of Uk,U

′
k,

E[ξk] = E
[
αk

(
(X⊺

kUk)
2 − (X⊺

kU
′
k)

2
) (

e−Uk − eUk
)]

= 0.

A.1 Expectations with respect to the uniform distribution

The moments of the noise U play an important role in the analysis.

Definition 1. For natural numbers r, q ≥ 0, we abbreviate

cr,q := E
[
U r(e−U − eU )q

]
with U ∼ Unif[−A,A].

We have c0,0 = 1 and c2,0 = A2/3. By definition, −U(e−U − eU ) is a non-negative random

variable and therefore −c1,1 > 0. More specifically,

Lemma 3. If U ∼ Unif([−A,A]) and A ≤ 1, then

A2

11
≤ −c1,1 ≤ A2 and c0,2 ≤ −3c1,1. (21)

Proof. Integration by parts gives

−E[U(e−U − eU )] = − 1

2A

∫ A

−A

u
(
e−u − eu

)
du =

1

A

∫ A

−A

ueu du =
1

A
ueu

∣∣∣
A

−A
− 1

A

∫ A

−A

eu du

= eA + e−A − eA − e−A

A
.

For the second part observe that for A ≥ 0, third order Taylor expansion gives eA ≥ 1+A+A2/2

and e−A ≤ 1−A+A2/2. From the expression above and using that A ≤ 1,

−E[U(e−U − eU )] = eA + e−A − eA − e−A

A

= −eA
( 1

A
− 1
)
+ e−A

(
1 +

1

A

)

≤ −
(
1 +A+

A2

2

)1− A

A
+
(
1−A+

A2

2

)A+ 1

A

= −(1 + A)
1−A

A
− A−A2

2
+ (1 −A)

A+ 1

A
+

A2 +A

2

= A2.

14



By third order Taylor expansion and A ≤ 1, we find eA ≤ 1 + A + A2/2 + eAA3/6 ≤ 1 + A +

A2/2 + eA3/6 and e−A ≥ 1 − A + A2/2 − eA3/6. Basically following the same steps as for the

upper bound of −E[U(e−U − eU )],

−E[U(e−U − eU )] = −eA
( 1

A
− 1
)
+ e−A

(
1 +

1

A

)

≥ −
(
1 +A+

A2

2
+ e

A3

6

)1−A

A
+
(
1−A+

A2

2
− e

A3

6

)A+ 1

A

= A2
(
1− e

3

)
.

Since 1− e/3 ≥ 0.093 ≥ 1/11, this completes the proof for (21).

To prove c0,2 ≤ −3c1,1, we use that e
x− e−x = 2

∑
ℓ odd x

ℓ/ℓ!. Since for odd ℓ, xℓ(ex− e−x) ≥ 0,

we have for |x| ≤ 1 that xℓ(ex − e−x) ≤ x(ex − e−x). With e ≤ 3, we obtain for x ≤ 1,

(
ex − e−x

)2
= 2

∑

ℓ odd

xℓ

ℓ!

(
ex − e−x

)
≤ 2

∑

ℓ odd

1

ℓ!
x
(
ex − e−x

)

≤ 2
(
e− 1− 1

2!

)
x
(
ex − e−x

)
≤ 3x

(
ex − e−x

)
.

Thus c0,2 = E[(eU − e−U )2] ≤ 3E[U(eU − e−U )] = −3c1,1.

Using the previous lemma,

cr,2 ≤ Arc0,2 ≤ 3Ar+2. (22)

For odd r, cr,2 = 0 and this inequality makes only sense if r is even.

A.2 Moments of the noise contributions in the zeroth-order scheme

Recall that ‖ · ‖ denotes the spectral norm for matrices and the Euclidean norm for vectors.

Lemma 4. Let a,b be column vectors of the same length. Then ‖ab⊺‖ = ‖a‖‖b‖.

Proof. The matrix bb⊺ is of rank one with non-zero eigenvalue b⊺b and corresponding eigen-

vector ‖b‖−1b. Thus, ‖ab⊺‖2 = λmax(ba
⊺ab⊺) = a⊺aλmax(bb

⊺) = a⊺ab⊺b. The result follows

by taking square roots.

We now derive closed-form expressions and bounds for the two expected values in (10). Recall

that cr,q = E
[
U r(e−U − eU )q

]
. The k-th power xk of a vector x = (x1, . . . , xd) is understood

componentwise, e.g., ‖x2‖2 =
∑

i x
4
i .

Lemma 5. Let I denote the d× d identity matrix. We have

V (x) = (c2,2 − c2,0c0,2 − 2c21,1) diag(x
2) + 2c21,1xx

⊺ + 2c2,0c0,2 ‖x‖2 I.
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and

W = E

[
(c4,2 − 6c2,0c2,2 + 6c22,0c0,2 − c4,0c0,2 − 8c3,1c1,1 + 24c2,0c

2
1,1) diag(X

4)

+ (4c2,0c2,2 − 4c22,0c0,2 − 8c2,0c
2
1,1)‖X‖2 diag(X2)

+ (4c3,1c1,1 − 12c2,0c
2
1,1)
(
X3X⊺ +X(X3)⊺

)

+ 8c2,0c
2
1,1‖X‖2XX⊺

+ (2c4,0c0,2 − 6c22,0c0,2)‖X2‖2I

+ 4c22,0c0,2‖X‖4I
]
.

Moreover for X = (X1, . . . , Xd)
⊺,

E[V (X)] ≤ 12A4d max
i=1,...,d

E[X2
i ]I, (23)

E
[
‖X‖2V (X)

]
≤ 12A4d2 max

i=1,...,d
E[X4

i ]I, (24)

W ≤ 107A6d2 max
i=1,...,d

1 ∨ E[X4
i ]I. (25)

While the closed-form expression of W depends on fourth power of X, it is convenient to relate

this to a sixth power in (25).

Proof. We first prove the formula for W. Let x = (x1, . . . , xd) be fixed. Using that E[(x⊺U′)2] =

E[(U′)⊺xx⊺U′] = c2,0 tr(xx
⊺) = c2,0x

⊺x,

E[(x⊺U′)4] = E

[ ∑

i,j,k,ℓ

U ′
iU

′
jU

′
kU

′
ℓxixjxkxℓ

]

= c4,0
∑

i

x4
i + 3c22,0

∑

i6=j

x2
i x

2
j

= (c4,0 − 3c22,0)‖x2‖2 + 3c22,0‖x‖4,

E[DD⊺] = c0,2I, and the independence of U and U′ gives

E

[(
(x⊺U)2 − (x⊺U′)2

)2
DD⊺

]

= E

[(
(x⊺U)4 − 2c2,0(x

⊺U)2x⊺x+
(
c4,0 − 3c22,0

)
‖x2‖2 + 3c22,0‖x‖4

)
DD⊺

]

= E
[
(x⊺U)4DD⊺

]
− 2c2,0x

⊺xE
[
(x⊺U)2DD⊺

]
+ c0,2

((
c4,0 − 3c22,0

)
‖x2‖2 + 3c22,0‖x‖4

)
I.

Next we simplify these two remaining expectations. The (i, j)-th off-diagonal entry of the ma-

trix E
[
(x⊺U)2DD⊺

]
is E[

∑
ℓ,k UℓUkxℓxkDiDj ]. The summands are non-zero if either (ℓ, k) =

(i, j) or (ℓ, k) = (j, i). In both cases we get the contribution c21,1xixj , such that for i 6= j,

E[
∑

ℓ,k UℓUkxℓxkDiDj ] = 2c21,1xixj . For the i-th diagonal entry of E
[
(x⊺U)2DD⊺

]
, we ob-

tain E[
∑

ℓ,k UℓUkxℓxkD
2
i ] = E[

∑
ℓ U

2
ℓ x

2
ℓD

2
i ] = c2,2x

2
i + c2,0c0,2

∑
ℓ 6=i x

2
ℓ = (c2,2 − c2,0c0,2)x

2
i +

c2,0c0,2‖x‖2. Combining these formulas yields

E
[
(x⊺U)2DD⊺

]
= (c2,2 − c2,0c0,2 − 2c21,1) diag(x

2) + 2c21,1xx
⊺ + c2,0c0,2 ‖x‖22 I (26)
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and

E
[
(x⊺U)4DD⊺

]
= E


 ∑

i,j,ℓ,m

xiUixjUjxℓUℓxmUmDD⊺




= (c4,2 − 6c2,0c2,2 + 6c22,0c0,2 − c4,0c0,2 − 8c3,1c1,1 + 24c2,0c
2
1,1) diag(x

4)

+ (6c2,0c2,2 − 6c22,0c0,2 − 12c2,0c
2
1,1)‖x‖2 diag(x2)

+ (c4,0c0,2 − 3c22,0c0,2)‖x2‖2I
+ 3c22,0c0,2‖x‖4I
+ 12c2,0c

2
1,1‖x‖2xx⊺

+ (4c3,1c1,1 − 12c2,0c
2
1,1)
(
x3x⊺ + x(x3)⊺

)
.

This is because on a diagonal entry (p, p), we have c4,2x
4
p, as well as 6c2,0c2,2x

2
p

∑
q 6=p x

2
q and

3c22,0c0,2(
∑

q 6=p x
2
q)

2 and c4,0c0,2
∑

q 6=p x
4
q . On an off-diagonal entry (p, q), we have 12c2,0c

2
1,1xpxq

∑
r/∈{p,q} x

2
r

as well as 4c3,1c1,1(x
3
pxq + xpx

3
q). Combining/grouping terms, replacing x by the random vector

X and taking expectation with respect to X yields the formula for W .

For V (x), observe that the cross-terms are zero and by conditioning first on U′ and using that

E[DD⊺] = c0,2I, we find

V (x) = E
[
x⊺(U′ −U)DD⊺(U′ −U)⊺x

]

= E
[
x⊺U′DD⊺(U′)⊺x

]
+ E

[
x⊺UDD⊺U⊺x

]

= c0,2x
⊺
E [U′(U′)⊺]x+ E

[
x⊺UDD⊺U⊺x

]

= c0,2c2,0‖x‖2I + E
[
x⊺UDD⊺U⊺x

]
.

Combined with (26), the formula V (x) = (c2,2−c2,0c0,2−2c21,1) diag(x
2)+2c21,1xx

⊺+2c2,0c0,2 ‖x‖2 I
follows.

For the bounds on the expectations, we use the bounds on the moments cr,q derived in Section

A.1. In particular cr,q ≥ 0 whenever r and q are even. The matrix xx⊺ is positive semi-

definite. By (21), c1,1 ≤ A2 and c0,2 ≤ 3A2. Thus, V (x) ≤ 3A4 diag(x2) + 2A4xx⊺ +6A4 ‖x‖2 I.
Moreover, by Lemma 4, the largest eigenvalue of xx⊺ is ‖x‖2 and therefore xx⊺ ≤ ‖x‖2I.
Since also diag(x2) ≤ ‖x‖2I, we obtain V (x) ≤ 12A4‖x‖2I and thus for X = (X1, . . . , Xd)

⊺,

E[V (X)] ≤ 12A4dmaxi=1,...,d E[X
2
i ]I, proving (23). Since X2

i X
2
j ≤ X4

i /2 +X4
j /2, we can derive

moreover E[‖X‖2V (X)] ≤ 12A4d2 maxi,j=1,...,d E[X
2
i X

2
j ] ≤ 12A4d2 maxi=1,...,d E[X

4
i ], proving

(24).

We finally derive (25). Since 2‖x3x⊺‖ = 2‖x3‖‖x‖, all eigenvalues of x3x⊺ + x(x3)⊺ lie between

−2‖x3‖‖x‖ and 2‖x3‖‖x‖. Therefore, for any real number a, we have a(x3x⊺ + x(x3)⊺) ≤
2|a|‖x3‖‖x‖. By (22), cr,2 ≤ Arc0,2 ≤ 3Ar+2. Moreover 0 ≤ c3,1c1,1 ≤ A2c21,1 ≤ A6 and 0 ≤
c2,0c

2
1,1 ≤ A6. Thus,

W ≤E

[
(3 + 18 + 24)A6 diag(X4) + 12A6‖X‖2 diag(X2) + 12A62‖X3‖‖X‖I + 8A6‖X‖4I

+ 6A6‖X2‖2I + 12A6‖X‖4I
]
.
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Since diag(X4) ≤ ‖X‖4I, diag(X2) ≤ ‖X‖2I, and ‖X2‖2 ≤ ‖X‖4, we obtainW ≤ 83A6
E[‖X‖4]I+

24A6
E[‖X3‖‖X‖]I.

Because of the elementary inequality ab ≤ 1
2a

2 + 1
2b

2,

E
[
‖X‖4

]
=

d∑

i,j=1

E[X2
i X

2
j ] ≤

1

2

d∑

i,j=1

E[X4
i ] + E[X4

j ] ≤ d2 max
i=1,...,d

E[X4
i ].

Similarly, ‖X3‖‖X‖ ≤
√
dmaxi X6

i

√
dmaxiX2

i = dmaxi X
4
i ≤ d

∑
i X

4
i and hence

E
[
‖X3‖‖X‖

]
≤ d

∑

i

E[X4
i ] ≤ d2 max

i
E[X4

i ].

Combined with W ≤ 83A6
E[‖X‖4]I + 24A6

E[‖X3‖‖X‖]I, we finally obtain

W ≤ 107A6d2 max
i=1,...,d

1 ∨ E[X4
i ]I.

A.3 Proof of Lemma 1

Recall that Dk := e−Uk − eUk . The rewritten update equation (7) can be decomposed into the

following three parts

θk − θ⋆ = A+B+C, (27)

where

A := (I − 2αkDk(U
′
k −Uk)

⊺XkX
⊺

k) (θk−1 − θ⋆),

B := 2αkεkX
⊺

k(U
′
k −Uk)Dk,

C := αk

(
(X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)
Dk.

In the following we often use that (Xk, Yk) has the same distribution as (X, Y ). This means

that if all randomness in an expectation is only due to (Xk, Yk), these variables can be replaced

by (X, Y ). Recall moreover that odd powers of U or U′ disappear and that we have defined

µ = −c1,1. Thus,

E[AA⊺] = Sk−1 − 2µαk(QSk−1 + Sk−1Q) + 4α2
k E [X⊺

kSk−1XkV (Xk)]

= (I − 2αkµQ)Sk−1 (I − 2αkµQ) + 4α2
k

{
E [X⊺Sk−1XV (X)]− µ2QSk−1Q

}
.

(28)

Since for any d× d matrix T , we have T ⊺Sk−1T ≤ ‖Sk−1‖T ⊺T, we also have

E[AA⊺] ≤ ‖Sk−1‖
(
I − 4αkµQ+ 4α2

k E
[
‖X‖2V (X)

])
. (29)

Now by counting powers of Uk,U
′
k,Dk, we find that

E[AC⊺] = 0.

18



Applying tower rule by conditioning on all randomness except εk ∼ N (0, σ2), it follows that

E[AB⊺] = E
[
E[AB⊺ |Uk,U

′
k,Xk, θk]

]
= E

[
A2αkD

⊺

k(U
′
k −Uk)

⊺Xk E[εk]
]
= 0,

E[BC⊺] = 0,

E[BB⊺] = 4α2
k E
[
ε2kV (X)

]
= 4α2

kσ
2
E [V (X)] ,

and finally

E[CC⊺] = α2
kW,

which is some combination of fourth powers of X.

Now (i) follows due to E[GkWkξ
⊺

k ] = E[A(B + C)⊺] = 0. Statement (ii) follows since by

(8), E[ξk] = 0 such that Cov(ξk) = E[ξkξ
⊺

k ] = E[(B + C)(B + C)⊺] = E[BB⊺] + E[CC⊺] =

4α2
kσ

2
E [V (X)] + α2

kW. To see (iii), observe that

Sk = E[(A+B+C)(A+B+C)⊺]

= E
[
AA⊺

]
+ E

[
AB⊺

]
+ E

[
BA⊺

]
+ E

[
BB⊺

]
+ E

[
CC⊺

]

=
(
I − 2αkµQ

)
Sk−1

(
I − 2αkµQ

)
+ 4α2

k

(
E
[
X⊺Sk−1XV (X)

]
− µ2QSk−1Q

)

+ 4α2
kσ

2
E[V (X)] + α2

kW.

Applying (29) instead of (28) yields the asserted inequality.

A.4 Proof of Theorem 1

We now combine the recursive formula with the bounds obtained in (23), (24), and (25). Recall

that by definition µ = −c1,1 and by Lemma 3, µ ≥ A2/11 which is the same as −µ ≤ −A2/11.

Setting Mk := maxi=1,...,d 1 ∨ E[Xk
i ], we obtain

‖Sk‖ ≤ ‖Sk−1‖
(
1− 4

11
αkA

2λmin(Q) + 48α2
kA

4d2M4

)
+ 48α2

kσ
2A4dM2 + α2

k107A
6d2M4.

By assumption A = σ/
√
d. If

96α2
kA

4d2M4 ≤ 4

11
αkA

2λmin(Q) ≤ 1, (30)

then, the previous inequality yields the simpler recursion inequality

‖Sk‖ ≤ ‖Sk−1‖
(
1− 2

11
αkA

2λmin(Q)
)
+ (48M2 + 107M4)α

2
kσ

2A4d

= ‖Sk−1‖
(
1− βk

)
+ C∗β

2
kσ

2d,

where we defined

βk :=
2

11
αkA

2λmin(Q) and C∗ := (48M2 + 107M4)
( 11

2λmin(Q)

)2
. (31)
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Induction with respect to k gives

‖Sk‖ ≤ ‖S0‖
k∏

ℓ=1

(
1− βℓ

)
+ C∗

k∑

j=1

( k∏

ℓ=j+1

(
1− βℓ

))
β2
jσ

2d, (32)

where
∏k

ℓ=k+1(1− βℓ) := 1. Rewritten in terms of βk, the assumed inequality (30) is

96
( 11β2

k

2λmin(Q)

)2
d2M4 ≤ 2βk ≤ 1.

The choice of the learning rate for αk in (12) results in

βk =
2

11
αkA

2λmin(Q) =
2B log(d)

Bk + d2 log(d)
with B = 1 ∧ λmin(Q)2

2904M4
. (33)

For all d ≥ 1, we have βk ≤ 2B/d2. Using that 96(11/2)2 = 2904, one can now check that for all

d ≥ 2, the assumed inequalities for βk hold and afortiori thus also (30).

Let k∗ be the smallest integer such that Bk∗ ≥ d2 log(d). Since d ≥ 2, we must have

k∗ ≤ 1 + d2 log(d)

B
≤ 2d2 log(d)

B
. (34)

For all k ≥ k∗, we have βk ≥ log(d)/k. By bounding 1 − βℓ ≤ 1 for all ℓ < k∗, and using

for k ≥ j + 1 ≥ k∗,
∑k

ℓ=j+1
1
ℓ ≥ ∑k

ℓ=j+1

∫ ℓ+1

ℓ
1
ℓ du =

∫ k+1

j+1
1
u du = log(k + 1) − log(j + 1) =

log((k + 1)/(j + 1)), we obtain for all k ≥ k∗,

k∏

ℓ=j+1

(
1− βℓ

)
≤ exp

(
− log(d)

k∑

ℓ=k∗∨(j+1)

1

ℓ

)
≤
(k∗ ∨ (j + 1)

k + 1

)log(d)
.

Combined with βk ≤ 2B/d2 for all k, βj ≤ log(d)/j ≤ 2 log(d)/(j + 1) for all j ≥ k∗, and (32),

we obtain for all k > k∗,

‖Sk‖ ≤
(k∗
k

)log(d)
‖S0‖+ C∗

k∗−1∑

j=1

(k∗
k

)log(d)(2B
d2

)2
σ2d+ C∗

k∑

j=k∗

( j + 1

k + 1

)log(d)(2 log(d)
j + 1

)2
σ2d

≤
(k∗
k

)log(d)
‖S0‖+ C∗

1

k

(k∗
k

)log(d)−1

(k∗)2
(2B
d2

)2
σ2d+ C∗

k∑

j=k∗

( j + 1

k + 1

)log(d)(2 log(d)
j + 1

)2
σ2d.

Since d ≥ 9, we have log(d)− 2 > 0 and therefore k∗/k ≤ 1. Using also (34) gives

1

k

(k∗
k

)log(d)−1

(k∗)2
(2B
d2

)2
σ2d ≤ 1

k

(2d2 log(d)
B

)2(2B
d2

)2
σ2d ≤ 16σ2d log2(d)

k
.

Applying log(d)− 2 > 0 again and moreover, (j + 1)/(k + 1) ≤ 1 for all j ≤ k, we find

k∑

j=k∗

( j + 1

k + 1

)log(d) 1

(j + 1)2
=

1

(k + 1)2

k∑

j=k∗

( j + 1

k + 1

)log(d)−2

≤ 1

k
.

Combined, the last three displayed inequalities combined yield

‖Sk‖ ≤
(k∗
k

)log(d)
‖S0‖+ C∗

20σ2d log2(d)

k
.
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The first claim follows now with C = 20C∗.

For two positive semi-definite matrices D = D⊺

1D1 and E, we know that D1ED⊺

1 is positive

semi-definite and bounded by ‖E‖D1D
⊺

1 . Therefore, tr(DE) = tr(D1ED⊺

1 ) ≤ tr(‖E‖D1D
⊺

1 ) =

‖E‖ tr(D⊺

1D1) = ‖E‖ tr(D). Applying this to (D,E) = (Q,Sk) and using that

E [(θk − θ⋆)⊺Q(θk − θ⋆)] = tr(QSk)

as well as tr(Q) ≤ d yields the second claimed inequality.

Proof of Inequality (14). Set k∗ := 2eγ+3κd2 log(d)/B. Then,

(2d2 log(d)
Bk∗

)log(d)
≤ d−γ−3κ ≤ 1

dγ(d2 log(d))κ
≤ C′

dγkκ∗
, (35)

with C′ = (2eγ+3κ/B)κ. If for positive A,B, u, v, x with u > v, we have A/xu ≤ B/xv, then also

A/yu ≤ B/yv for all y ≥ x. Since d > eκ we can apply this inequality with u = log(d) > κ = v,

proving that (35) holds for all k ≥ k∗.

B Proofs for the lower bounds

Proof of Lemma 2. To distinguish the two models, we rename the queries in (16) intoW1,W
′
1, . . . ,

Wk,W
′
k and the query vectors into w1,w

′
1, . . . ,wk,w

′
k. This means that the second query

model is then denoted by {W1,W
′
1, . . . ,Wk,W

′
k,w1,w

′
1, . . . ,wk,w

′
k} with Wℓ = Yℓ − X

⊺

ℓwℓ

and W ′
ℓ = X

⊺

ℓw
′
ℓ.

To see the equivalence, we apply induction with respect to k. The base case k = 1 and the

induction step k → k + 1 are similar and therefore only the latter will be discussed.

The induction step k → k + 1 is split in two parts. We first prove that the first query model

can be transformed into the second query model without knowledge of the parameters. To

see this, choose query vectors vk+1 = wk+1 +w′
k+1 and v′

k+1 = wk+1 − w′
k+1. Query vectors

can depend on previously seen queries and query vectors, such that wk+1,w
′
k+1 can depend on

{W1,W
′
1, . . . ,Wk,W

′
k,w1,w

′
1, . . . ,wk,w

′
k} and vk+1,v

′
k+1 can depend on {Z1, Z

′
1, . . . , Zk, Z

′
k,

v1,v
′
1, . . . ,vk,v

′
k}. Since the models can be transformed into each other by the induction hy-

pothesis, those are eligible query vectors. The corresponding queries in (15) are then given by

Zk+1 = Yk+1 −X
⊺

k+1(wk+1 +w′
k+1) and Z ′

k+1 = Yk+1 − X
⊺

k+1(wk+1 −w′
k+1). Now, Wk+1 :=

1
2 (Zk+1 + Z ′

k+1) = Yk+1 −X
⊺

k+1wk+1 and W ′
k+1 := 1

2 (Z
′
k+1 − Zk+1) = X

⊺

k+1w
′
k+1 are then the

queries from the second model. Since one can also retrieve the query vectors wk+1 = 1
2 (vk+1 +

v′
k+1) and w′

k+1 = 1
2 (vk+1 − v′

k+1), we can transform the data from the first query model into

data from the second query model {W1,W
′
1, . . . ,Wk+1,W

′
k+1,w1,w

′
1, . . . ,wk+1,w

′
k+1}, complet-

ing the first part of the induction step.

The induction step for the other direction is similar and omitted.

As in the previous work on lower bounds for sequential designs [27, 2, 12], we use a version of

Assouad’s lemma [30]. Recall that θj denotes the j-th component of θ = (θ1, . . . , θd)
⊺.
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Lemma 6. For any estimator θ̂ and any ρ > 0,

max
θ∈θ⋆+{−ρ,ρ}d

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ ρ2d

2

(
1− 1

d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))

with

P+j,θ⋆,Vk
:=

1

2d−1

∑

θ∈θ⋆+{−ρ,ρ}d and θj=θ⋆
j+ρ

Pθ,Vk
,

and

P−j,θ⋆,Vk
:=

1

2d−1

∑

θ∈θ⋆+{−ρ,ρ}d and θj=θ⋆
j−ρ

Pθ,Vk
.

Proof. Let ξ be either +1 or −1. If θ is an element of θ⋆ + {−ρ, ρ}d with θj = θ⋆j + ξρ, then,

(θ̂j−θj)
2 ≥ ρ21(sign(θ̂j−θ⋆j ) 6= ξ), where the sign function evaluated at zero is defined as +1. For

probability measures P,Q and a measurable set A, we have P (A)+Q(Ac) = 1+Q(Ac)−P (Ac) ≥
1− TV(P,Q). Rewriting ‖θ̂ − θ‖2 =∑d

j=1(θ̂j − θj)
2, and applying the lower bound

max
θ∈θ⋆+{−ρ,ρ}d

≥ 1

2d

∑

θ∈θ⋆+{−ρ,ρ}d

=
1

2d

∑

θ∈θ⋆+{−ρ,ρ}d and θj=θ⋆
j+ρ

+
1

2d

∑

θ∈θ⋆+{−ρ,ρ}d and θj=θ⋆
j−ρ

,

we find

max
θ∈θ⋆+{−ρ,ρ}d

Eθ,Vk

[
‖θ̂ − θ‖2

]

= max
θ∈θ⋆+{−ρ,ρ}d

d∑

j=1

Eθ,Vk

[
(θ̂j − θj)

2
]

≥ ρ2
d∑

j=1

1

2
P+j,θ⋆,Vk

(
sign(θ̂j − θ⋆j ) 6= 1

)
+

1

2
P−j,θ⋆,Vk

(
sign(θ̂j − θ⋆j ) 6= −1

)

≥ ρ2d

2

(
1− 1

d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))
.

(36)

The right hand side does not depend anymore on the estimator θ̂.

Proof of Theorem 2. For σ2 = 0, there is nothing to prove and therefore, we assume σ2 > 0.

We work in the equivalent model (16). One can assume that v′
ℓ 6= 0 for all ℓ = 1, . . . , k.

Otherwise, Z ′
ℓ = 0 and changing v′

ℓ to a non-zero vector yields additional information about the

model. We can also assume that for any ℓ = 1, . . . , k,

‖v′
ℓ‖ = 1, (37)

as any other scaling would simply scale the observation Z ′
ℓ. Define

τ :=
R

9
√
d

(
1 ∧ dσ√

kR

)
. (38)
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One can think of τ2 as the convergence rate of an individual component Eθ,Vk
(θ̂j − θj)

2.

We want to apply Assouad’s lower bound in Lemma 6. For any θ⋆ ∈ BR/2(0) and any θ ∈
θ⋆ + {−τ, τ}d, we have ‖θ‖ ≤ ‖θ⋆‖ + R/9 ≤ R. Thus, we can lower bound supθ∈BR(0) ≥
supθ⋆∈BR/2(0)

maxθ∈θ⋆+{−τ,τ}d . Lemma 6 with ρ replaced by τ gives therefore

sup
θ∈BR(0)

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ sup

θ⋆∈BR/2(0)

τ2d

2

(
1− 1

d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))
(39)

with

P+j,θ⋆,Vk
:=

1

2d−1

∑

θ∈θ⋆+{−τ,τ}d and θj=θ⋆
j+τ

Pθ,Vk
, (40)

and

P−j,θ⋆,Vk
:=

1

2d−1

∑

θ∈θ⋆+{−τ,τ}d and θj=θ⋆
j−τ

Pθ,Vk
. (41)

Pinsker’s inequality TV(P,Q) ≤
√
KL(P,Q)/2 combined with Cauchy-Schwarz inequality

( 1d
∑d

j=1 bj)
2 ≤ (

∑d
j=1 d

−2)(
∑d

j=1 b
2
j) = 1

d

∑d
j=1 b

2
j and the joint convexity of the Kullback-

Leibler divergence KL(λ1P1 + . . . + λmPm, λ1Q1 + . . . + λmQm) ≤ ∑m
s=1 λs KL(Ps, Qs) for

λ1, . . . , λm ≥ 0 and
∑m

s=1 λs = 1, yield

(1
d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))2

≤ 1

d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

)2

≤ 1

2d

d∑

j=1

KL
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

)

≤ 1

2d

d∑

j=1

1

2d−1

∑

θ∈θ⋆+{−τ,τ}d and θj=θ⋆
j+τ

KL
(
Pθ,Vk

, Pθ−2τej ,Vk

)

=
1

2dd

∑

θ∈θ⋆+{−τ,τ}d

d∑

j=1

KL
(
Pθ,Vk

, Pθ−2τej ,Vk

)
1
(
θj = θ⋆j + τ

)
.

(42)

with ej the j-th standard basis vector.

In a next step, we need to bound KL(Pθ,Vk
, Pθ−2τej ,Vk

). The chain rule for the Kullback-Leibler

divergence states that

KL(PU,V , QU,V ) = EPV [KL(PU|V , QU|V )] + KL(PV , QV )

= EPU,V

[
KL(PU|V , QU|V ) + KL(PV , QV )

]
.

The data are generated sequentially,

(v1,v
′
1) → (Z1, Z

′
1) → . . . → (vk,v

′
k) → (Zk, Z

′
k).
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After the query vectors (vℓ,v
′
ℓ) are selected, the queries are given by Zℓ = Yℓ − X

⊺

ℓvℓ and

Z ′
ℓ = X

⊺

ℓv
′
ℓ. Therefore,

(Zℓ, Z
′
ℓ)
∣∣(Z1, Z

′
1, . . . , Zℓ−1, Z

′
ℓ−1,v1,v

′
1, . . . ,vℓ,v

′
ℓ) = (Zℓ, Z

′
ℓ)
∣∣(vℓ,v

′
ℓ).

The distribution of (vℓ,v
′
ℓ)|(Z1, Z

′
1, . . . , Zℓ−1, Z

′
ℓ−1,v1,v

′
1, . . . ,vℓ−1,v

′
ℓ−1) does not depend on

the unknown regression vector θ.Write Qℓ to denote this distribution. If Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
denotes

the distribution of (Zℓ, Z
′
ℓ)
∣∣(vℓ,v

′
ℓ) for the data generating parameter θ, the chain rule and the

arguments above yield

KL
(
Pθ,Vk

, Pθ′,Vk

)
= Eθ,Vk

[ k∑

ℓ=1

KL
(
Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
, Pθ′,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

)
+KL(Qℓ, Qℓ)

]

= Eθ,Vk

[ k∑

ℓ=1

KL
(
Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
, Pθ′,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

)]
.

(43)

We will now apply this identity for θ′ = θ − 2τej to eventually derive a bound for (42).

For two centered d-variate normal distributions N (0,Σ0), N (0,Σ1), with Σ0,Σ1 > 0, we have

KL
(
N (0,Σ2

1),N (0,Σ2
0)
)
=

1

2

(
log
(det(Σ0)

det(Σ1)

)
+ tr

(
Σ1Σ

−1
0

)
− d

)
.

Consider an invertible matrix T, and let S0 := TΣ0T
⊺, S1 := TΣ1T

⊺. Assume further that there

are positive definite matrices Λ0,Λ1 such that S0 ≥ Λ0 and S1 ≥ Λ1. It is known (e.g. Theorem

6.8 in [31]), that S−1
0 ≤ Λ−1

0 , S−1
1 ≤ Λ−1

1 , and that tr(AB) = tr(BA) for square matrices A,B.

Using these facts, the symmetrized Kullback-Leibler divergence can be bounded as follows

KL
(
N (0,Σ2

0),N (0,Σ2
1)
)
≤ KL

(
N (0,Σ2

0),N (0,Σ2
1)
)
+KL

(
N (0,Σ2

1),N (0,Σ2
0)
)

=
1

2

(
tr
(
Σ1Σ

−1
0

)
+ tr

(
Σ0Σ

−1
1

)
− 2d

)

=
1

2
tr
(
Σ−1

1 (Σ1 − Σ0)Σ
−1
0 (Σ1 − Σ0)

)

=
1

2
tr
(
(TΣ1T

⊺)−1(TΣ1T
⊺ − TΣ0T

⊺)(TΣ0T
⊺)−1(TΣ1T

⊺ − TΣ0T
⊺)
)

=
1

2
tr
(
S−1
1 (S1 − S0)S

−1
0 (S1 − S0)

)

=
1

2
tr
(
S
−1/2
1 (S1 − S0)S

−1
0 (S1 − S0)S

−1/2
1

)

≤ 1

2
tr
(
S
−1/2
1 (S1 − S0)Λ

−1
0 (S1 − S0)S

−1/2
1

)

=
1

2
tr
(
Λ
−1/2
0 (S1 − S0)S

−1
1 (S1 − S0)Λ

−1/2
0

)

≤ 1

2
tr
(
Λ
−1/2
0 (S1 − S0)Λ

−1
1 (S1 − S0)Λ

−1/2
0

)

=
1

2
tr
(
Λ−1
0 (S1 − S0)Λ

−1
1 (S1 − S0)

)
.

(44)

We now control the right hand side of (43) for θ′ = θ−2τej. As we work in the equivalent model

(16) with the normalization constraint (37), the distributions of (Zℓ, Z
′
ℓ)

⊺|(vℓ,v
′
ℓ) is given by (17).
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We have normalized v′
ℓ to a unit-length vector ‖v′

ℓ‖ = 1. Thus, the distributions Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

and Pθ−2τej ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
(as shown in (17)) are centered normal with respective covariances

(
σ2 + ‖θ − vℓ‖2 〈θ − vℓ,v

′
ℓ〉

〈θ − vℓ,v
′
ℓ〉 1

)

and
(

σ2 + ‖θ − 2τej − vℓ‖2 〈θ − 2τej − vℓ,v
′
ℓ〉

〈θ − 2τej − vℓ,v
′
ℓ〉 1

)
.

In a next step, we transform the model such that the subsequent analysis becomes more tractable.

Choosing the transformation

T =

(
1 −〈θ − vℓ,v

′
ℓ〉

0 1

)

maps (Zℓ, Z
′
ℓ)

⊺ to (Zℓ − 〈θ − vℓ,v
′
ℓ〉Z ′

ℓ, Z
′
ℓ)

⊺ transforming the covariances via the identities

S0 := T

(
σ2 + ‖θ − vℓ‖2 〈θ − vℓ,v

′
ℓ〉

〈θ − vℓ,v
′
ℓ〉 1

)
T ⊺ =

(
σ2 + ‖θ − vℓ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ‖2 0

0 1

)

(45)

and

S1 := T

(
σ2 + ‖θ − 2τej − vℓ‖2 〈θ − 2τej − vℓ,v

′
ℓ〉

〈θ − 2τej − vℓ,v
′
ℓ〉 1

)
T ⊺

=

(
σ2 + ‖θ − 2τej − vℓ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ‖2 −2τ〈ej ,v′
ℓ〉

−2τ〈ej ,v′
ℓ〉 1

)
.

(46)

For a symmetric 2 × 2 matrix, the elementary inequality 2ab ≥ −|2ab| ≥ −2a2 − 1
2b

2 yields for

all vectors (u1, u2)
⊺,

(u1u2)
⊺

(
α β

β 1

)(
u1

u2

)
= u2

1α+ 2u1u2β + u2
2 ≥ u2

1(α− 2β2) +
1

2
u2
2

implying the matrix inequality
(

α β

β 1

)
≥
(

α− 2β2 0

0 1
2

)
. (47)

If k ≥ d2, then

τ =
R

9
√
d

(
1 ∧ dσ√

kR

)
≤ σ

9

√
d

k
≤ σ

4
. (48)

The last inequality is rather loose but sufficient to give 8τ2 ≤ σ2/2. Together with the matrix

inequality applied to β = −2τ〈ej ,v′
ℓ〉, we obtain

S1 ≥
(

1
2σ

2 + ‖θ − 2τej − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2 0

0 1
2

)
≥ 1

2

(
σ2 0

0 1

)
=: Λ1.

25



Setting Λ0 := S0, we can now apply (44) for these choices of S0, S1,Λ0,Λ1. Observing that

‖θ − 2τej − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2−‖θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2

= 4τ2 − 4τ〈ej , θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉,

S1 − S0 =

(
4τ2 − 4τ〈ej , θ − vℓ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ〉 −2τ〈ej,v′
ℓ〉

−2τ〈ej ,v′
ℓ〉 0

)
,

and

1

2
tr

((
λ−1
0 0

0 1

)(
α β

β 0

)
2

(
λ−1
1 0

0 1

)(
α β

β 0

))
(49)

= tr

((
αλ−1

0 βλ−1
0

β 0

)(
αλ−1

1 βλ−1
1

β 0

))
(50)

= tr

((
α2λ−1

0 λ−1
1 + β2λ−1

0 αβλ−1
0 λ−1

1

αβλ−1
1 β2λ−1

1

))
(51)

=
α2

λ0λ1
+ β2

( 1

λ0
+

1

λ1

)
, (52)

we find for the specific choices λ0 = σ2 + ‖θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2, λ1 = σ2, α2 = (4τ2 −
4τ〈ej , θ−vℓ−〈θ−vℓ,v

′
ℓ〉v′

ℓ〉)2 ≤ 32τ4+32τ2〈ej , θ−vℓ−〈θ−vℓ,v
′
ℓ〉v′

ℓ〉2 and β = −2τ〈ej,v′
ℓ〉,

using (44), and λ0 ≥ σ2,

KL
(
Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
, Pθ−2τej,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

)

≤ 1

2
tr
(
Λ−1
0 (S1 − S0)Λ

−1
1 (S1 − S0)

)

=
α2

λ0λ1
+ β2

( 1

λ0
+

1

λ1

)

≤ 32τ4 + 32τ2〈ej , θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉2
(σ2 + ‖θ − vℓ − 〈θ − vℓ,v′

ℓ〉v′
ℓ‖2)σ2

+ 6
τ2

σ2
〈ej ,v′

ℓ〉2

≤ 32
τ4

σ4
+ 32

τ2〈ej , θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉2
σ2‖θ − vℓ − 〈θ − vℓ,v′

ℓ〉v′
ℓ‖2

+ 6
τ2

σ2
〈ej ,v′

ℓ〉2.

Interchanging the sums over j and ℓ, we conclude from (42), (43), the previous inequality,∑d
j=1〈ej ,v′

ℓ〉2 = ‖v′
ℓ‖2,

∑d
j=1〈ej , θ − vℓ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ〉2 = ‖θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2, the
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normalization ‖v′
ℓ‖ = 1, τ ≤ σ

√
d/(81k) (as derived in (48)), and k ≥ d2,

(1
d

d∑

j=1

TV(P+j,θ⋆,Vk
,P−j,θ⋆,Vk

)
)2

≤ 1

d

d∑

j=1

TV(P+j,θ⋆,Vk
,P−j,θ⋆,Vk

)2

≤ 1

2dd

∑

θ∈θ⋆+{−τ,τ}d

d∑

j=1

KL
(
Pθ,Vk

, Pθ−2τej,Vk

)
1
(
θj = θ⋆j + τ

)

≤ 1

2dd

∑

θ∈θ⋆+{−τ,τ}d

d∑

j=1

k∑

ℓ=1

32
τ4

σ4
+ 32

τ2〈ej , θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉2
σ2‖θ − vℓ − 〈θ − vℓ,v′

ℓ〉v′
ℓ‖2

+ 6
τ2

σ2
〈ej ,v′

ℓ〉2

=
1

2dd

∑

θ∈θ⋆+{−τ,τ}d

k∑

ℓ=1

32d
τ4

σ4
+ 38

τ2

σ2

= 32k
τ4

σ4
+ 38

τ2k

σ2d

≤ 32d2

812k
+

38

81

≤ 1

2
.

Taking square roots, gives 1−d−1
∑d

j=1 TV(P+j,θ⋆,Vk
,P−j,θ⋆,Vk

) ≥ 1−1/
√
2. Since by definition

τ = R
9
√
d
(1 ∧ dσ√

kR
), the claimed lower bound follows from (39),

sup
θ∈Θ

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ τ2d

2
sup

θ⋆∈BR/2(0)

(
1− 1

d

d∑

j=1

TV(P+j,θ⋆,Vk
,P−j,θ⋆,Vk

)
)

=
1

162

(
1− 1√

2

)(
R2 ∧ d2

k
σ2

)
.

Proof of Theorem 4. Let

ρ = c
R√
d

(
1 ∧ d√

k

(
1 ∨ σ

R

))
for c = 2−8. (53)

For any θ⋆ ∈ BR/2(0) and any θ ∈ θ⋆ + {−ρ, ρ}d, we have ‖θ‖ ≤ ‖θ⋆‖+ cR ≤ R. Thus, we can

lower bound supθ∈BR(0) ≥ supθ⋆∈BR/2(0)
maxθ∈θ⋆+{−ρ,ρ}d . Lemma 6 gives

sup
θ∈BR(0)

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ sup

θ⋆∈BR/2(0)

ρ2d

2

(
1− 1

d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))
(54)

with P+j,θ⋆,Vk
,P−j,θ⋆,Vk

as in (40) and (41) with τ replaced by ρ.

Since the query vectors are deterministic, (43) becomes now

KL
(
Pθ,Vk

, Pθ−2ρej ,Vk

)
=

k∑

ℓ=1

KL
(
Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
, Pθ−2ρej ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

)
, (55)
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where θ is an element in the set θ⋆ + {−ρ, ρ}d with θj = θ⋆j + ρ.

Let v′ satisfy ‖v′‖ = 1 and let w,w′ ∈ {−1, 0, 1}d. We now prove that ‖u‖ ≥ Rk−1/(d−1)/4

implies

σ2 +
∥∥u+ ρw+ ρ〈w′,v′〉v′∥∥2 − 8ρ2 ≥ σ2 ∨ ‖u‖2

8
. (56)

To see this, use that ‖v′‖ = 1 and |〈w′,v′〉| ≤ ‖w′‖. Thus, triangle inequality yields ρ‖w +

〈w′,v′〉v′‖ ≤ 2ρ
√
d. By (53), ρ = cRd−1/2(1 ∧ dk−1/2(1 ∨ (σ/R)).

If k ≤ 1/(16c)d−1, we have ‖u‖ ≥ 4Rc ≥ 4ρ
√
d. Moreover, if k > 1/(16c)d−1 and σ ≤ R,

we can write k = (a/16c)d−1 with a > 1. Since y ≤ ey−1 and c ≤ 1/(16e2), we have d ≤
(e2)(d−1)/2 ≤ 1/(16c)(d−1)/2. Recalling that d ≥ 3, we find again ‖u‖ ≥ Rk−1/(d−1)/4 = 4cR/a ≥
4cRd/(a(d−1)/2(1/16c)(d−1)/2) = 4cRd/

√
k ≥ 4ρ

√
d. Thus in both of the previous cases k ≤

1/(16c)d−1 and {k > 1/(16c)d−1}∩{σ ≤ R}, ‖u‖ ≥ 4ρ
√
d ≥ 2ρ‖w+ 〈w′,v′〉v′‖ and therefore by

triangle inequality, ‖u+ ρw+ ρ〈w′,v′〉v′‖ ≥ ‖u‖/2. Since for d ≥ 4, also ‖u‖2/8 ≥ 2ρ2d ≥ 8ρ2,

(56) follows for these cases.

The remaining case k > 1/(16c)d−1 and σ > R, yields σ/4 ≥ 2cdk−1/2σ ≥ 2ρ
√
d. Together with

the elementary inequality a2+ b2 ≥ 1
2 (a+ b)2, triangle inequality and ρ‖w+ 〈w′,v′〉v′‖ ≤ 2ρ

√
d,

we get σ +
∥∥u+ ρw + ρ〈w′,v′〉v′∥∥ ≥ σ +

∥∥u
∥∥− 2ρ

√
d ≥ (3/4)σ +

∥∥u
∥∥ and

σ2 +
∥∥u+ ρw + ρ〈w′,v′〉v′∥∥2 ≥ 1

2

(
σ +

∥∥u+ ρw+ ρ〈w′,v′〉v′∥∥
)2

≥ σ2 ∨ ‖u‖2
4

.

Moreover σ2/8 ≥ 8ρ2d ≥ 8ρ2. Thus, (56) holds in all cases.

Let

S0 =

(
σ2 + ‖θ − vℓ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ‖2 0

0 1

)

be as in (45).

For the next arguments, we will assume that

∥∥θ⋆ − vℓ + 〈θ⋆ − vℓ,v
′
ℓ〉
∥∥ ≥ R

4
k−1/(d−1). (57)

Note that θ ∈ θ⋆+ {−ρ, ρ}d. Thus, applying (56) with u = θ⋆−vℓ+ 〈θ⋆−vℓ,v
′
ℓ〉, ρw = θ−θ⋆,

we have that S0 ≥ Λ̃0 with

Λ̃0 =

(
σ2∨‖θ⋆−vℓ−〈θ⋆−vℓ,v

′

ℓ〉v′

ℓ‖2

8 0

0 1

)
.

Similarly, let

S1 =

(
σ2 + ‖θ − 2ρej − vℓ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ‖2 −2ρ〈ej,v′
ℓ〉

−2ρ〈ej,v′
ℓ〉 1

)
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be as in (46). Using the matrix inequality (47), 〈ej ,v′
ℓ〉 ≤ ‖ej‖‖v′

ℓ‖ = 1, and applying (56) with

w = θ − θ⋆ − 2ρej and w′ = θ − θ⋆, we have

S1 ≥
(

σ2 + ‖θ − 2ρej − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2 − 8ρ2 0

0 1
2

)

≥
(

σ2∨‖θ⋆−vℓ−〈θ⋆−vℓ,v
′

ℓ〉v′

ℓ‖2

8 0

0 1
2

)
.

Recall that θ is an element in the set θ⋆+{−ρ, ρ}d with θj = θ⋆j +ρ. This means that 〈θ−ρej−
θ⋆, ej〉 = 0 and thus

‖θ − 2ρej − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2−‖θ − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ‖2

= −4ρ〈ej, θ − ρej − vℓ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉
= −4ρ〈ej, θ⋆ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ〉.

This implies

S1 − S0 =

(
−4ρ〈ej, θ⋆ − 〈θ − vℓ,v

′
ℓ〉v′

ℓ〉 −2ρ〈ej,v′
ℓ〉

−2ρ〈ej,v′
ℓ〉 0

)
=

(
α β

β 0

)
.

Combining (44) and (52) with λ0 = λ1/2 = 1
8 (σ

2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v
′
ℓ〉v′

ℓ‖2), and α, β as

above, we obtain

KL
(
Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
, Pθ−2ρej ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

)
≤32

(−4ρ〈ej, θ⋆ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉)2
(σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′

ℓ〉v′
ℓ‖2)2

+ 12
(2ρ〈ej ,v′

ℓ〉)2
σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′

ℓ〉v′
ℓ‖2

.

Since 〈θ − θ⋆,v′
ℓ〉2 ≤ ‖θ − θ⋆‖2‖v′

ℓ‖2 = ρ2d, we find using (a+ b)2 ≤ 2a2 + 2b2,

〈ej , θ⋆ − 〈θ − vℓ,v
′
ℓ〉v′

ℓ〉2 ≤ 2〈ej, θ⋆ − 〈θ⋆ − vℓ,v
′
ℓ〉v′

ℓ〉2 + 2ρ2d〈ej ,v′
ℓ〉2.

Since e1, . . . , ed form an orthonormal basis,
∑d

j=1〈ej , a〉2 = ‖a‖2 for all d-dimensional vectors

a. Thus taking the sum over j yields

d∑

j=1

KL
(
Pθ,(Zℓ,Z′

ℓ
)|(vℓ,v′

ℓ
), Pθ−2ρej ,(Zℓ,Z′

ℓ
)|(vℓ,v′

ℓ
)

)

≤ (28 + 48)
ρ2

σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′
ℓ〉v′

ℓ‖2
+ 28

ρ4d

(σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′
ℓ〉v′

ℓ‖2)2
.

Recall that by (55), KL
(
Pθ,Vk

, Pθ−2ρej ,Vk

)
=
∑k

ℓ=1 KL
(
Pθ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)
, Pθ−2ρej ,(Zℓ,Z′

ℓ)|(vℓ,v′

ℓ)

)
.

Hence,

d∑

j=1

KL
(
Pθ,Vk

, Pθ−2ρej ,Vk

)

≤
k∑

ℓ=1

176ρ2

σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′
ℓ〉v′

ℓ‖2
+

k∑

ℓ=1

28ρ4d

(σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′
ℓ〉v′

ℓ‖2)2
.
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The right hand side does not depend on θ anymore. Combined with (42),

(1
d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))2

≤ 1

2dd

∑

θ∈θ⋆+{−τ,τ}d

d∑

j=1

KL
(
Pθ,Vk

, Pθ−2τej,Vk

)
1
(
θj = θ⋆j + τ

)

≤
k∑

ℓ=1

88ρ2

d(σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′
ℓ〉v′

ℓ‖2)
+

k∑

ℓ=1

27ρ4

(σ2 ∨ ‖θ⋆ − vℓ − 〈θ⋆ − vℓ,v′
ℓ〉v′

ℓ‖2)2
.

(58)

Notice that this bound assumes the inequality (57).

If ‖v′‖ = 1, then ‖u − v − 〈u − v,v′〉v′‖ = infγ∈R ‖u − v − γv′‖. Thus, the set Tv,v′(r) :=

{u : ‖u − v − 〈u − v,v′〉v′‖ ≤ r} is a tube with radius r > 0. The Euclidean ball with

radius r′ > 0 and center w is denoted by Br′(w) := {y : ‖y − w‖ ≤ r′}. If u ∈ Br′(0), then

〈−v,v′〉 − r′ ≤ 〈u− v,v′〉 ≤ 〈−v,v′〉+ r′. Thus,

Hv,v′(r, r′) := Tv,v′(r) ∩Br′(0) ⊆
{
u : inf

〈−v,v′〉−r′≤γ≤〈−v,v′〉+r′
‖u− v − γv′‖ ≤ r

}
.

Let Γ(·) be the Gamma function. The volume formula for a tube (e.g. (2.3) in [17]) says that

the volume of the right hand side is bounded by 2r′cd−1r
d−1 + cdr

d with cp := πp/2/Γ(p/2 + 1)

the volume of a p-dimensional unit ball. By (41) in [23], Γ(d/2+1)/Γ(d/2+1/2)≤
√
d/2 + 1/2.

Therefore cd−1 ≤
√
πdcd.Moreover, d ≥ 5 implies 1+2

√
π
√
d/2 + 1/2 ≤ 2d−2. Thus, 2cd−1+cd ≤

(1 + 2
√
π
√
d/2 + 1/2)cd ≤ 2d−2cd. Together with the previous display, this means that

Vol
(
Hv,v′(r, r′)

)
≤ 2d−2r′cdr

d−1, whenever r ≤ r′.

with Vol the volume (Lebesgue measure) in d-dimensions. Using again that d ≥ 4, this means

that for any v1,v
′
1, . . . ,vk,v

′
k, and any b > 0,

Vol

(
Hvℓ,v′

ℓ

(bR
4
k−1/(d−1),

R

2

))
≤ 2d−3Rcdb

d−1Rd−1k−141−d

=
bd−1

2k

(R
2

)d
cd

=
bd−1

2k
Vol

(
BR/2(0)

)

and

Vol

( k⋃

ℓ=1

Hvℓ,v′

ℓ

(R
4
k−1/(d−1),

R

2

))
≤

k∑

ℓ=1

Vol

(
Hvℓ,v′

ℓ

(R
4
k−1/(d−1),

R

2

))

≤ 1

2
Vol

(
BR/2(0)

)
.

The latter implies that

Vol

(
BR/2(0) \

k⋃

ℓ=1

Hvℓ,v′

ℓ

(R
8
k−1/(d−1),

R

2

))
≥ Vol

(
BR/2(0)

)
− 1

2
Vol

(
BR/2(0)

)

=
1

2
Vol

(
BR/2(0)

)
.
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Now we define a probability measure on the ball BR/2(0) by

ν(A) =
Vol

(
A ∩

(
BR/2(0) \ ∪k

ℓ=1Hvℓ,v′

ℓ

(
Rk−1/(d−1)/4, R/2

)))

Vol
(
BR/2(0) \ ∪k

ℓ=1Hvℓ,v′

ℓ

(
Rk−1/(d−1)/4, R/2

)) .

The distribution ensures that the inequality (57) holds for all ℓ = 1, . . . , k with probability one.

Thus, we can apply (58) and therefore lower bound infθ⋆∈BR/2(0) by an average with respect to

the probability measure ν,

inf
θ⋆∈BR/2(0)

(1
d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))2

≤
∫ ( k∑

ℓ=1

88ρ2

d(σ2 ∨ ‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖2)
+

k∑

ℓ=1

27ρ4

(σ2 ∨ ‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖2)2
)
dν(θ)

≤
k∑

ℓ=1

88ρ2

d

(
1

σ2
∧
∫

1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖2
)
dν(θ)

+ 27ρ4
(

1

σ4
∧
∫

1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖4
)
dν(θ). (59)

The sum
∑

0≤t≤log2(k
1/(d−1))−1 is set to zero if k < 2d−1. Using that for d ≥ 6, one has 2d−5−1 ≥

1
22

d−5, we obtain
∑q

t=0 2
t(d−5) = (2(q+1)(d−5) − 1)/(2d−5 − 1) ≤ 2 · 2q(d−5). Applying this with

q = ⌊log2(k1/(d−1))− 1⌋ and using that k−4/(d−1)k = k(d−5)/(d−1) yields

∫
1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖4
dν(θ)

≤
∫ ∞

‖θ−vℓ−〈θ−vℓ,v′

ℓ〉v′

ℓ‖2≥R/8

1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖4
dν(θ)

+
2

Vol
(
BR/2(0)

)
∑

0≤t≤log2(k
1/(d−1))−1∫

2tRk−1/(d−1)/4≤‖θ−vℓ−〈θ−vℓ,v′

ℓ〉v′

ℓ‖2≤2t+1Rk−1/(d−1)/4

1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖4
dν(θ)

≤ 64

R4
+

2

Vol
(
BR/2(0)

)
∑

0≤t≤log2(k
1/(d−1))−1

Vol
(
Hvℓ,v′

ℓ

(
2t+1Rk−1/(d−1)/4, R/2

))

(22tR2k−2/(d−1)/16)2

=
64

R4
+

2

Vol
(
BR/2(0)

)
∑

0≤t≤log2(k
1/(d−1))−1

28

24tR4k−4/(d−1)

2(t+1)(d−1)

2k
Vol

(
BR/2(0)

)

≤ 64

R4
+

28 · 25
R4

≤ 214

R4
. (60)

Since ν is a probability measure, Jensen’s inequality gives

∫
1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖2
dν(θ) ≤

( ∫ 1

‖θ − vℓ − 〈θ − vℓ,v′
ℓ〉v′

ℓ‖4
dν(θ)

)1/2
≤ 27

R2
.

Recall that ρ = cRd−1/2(1 ∧ dk−1/2(1 ∨ σ/R)). Thus, ρ2 ≤ c2dk−1(R ∨ σ)2, ρ2 ≤ c2R2d−1, and
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ρ4 ≤ ρ2ρ2 ≤ c4k−1(R ∨ σ)2R2. Combined with (59), (60), and c = 2−8,

inf
θ⋆∈BR/2(0)

(1
d

d∑

j=1

TV
(
P+j,θ⋆,Vk

,P−j,θ⋆,Vk

))2
≤ 88 · 27kρ2

d(σ2 ∨R2)
+

221kρ4

σ4 ∨R4
≤ 88 · 27c2 + 221c4 ≤ 1

4
.

Using (54), we find that

sup
θ∈BR(0)

Eθ,Vk

[
‖θ̂ − θ‖2

]
≥ ρ2d

4
= 2−18R2

(
1 ∧ d2

k
(R ∨ σ)2

)
.

Proof of Corollary 1. Using θ0 = 0 and Lemma 4 with a = b = θ⋆, we obtain that ‖S0‖ =

‖θ⋆(θ⋆)⊺‖ = ‖θ⋆‖2 ≤ d. Thus Theorem 1 combined with (14) for κ = 1 and γ = 2 yields the

rate d2 log2(d)/k for the upper bound in the adaptive query setting.

The minimax rate in the non-adaptive query setting is R2∧ d2

k (R∨σ)2. Using that R =
√
d ≥ σ,

this becomes d2 ∧ d3/k. Since k & d2 log(d) the second term always dominates and the minimax

rate is d3/k.
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