CORRECTION TO "NONPARAMETRIC REGRESSION
 USING DEEP NEURAL NETWORKS WITH RELU ACTIVATION FUNCTION"

By Johannes Schmidt-Hieber and Don Vu
University of Twente and Vrije Universiteit Amsterdam

Correction: Condition (ii) in Theorem 1 should be changed to

$$
\text { (ii') : } \quad \sum_{i=0}^{q} \frac{\beta_{i}+t_{i}}{2 \beta_{i}^{*}+t_{i}} \log _{2}\left(4 t_{i} \vee 4 \beta_{i}\right) \log _{2}(n) \leq L \lesssim n \phi_{n} .
$$

Moreover, the constants C, C^{\prime} in Theorem 1 also depend on the implicit constants that appear in the Conditions (ii) - (iv). There are large regimes where the new condition (ii') is weaker than (ii).

Explanation: Rather than choosing m and N in the proof of Theorem 1 globally, one should instead apply Theorem 5 individually to each i with

$$
m_{i}:=\left\lceil\frac{\beta_{i}+t_{i}}{2 \beta_{i}^{*}+t_{i}} \log _{2}(n)\right\rceil \quad \text { and } \quad N_{i}:=\left\lceil c n^{t_{i} /\left(2 \beta_{i}^{*}+t_{i}\right)}\right\rceil,
$$

where $0<c \leq 1 / 2$ is a sufficiently small constant. As mentioned at the beginning of the proof of Theorem 1, it is sufficient to prove the result for sufficiently large n. Therefore, we can assume that $m_{i} \geq 1$ for all $i=0, \ldots, q$ and $N_{i} \leq n^{t_{i} /\left(2 \beta_{i}^{*}+t_{i}\right)}$. The latter implies

$$
\begin{equation*}
N_{i} 2^{-m_{i}} \leq N_{i}\left(n^{-\frac{t_{i}}{2 \beta_{i}^{*}+t_{i}}}\right)^{\frac{\beta_{i}+t_{i}}{t_{i}}} \leq N_{i}^{-\frac{\beta_{i}}{t_{i}}} \tag{1}
\end{equation*}
$$

If we now define

$$
\begin{equation*}
L_{i}^{\prime}:=8+\left(m_{i}+5\right)\left(1+\left\lceil\log _{2}\left(t_{i} \vee \beta_{i}\right)\right\rceil\right), \tag{2}
\end{equation*}
$$

then there exists a network $\widetilde{h}_{i j} \in \mathcal{F}\left(L_{i}^{\prime},\left(t_{i}, 6\left(t_{i}+\left\lceil\beta_{i}\right\rceil\right) N_{i}, \ldots, 6\left(t_{i}+\left\lceil\beta_{i}\right\rceil\right) N_{i}, 1\right), s_{i}\right)$ with $s_{i} \leq 141\left(t_{i}+\beta_{i}+1\right)^{3+t_{i}} N_{i}\left(m_{i}+6\right)$, such that using (1),

$$
\begin{align*}
&\left\|\widetilde{h}_{i j}-h_{i j}\right\|_{L^{\infty}\left([0,1]^{t_{i}}\right)} \leq\left(2 Q_{i}+1\right)\left(1+t_{i}^{2}+\beta_{i}^{2}\right) 6^{t_{i}} N_{i} 2^{-m_{i}}+Q_{i} 3^{\beta_{i}} N_{i}^{-\frac{\beta_{i}}{t_{i}}} \\
& \leq\left(\left(2 Q_{i}+1\right)\left(1+t_{i}^{2}+\beta_{i}^{2}\right) 6^{t_{i}}+Q_{i} 3^{\beta_{i}}\right) N_{i}^{-\frac{\beta_{i}}{t_{i}}} \tag{3}\\
& \text { imsart-aos ver. } 2014 / 10 / 16 \text { file: correction.tex date: October } 30,2023
\end{align*}
$$

where Q_{i} is any upper bound of the Hölder norms of $h_{i j}, j=1, \ldots, d_{i+1}$. We can now argue as in the original proof to show that the composite network f^{*} is in the class $\mathcal{F}\left(E,\left(d, 6 r_{i} \max _{i} N_{i}, \ldots, 6 r_{i} \max _{i} N_{i}, 1\right), \sum_{i=0}^{q} d_{i+1}\left(s_{i}+4\right)\right)$, with $E:=3 q+\sum_{i=0}^{q} L_{i}^{\prime}$. Using the definition of L_{i}^{\prime} in (2) it can be shown as in the original proof that $E \leq \sum_{i=0}^{q} \frac{\beta_{i}+t_{i}}{2 \beta_{i}^{*}+t_{i}}\left(\log _{2}(4)+\log _{2}\left(t_{i} \vee \beta_{i}\right)\right) \log _{2}(n)$ for all sufficiently large n. All remaining steps are the same as in the original proof of Theorem 1. The constant c in the definition of N_{i} will also depend on the implicit constant in the conditions $L \lesssim n \phi_{n}, n \phi_{n} \lesssim \min _{i=1, \ldots, L} p_{i}$ and $s \asymp n \phi_{n} \log n$.

Further comments:

- Lemma 1 requires that the constant K is large enough such that Theorem 3 is applicable.
- First display on p.1886: The value t_{2} is N not $N d$.
- Equation (18) also requires that the inputs are non-negative.
- In Lemma 3, the L^{∞}-norms should be replaced by the supremum, that is, $\|f\|_{L^{\infty}(A)}$ should be changed to $\sup _{\mathbf{x} \in A}|f(\mathbf{x})|$.
- In (22) and two lines after $(22), R(\widehat{f}, f)$ should be $R\left(\widehat{f}_{n}, f\right)$.
- In the proof of Theorem 1, r_{i} does not depend on i and should be named r. Three lines after Equation (26), C should be replaced by C^{\prime}.
- In the proof of Theorem $3, \beta^{*}$ in the first line on p .1893 should be $\beta^{* *}$. It is sufficient to check that the Hölder constant of $\phi_{\mathbf{w}}$ is bounded by $\left(\beta^{*}+1\right)^{t^{*}}\left(t^{*}+1\right)$ as all later arguments of the proof carry over. Moreover $g_{i}(\mathbf{x})=\left(x_{1}, \ldots, x_{d_{i}}\right)^{\top}$ should be $g_{i}(\mathbf{x})=\left(x_{1}, \ldots, x_{d_{i+1}}\right)^{\top}$ if $d_{i} \geq d_{i+1}$ and $g_{i}(\mathbf{x})=\left(x_{1}, \ldots, x_{d_{i}}, 0, \ldots, 0\right)^{\top}$ if $d_{i}<d_{i+1}$. Finally $\left\|\psi_{\mathbf{u}}\right\|_{2}^{2}$ should be replaced by $\left\|\psi_{\mathbf{u}}^{B}\right\|_{2}^{2}$.
- In the proof of Lemma 2, one can simply take the constant function $h_{j, \alpha}=K$ if $\mu_{0} \neq 0$. This immediately gives $d_{j, k}=K \mu_{0}^{d} 2^{-j d / 2}$ for all wavelet coefficients $d_{j, k}$. For the case $\mu_{0}=0$, one should replace the binomial coefficient $\binom{d r}{r}$ by the multinomial coefficient $\binom{d r}{r, \ldots, r}=$ $(d r)!/(r!)^{d}$.
- To verify the last inequality in (B.8) of the Supplementary Material, one can replace $\leq 1 / M$ by $<1 / M$.
- In the proof of Lemma 4, some F are missing. In particular it should be $r_{j}:=F \sqrt{n^{-1} \log \mathcal{N}_{n}} \vee E^{1 / 2}\left[\left(f_{j}(\mathbf{X})-f_{0}(\mathbf{X})\right)^{2}\right]$. Also on $p .12$ of the Supplementary Material it should be

$$
P(T \geq t) \leq 1 \wedge 2 \mathcal{N}_{n} \max _{j} \exp \left(-\frac{t^{2}}{8 t F /\left(3 r_{j}\right)+16 n}\right)
$$

Since $r_{j} \geq F \sqrt{n^{-1} \log \mathcal{N}_{n}}$ we can argue as before and obtain $P(T \geq$
$t) \leq 2 \mathcal{N}_{n} \exp \left(-3 t \sqrt{\log \mathcal{N}_{n}} /(16 \sqrt{n})\right)$ for all $t \geq 6 \sqrt{n \log \mathcal{N}_{n}}$. The conclusion of (I) is still valid.

- In the proof of Lemma 5, we always work with the $|\cdot|_{\infty}$-norm for vectors. The grid size of an individual parameter should be taken as $\delta /((L+1) V)$.

[^0]
[^0]: University of Twente,
 P.O. Box 217,

 7500 AE Enschede
 The Netherlands
 E-MAIL: a.j.schmidt-hieber@utwente.nl
 Vrije Universiteit Amsterdam,
 De Boelelaan 1105,
 1081 HV Amsterdam
 The Netherlands
 E-mail: don@abnormalstatistics.nl

