
Planning for Character Agents in Automated
Storytelling

masters thesis computer sciences
by

E.E.Kruizinga

October 29, 2007
Faculty of Human Media Interaction,
Department of Electrical Engineering,

Mathematics & Computer Science,
University of Twente

Supervisors:
ir. I.M.T. Swartjes, dr. M. Theune, dr.ir. H.J.A. op den Akker

Abstract

The Virtual Storyteller project aims to build an automated storytelling system which generates
and presents stories. The contents of these stories are generated by simulating a world in which
semi-autonomous agents act out the parts of characters in the story. This technique is called
emergent narrative, as the story emerges from the simulation run. In the Virtual Storyteller a
plot agent is added that should influence the simulation in various ways to ensure the emergence
of good stories.

In this thesis I discuss the different types of planners that can be used in character agents
in such a system and suggest using a partial-order planner for systems that aim at emergent
narrative. I further show two techniques for using a partial-order planner in character agents
that can aid the plot agent. The first technique is to have the planner create multiple plans
for the character. From these plans the plot agent can then select one that is desirable for a
good story. The second technique that I present is to allow the planner of character agents
to not only use actions that the character itself performs but to also give it the possibility of
choosing events or alterations to the simulation world. This technique is inspired by the way
actors create stories in improvisational theater.

Preface

Artificial Intelligence has always fascinated me greatly. In AI, instead of telling the machine
exactly what to do I tell it what choices it has and on what criteria it should make a choice.
The magic of AI is when a fairly simple machine surprises me with its choices. I would like to
share a couple of these times with you.

A problem that many people with an interest in mathematics face once is that of playing
the black/red betting game in roulette. The trouble with this game is that one loses money
because every now and then the ball ends up at the zero and neither black nor red pays. This
is the edge that the casino has and the way it makes profit. At one time I created a simple
program that I asked to play this red/black betting game in roulette and make a profit. To my
surprise after a while the program started to play profitable. It had decided to place negative
amounts of money on either red or black. And this reversed the edge that the “casino” had.
The program had found an answer to my problem, one that I could not find myself and so to
me it had shown an intelligence of its own. Later I created a program that played chess. Even
though I created it, it did once win a game against me that I was trying very hard to win. This
was the second time I was pleasantly surprised by the choices of an intelligent program.

The Virtual Storyteller project offered me a chance to find out if a programmed machine
can create stories in which it makes choices that surprise me. In some early experiments I had
created a quite simple prototype storytelling system and asked it to create a story in which the
princess ended up in the palace. It created a story in which the palace walked to the princess
and lifted her up into itself. Later I asked it to create a story in which a pirate went to a bar
on an island. In the story it created, the pirate climbed into a cannon and fired himself from
his ship into the bar on the island. In all these cases I had not told the program some of the
rules that I actually expected it to follow. The results however were some inspiring moments.

My work on the Virtual Storyteller has indeed been inspiring.

I wish to thank a number of people for their help while I was working on my thesis. My
supervisor, Rieks op den Akker for his support on some of the theoretical background but also for
his ideas on how characters might observe their environment and make choices. My supervisor,
Mariët Theune for having an open mind to any idea and always supplying commentary on any
written text often within a day or two, which is a great help when writing a thesis. My friends
from room 2070 for the great atmosphere. All my family and friends, for their general support.
And especially my supervisor, Ivo Swartjes for excellent discussions on what to do with the
Virtual Storyteller, what to design, and what to do research on.

Edze Kruizinga
October, 2007

1

Contents

1 Introduction 5
1.1 The Virtual Storyteller . 5
1.2 Character agents . 5
1.3 Research questions . 6
1.4 Thesis outline . 6

2 The Virtual Storyteller and the role of character agents 7
2.1 The Simulation . 9

2.1.1 The ontology . 9
2.1.2 Running example . 9
2.1.3 Actions . 11
2.1.4 The World Agent . 12

2.2 Drama management . 14
2.3 Content storage - Fabula . 15
2.4 Requirements for the character agents . 15

2.4.1 Participation in the simulation . 15
2.4.2 Believability requirements . 16
2.4.3 Contribution to the plot . 17
2.4.4 Collaboration with the Plot Agent . 18

3 Planners in the artificial intelligence field 19
3.1 Practical Reasoning Agents, BDI-Agents . 19
3.2 Planning . 19
3.3 Return to the running example . 20
3.4 Types of planners . 20

3.4.1 Planners that use a library of plans . 20
3.4.2 First principles planning . 23
3.4.3 Hybrid systems . 25

3.5 Conclusions . 25

4 Planners in related storytelling systems 28
4.1 The Oz project . 29

4.1.1 Edge of Intention . 29
4.1.2 Façade . 30

4.2 I-Storyteller . 30
4.3 Mission Rehearsal Exercise . 31
4.4 FearNot . 31
4.5 Projects of the Liquid Narrative group . 32

4.5.1 Actor Conference . 32

2

4.5.2 Fabulist . 33
4.5.3 Mimesis . 33

4.6 Conclusions . 33

5 Design of a modified partial-order planner 36
5.1 General character agent design . 36
5.2 The planning problem . 37
5.3 A new action design . 40

5.3.1 Action Arguments . 40
5.3.2 Action preconditions . 40
5.3.3 Action duration . 42
5.3.4 Action inter duration and inter effects . 42

5.4 Partial-order Planner . 43
5.4.1 Plan structure and the initial plan . 43
5.4.2 The POP algorithm . 44
5.4.3 Iterative deepening . 47
5.4.4 Initial state and reasoning . 47

5.5 Special features of the planner . 48
5.5.1 Providing insight into the mind of characters - Fabula structure 48
5.5.2 Room for suggestion - Presenting plans 49
5.5.3 Improvisation . 53

6 Discussion 57
6.1 Status of the implementation . 57
6.2 Discussion of the use of the special extensions made to the planner 57

6.2.1 The creation of fabula structure . 57
6.2.2 Discussion of the creation of multiple plans 58
6.2.3 Discussion of the use of improvisations . 58

6.3 Compatibility with future work on the character agents 59
6.4 Performance and scalability . 59

7 Conclusions and Future work 60
7.1 Conclusions . 60
7.2 Future work . 60

7.2.1 The perception module . 60
7.2.2 A deliberation module . 61
7.2.3 Some small additions to the planner . 61
7.2.4 Determinism . 61
7.2.5 Character agent abilities and fairy tales 62

Bibliography 63

A Prolog Implementation 66
A.1 Prolog from Java . 66
A.2 Small introduction to Prolog . 66
A.3 Prolog files . 66

A.3.1 Rational agent files . 67
A.3.2 Story operator files . 67
A.3.3 Character agent files . 68

A.4 Action database . 68

3

A.4.1 Action hierarchy . 68
A.4.2 Action naming . 69
A.4.3 Action schemata . 69
A.4.4 Numbers . 70

B Partial-order planner implementation 71
B.1 Data types . 71
B.2 The planner implementation in SWI-Prolog . 72
B.3 A note on maintain and avoid goals . 77
B.4 Planner interface and multiple plans in Prolog . 77
B.5 Character Agent Prolog Code . 78

4

Chapter 1

Introduction

1.1 The Virtual Storyteller

This thesis is part of the Virtual Storyteller project [34]. The Virtual Storyteller project aims
to build an automated storytelling system which generates and presents stories. The contents
of these stories are generated by simulating a world in which semi-autonomous agents act out
the parts of characters in the story. This technique is called emergent narrative, as the story
emerges from the simulation run. This emergent event sequence is represented in a formal
language [31]. The content of the story is then translated into a narrative in natural language
[35].

The emergent narrative approach, in which a simulation of characters in a story world is
used to create the contents of a story, makes it possible to explicitly model the characters
as autonomous agents. This way the believability of the characters can be made a central
issue, which is one of the requirements of a good story. In the Virtual Storyteller project
much attention has been given to character believability. And in the future more research will
certainly be done in this direction. A problem for simulation based story generation systems
is generating a well-structured plot. A well-structured plot is another quality of good stories.
The events that take place should make the story interesting. In the simulation of a world the
events that take place will not necessarily form an interesting plot.

In the Virtual Storyteller the approach taken is a simulation/character based approach but
with the addition of a drama manager, the Plot Agent, which influences the simulation such
that a well-structured plot emerges [30]. In the future this Plot Agent should have knowledge
of what makes a well-structured plot and it will be given tools to influence the simulation and
thereby the resulting story.

1.2 Character agents

Character agents in the Virtual Storyteller simulate the characters in the story. The simulation
used in the Virtual Storyteller is done by creating a symbolic representation of a story world.
The character agents have a set of actions available to them which specify ways in which they
can manipulate the simulated world. The successful simulation of characters depends on the
way the character agents choose actions.

In past research characters agents have been designed with the singular aim of simulating
believable characters. This leaves the task of generating a well-structured plot with the Plot
Agent. The original idea for the Virtual Storyteller was inspired by improvisational theater
[9]. In improvisational theater the actors are not only responsible for portraying a believable

5

character but also actively contribute to a well-structured plot. This leads to the idea of
turning character agents into improvisational actors. In [32] it is argued that techniques from
improvisational theater are useful in the design of systems that use an emergent approach to
story generation. Based on these ideas I try to create character agents that do more than only
simulate a character.

1.3 Research questions

The aspect of character agents that I have specifically looked at is the means-ends-reasoning.
Means-ends-reasoning is the process of determining what actions to take in order to arrive at
a given goal. The means-ends-reasoning of character agents can be realized by using a planner
from the field of artificial intelligence. Within the field of artificial intelligence there are a
number of different types of planners and different types of planners have been used in other
storytelling systems. The research questions are:

1. What are the characteristics of the planners used in other storytelling systems
and in the field of AI in general and what characteristics do we want for the planner
that will be used by character agents in the Virtual Storyteller?

2. How can such a planner be modified to make it possible for character agents to
contribute to the generation of story contents?

The first research question results in the choice of a planner based on which I design a new
planner. This concerns the second research question. In an effort to turn character agents
into actors I do things. Firstly I investigate the use of improvisations. Secondly I would like
the planner to search for not just one believable action for the character agent, but a range of
actions that the character might choose, such that the Plot Agent can be given room to direct
the character agents.

1.4 Thesis outline

The thesis is divided into the following chapters:
Chapter 2 describes the work done on the Virtual Storyteller project that forms the context
to the character agents and it presents the requirements for the planner that is to be used in
character agents.
Chapter 3 discusses the different types of planners that are available from the field of artificial
intelligence.
Chapter 4 reviews a number of research projects that are also aimed at automated storytelling
and the planners used in the designs of character agents in those systems.
Chapter 5 shows the design of the modified planner that makes it possible for character agents
to make a contribution to a well-structured plot.
Chapter 6 discusses the results and problems encountered.
Chapter 7 gives a conclusion and future work possibilities are given.

6

Chapter 2

The Virtual Storyteller and the role
of character agents

In this chapter I look at the Virtual Storytelling system and then at the place the character
agents take in it in the form of requirements on them.

The Virtual Storyteller does two things. It generates story contents and it presents sto-
ries. This division makes it possible for me to concentrate on just one of these two and that is
content creation/generating stories. The steps that the Virtual Storyteller makes are identified
in documents created by other participants of the Virtual Storyteller project as, the creation
of content, the creation of a narrative in natural language and then generating spoken text. I
place the the creation of narrative in natural language and the generation of a spoken text in
the presentation part of the Virtual Storyteller.

The general outline of the workings of the Virtual Storyteller was presented in [33] and [34].
Based on these I will explain how the Virtual Storyteller works. The content creation is done
in a character-based way. This means that the stories that are generated are the result of sim-
ulating characters in a simulated world and using the resulting sequence of events and states of
the simulation as the content of a story. This is the process of emergent narrative. In chapter
4 I will discuss other systems that use this and other methods to create story contents. In
past systems it was observed that the stories that emerge from using a simulated world with
characters lack a good plot most of the time. The system should generate good plots. As
a simplifying assumption two requirements are made of a good plot [34]: the plot must be
consistent and it must be well structured. The plots created by a system that uses only a
simulation are consistent because the actions of the characters are in line with their personality
and previous actions but they will not always be well structured. Things happen but they may
be unrelated, they do not always result in a sequence of events that can be seen as a story. To
make the emergence of a good story, that is a sequence of events that forms a coherent plot
more likely we use a drama manager, which we call the Plot Agent. In [33, 34] this was called
the director agent. The Plot Agent should have general knowledge of what makes a good plot
and should intervene in the simulation. The methods the Plot Agent might use to intervene
in the simulation I will show in section 2.2. This approach is taken as opposed to a plot-based
approach in which the story is created based on knowledge of what makes a good plot. In
this approach no simulation is used and the story is created top-down. Though this approach
results in well structured plots the plot consistency is low because the characters in the sto-
ries are interchangeable and have no distinct personality. A picture of this is shown in figure 2.1.

In the remainder of this chapter I will explain how the simulation works, how the Plot Agent is

7

Figure 2.1: General outline of the Virtual Storyteller system. In this picture the general outline
of the Virtual Storyteller system is shown with the place of the character agents in it, this is
a conceptual diagram. The character agents are software agents that control entities in the
simulation. To give some idea of what processes could be located in the presentation layer I
included the narration process.

8

supposed to intervene in this simulation, how the content of the generated stories is stored and
communicated to the presentation part of the Virtual Storyteller system and what requirements
all this places on character agents.

2.1 The Simulation

2.1.1 The ontology

The story world is simulated by representing the world as a list of facts. These facts are relations
between two objects. The relations and objects that can be used in the simulation are defined
in an ontology. An ontology that was designed for use in the Virtual Storyteller is presented
in [37]. This ontology is called the Story World Core ontology and is specified in OWL [3].
OWL is a description logic, a description logic is a knowledge representation language that can
describe the concepts in a domain and do this within a formal logic. The objects and relations
are put into a hierarchical class system. OWL is expressed using RDF-triples, these are 2-place
relations, Relation(Subject, Object). Subject and Object are always instances of a category in
the entity ontology. The simulation world contains a list of Relation instances that are true in the
simulated world. In the database the relations are stored as triples (Subject, Relation,Object).
An RDF-triple is an atomic statement, meaning that is either true or false.

To show how this is done I will introduce an example story. The example story is a fairy
tale. I use a fairy tale as this is suggested in [33], in which the plan is to start with simple fairy
tales and move on to other domains later.

2.1.2 Running example

In most other examples that I use in this thesis I will use this setting. I have chosen the story
of Cinderella and tried to find the simplest version of it. The essence of the Cinderella story
to me is that she needs a nice dress before she can go to the ball to meet the prince. And so I
present the following version:

Cinderella

Cinderella is at home and lives with her two stepsisters and her stepmother and has to do all
the hard work. Cinderella and her sisters all want to go to the ball at the palace to try to meet
the prince but you can only go if you are wearing a nice dress. The mother wants any of her two
daughters to marry the prince and gives them each a nice dress but not to Cinderella. While the
two stepdaughters and their mother go to the ball, Cinderella is visited by the fairy godmother
who gives her a nice dress so she can go to the ball. She must return by midnight however. At
the ball Cinderella and the prince meet each other and the prince decides he wants to marry
Cinderella. Cinderella however has to go home quickly and runs off. Luckily for the prince
Cinderella loses a shoe while running off. With the aid of this shoe he searches all the land for
her and finds and marries her.

The Cinderella setting

The Cinderella setting uses the Story World Core ontology that was discussed in chapter 2.
The setting is represented as RDF-triples with OWL name spaces. In the examples however I
often leave out the complete name spaces for readability. The Subject and Object will often
be individuals from the Cinderella setting or the Story World Core ontology. The Relation is
often from the Story World Core. Though the story I showed in the previous paragraph may

9

Figure 2.2: The Cinderella Setting. This picture shows the Cinderella setting. The rounded
boxes are locations, the house and the palace. The black arrow is the road between the locations.
The two ellipses are humans/character agents, the Prince and Cinderella. The small rectangle
is an item, the nice dress. The gray arrows connect entities to locations and thus show where
an entity is.

seem quite simple I will actually use an even simpler setting in most examples:

There are two locations, the house and the palace and a road between these locations.

• Cinderella’s House (house, type, geographicarea)

• the Palace (palace, type, geographicarea)

• the Road (road, type, groundway), (road, fromGeographicarea, house), (road,
toGeographicarea, palace)

There are two humans, Cinderella and the prince, each of which may be controlled by a char-
acter agent, and a nice dress. Each of them is located at one of the locations, this is specified
by the ‘supportedBy’ relations.

• Cinderella (cinderella, type, human), (cinderella, supportedBy, house)

• the Prince (prince, type, human), (prince, supportedBy, palace)

• a nice dress (nicedress, type, clothing), (nicedress, supportedBy, house)

This Cinderella setting is presented in 2.2.
The Story World Core ontology from [37] supplies the types such as ‘human’, ‘clothing’ and

‘geographicarea’. It places these classes into super classes. This way all concepts are specified
in the ontology. Part of this ontology is shown in figure 2.3.

10

Figure 2.3: The organism subtree of the entity ontology. In this picture the ontology subtree of
the organism class can be seen. Any object in the simulation that is a human is also a humanoid
and an animal. Note that the humanoid class can be used as superclass to fairy tale entities
such as fairies and trolls.

2.1.3 Actions

To get from one world state to another an agent has actions available to it. These actions are
ways for the agent to get from one world state to another. Actions specify what set of world
states they can be used in and in what set of world states the agent will end up. Actions are
represented in action schemata. An action schema has a name and a set of variables. The fact
that it uses a set of variables as input is what makes it a schema; a specific action is created
by binding the variables to a value. An action schema specifies in what way the world state
changes by the add and delete lists. The add list has all the predicates that must be added to
the world state and the delete list has all predicates that must be deleted from the world state.

So to be able to run a simulation in which the story of Cinderella unfolds, the characters need
actions. Next to the entity ontology an ontology of actions was also designed and suggested for
use in the Virtual Storyteller in [37]. Based loosely on those actions I use the following example
of actions that are simpler than those suggested in [37] to complete the Cinderella example.
I show these simpler actions because I merely want to explain how the simulation works and
avoid any clutter by unnecessary detail.
Agents have four actions. With the first two they can walk back and forth between locations
‘WalkFromTo’ and ‘WalkToFrom’. There are two actions for walking because a road is a con-
nection with a direction, it has a from-connection and a to-connection. This makes it possible
to differentiate between going up or down hill on the same road. They further have an action to
pick something up, ‘PickUp’, and one to dress in something which they have picked up, ‘Dress’.

• WalkFromTo(Agens, none, Target, Instrument, CurrLoc)
preconditions: (Agens, supportedBy, CurrLoc),
(Instrument, fromGeoGraphicArea, CurrLoc),
(Instrument, toGeographicArea, Target)
add effects: (Agens, supportedBy, Target)
delete effects: (Agens, supportedBy, CurrLoc)

• WalkToFrom(Agens, none, Target, Instrument, CurrLoc)
preconditions: (Agens, supportedBy, CurrLoc),

11

(Instrument, toGeographicArea, CurrLoc),
(Instrument, fromGeographicArea, Target)
add effects: (Agens, supportedBy, Target)
delete effects: (Agens, supportedBy, CurrLoc)

• PickUp(Agens, Patiens, none, Instrument, CurrLoc)
preconditions: (Agens, supportedBy, CurrLoc),
(Patiens, supportedBy, CurrLoc)
add effects: (Patiens, heldBy, Agens)
delete effects: (Patiens, supportedBy, CurrLoc)

• Dress(Agens, Patiens, none, none)
preconditions: (Patiens, heldBy, Agens)
add effects: (Patiens, wornBy, Agens)
delete effects: (Patiens, heldBy, Agens)

The actions used in the Virtual Storyteller and the ones I gave above are an example of action
schemas. The ‘PickUp’ action is such a schema. A character agent can create an actual usable
action instance by binding the variables of the action schema. For the ‘PickUp’ action this
could be done by choosing Agens = cinderella, Patiens = nicedress, Target is none, Instrument
= none, CurrLoc = house. And it will look like this:

PickUp(cinderella, nicedress, none, none, house)
preconditions: (cinderella, supportedBy, house),
(nicedress, supportedBy, house)
add effects: (nicedress, heldBy, cinderella)
delete effects: (nicedress, supportedBy, house)

This action can now be used by Cinderella to pick up the nice dress. To see whether this ‘PickUp’
action can be used in the current situation the preconditions are checked. (cinderella,
supportedBy, house) must be true and indeed it is, in the example setting, the same goes
for (nicedress, supportedBy, house). The add effects specify the facts that will be added
to the state of the world and the delete effects specify the facts that will be removed from the
state of the world. If Cinderella performs the action it will result in (nicedress, supportedBy,
house) being removed and the nice dress will no longer be supported by the house. (nicedress,
heldBy, cinderella) will be added and so the nice dress will then be held by Cinderella.

Part of the action ontology suggested by [37] is shown in figure 2.4. The actions suggested in
[37] were a bit more complex than the ones I used in the example. I will discuss these actions
and some changes I made to them before using them in my research in chapter 5. The use of
actions by character agents is further discussed in chapter 3.

2.1.4 The World Agent

The World Agent provides the actual simulation environment in which the stories take place.
It stores the current state of the world in its database and it manages changes. By doing this
it maintains the truth about the simulated world. It checks whether an action that a character
wants to perform has all its preconditions met and it schedules the actions according to the
durations of actions and the sequence in which to execute them. It does the same for events
chosen by the Plot Agent. It then updates the state of the simulated world accordingly. The
World Agent can also receive world change requests from the Plot Agent that directly change

12

Figure 2.4: The ontology of the Transitmove subtree of actions. In this picture the subtree of
the transitmove actions can be seen. These actions are all actions that are used to move the
agent that uses the action to another location. The Walk action has an extra layer of actions
that are the lowest level and which are actions that are available for use to the character agents.
This lowest level of actions have two variations which use “roads” in either direction.

13

the current state of the world. After an action or event has been performed or a world change
has been applied the World Agent sends a world update to the Plot Agent. A description of
the World Agent can be found in [30] in section 7.2.

2.2 Drama management

In the Virtual Storyteller a drama manager, called the Plot Agent, is used to guide the character
agents such that a well structured plot emerges. So the idea is to use the emergent narrative
technique but with the guidance of a manager that has general knowledge of plot structure.
In the Virtual Storyteller the drama manager is called the Plot Agent. In chapter 4 I will
discuss other systems that use a drama manager. The Plot Agent is, for now, only a theoretical
construct. No actual implementation of the Plot Agent has been created yet. My work on this
thesis and the character agents has been concurrent with the implementation of a Plot Agent
and more concrete designs of how it should work. The work on the Plot Agent seems to progress
generally in the direction suggested in theoretical work that is available however and so I can
present that here.

In earlier work, [33] and [34], it is suggested that the Plot Agent would have three ways to
influence the simulation:

• Environmental: introducing new characters and objects into the virtual environment.

• Motivational: giving a character a goal to pursue.

• Proscriptive: disallowing a character’s intended action.

In later work [30] different suggestions are made as to how the Plot Agent should influence
the simulation. In [30, 5.1] it is argued that prohibiting the action of a character agent could
very well diminish character believability. If a character has decided on a certain action and
must then forcefully choose another it will be unable to choose the action that would be most
appropriate for it. The Plot Agent might prohibit a character from stealing the wallet of another
character. This could be because the intended victim of the crime is the main character of the
story and it needs its wallet to progress the story. If we have seen the thief steal everyone else’s
wallet this will not be believable. It is therefore suggested in [30] that the Plot Agent should use
mostly environmental control techniques which it compares to narrative mediation from [41].
This results in the following list of control techniques:

1. Generating events to mediate the plans of characters

2. Influencing the perceptions of the characters

3. Changing the setting

4. Directing the characters by suggesting Goals or Actions

A version of first technique has at this point been implemented. The Plot Agent now has its
own set of actions/events that it uses in a way that is comparable to the way character agents
use actions. The second and third techniques have not been used yet. The fourth technique led
me to one of my research questions. The character agents should be able to decide whether or
not they can agree with a given suggestion. This point is further discussed in section 2.4.

14

2.3 Content storage - Fabula

The record of the sequence of events that happen during the simulation of a world is called
the fabula [31]. A fabula contains all events that occurred. In [31] it is argued that this fabula
needs to be recorded in a formal representation which will make it possible to analyze it and
to use it as the input for the selection of a proper subset for presentation, a plot. The fabula
contains more information than will be needed for a plot that is contained within it. A plot is
a subset of the fabula and contains the sequence of events as seen from a certain viewpoint or
viewpoints. The selection of a plot from the fabula can leave out irrelevant events.

The formal structure in which to represent fabula that is presented in [31] is based on the
General Transition Network model [36]. In the fabula structure there are six types of elements:
Goals, Actions, Outcomes, Events, Perceptions and Internal Elements. These elements have
subclasses, Internal Element has Belief as one of its subclasses for example.

These elements are connected by causal relations: physical causality, motivation, psycho-
logical causality and enablement. A physical causality can exist for example between Actions
and Events, and Events and Perceptions. Motivation relations can be placed between Goals
and Actions. A psychological causality can be placed for example between a Perception and an
Internal Element such as a Belief.

A fabula structure record of a simulation contains fabula elements connected by fabula
causalities with properties connected to them which specify the time it happened in the simu-
lation and which character and other objects were involved.

[Example of a fabula record of a piece of a story]

2.4 Requirements for the character agents

Now that the simulation, the interactions with the Plot Agent and the Fabula structure have
been discussed I can look at the requirements these aspects place on the character agents. The
simulation requires that the character agents act but does not specify anything else. We also
want the character agents to act believably. This requirement will also receive attention in this
section.

2.4.1 Participation in the simulation

The first and most basic requirement for character agents is that they participate in the sim-
ulation. They must know what character they are in the story, what actions are available to
them and when they can be performed. Characters are not omniscient, they receive perceptions
that show only part of the environment. Characters must have an internal representation of the
environment that could be wrong or incomplete. In addition to this being in line with how one
may expect any world to work it is also used as one of the techniques the Plot Agent can use to
influence the simulation, namely influencing the perceptions that the character get. Thus the
characters need to be able to operate in a partially observable environment. The characters are
not alone in their world, other characters also act in it and the Plot Agent initiates events that
change the world as well. The character agents must be able to respond to a changing world in
which plans will fail. These issues are also discussed in [8].

The new simulation that was created with the design of the latest version of the architecture
for the Virtual Storyteller from [30] and [37] and the entity and action ontologies that were
presented in [37] are the motivation for redesigning the character agents. The previous design
can be found in [24].

15

2.4.2 Believability requirements

Merely participating in the simulation is not enough, the characters must be believable. In [16]
a list of requirements for believable agents is presented. This list was constructed based on
the literature on the subject of believable characters of character-based artists. A similar list
can be found in [29] which is partly based on the one from [16]. From the two sources I have
created a list of believability requirements for character agents in a form that I find the most
clear. I will discuss the elements of this list in an attempt to find out whether these elements
influence my research on the planner that I will use in character agents and their collaboration
with the Plot Agent as improvisational actors. Some of the elements can be achieved within my
research. Other elements should be kept in mind for future work and I will take into account
these developments. This influence may be that I could achieve certain elements within my
research.

The list that I use is:

• External attributes

– Appearance

– Physical movement

– Consistency of expression

• Internal attributes

– Intentionality

– Emotion

– Personality and change

– Social context

– Capability

External attributes

External attributes are traits of a character that are directly visible to an audience. The first
two: ’appearance’ and ’physical movement’ which I take from [29] are the physical description
of a character and the way it moves. The third: ’consistency of expression’ is from [16]. It states
that all avenues of expression must work together and must convey the appropriate message. All
of these external attributes can be realized in the presentation layer of the Virtual Storyteller.
They do not have to be part of the story generation layer and also do not need to be part of
the simulated world. For example whether a character looks lifelike and moves naturally has
no impact on the story. Within the simulated world this has no effect. Thus this requirement
has no impact on the character agent and the planner.

Internal attributes

The following are all internal attributes. They are the attributes from [29] and [16].

Intentionality

A believable character needs goals. It must be pro-active, self-motivated. Not only must it take
up goals in response to the environment but it must also pursue its own agenda. It must appear

16

that the character is pursuing its own goals. It must also react to the environment however.
This requirement motivates the use of character agents that explicitly represent goals and that
change their immediate goals but also pursue long term goals. And a planner that tries to find
sequences of actions that take it to the goal while compensating for changes in the environment.

Emotion

A character is more believable if it has emotions; it should generate emotions and act on
them. Also the emotions that a character experiences can be expressed directly when presenting
the story without having them only come out through the actions of characters. Previously
characters with emotions have been created for the Virtual Storyteller. These are described
in [24]. My intention is that the design for character agents that I present in this thesis is
compatible with the ideas from [24]. Such that in future work this model or a new similar one
could be created for it without trouble.

The emotion model that was presented in [24] works by modeling a small number emotions,
such as hope/fear, as a value that ranges from -100 to 100. These emotions are used to selec-
t/change the goal that a character has. The research I do focuses on action selection after a
goal has been chosen and so this should be compatible.

Personality and change

In [16] personality is defined to be everything that makes a character different. Characters can
change during a story and this is often expected in a good story. Differences in personality
were present in [24] in the emotion model. If a similar model is used in future work on the
character agents of the Virtual Storyteller then personality and change will have little impact
on the design of the planner.

Social context

Not only should character agents be ready for a changing environment due to the actions of
other agents, they should also interact with them in meaningful ways. They should exchange
beliefs and goals, make deals and form relationships. They should also ideally predict each
others behavior when creating their own plans. This requirement will largely be future work.

Capability

A character must be able to achieve something in the world in which it lives. This concept is
dealt with largely by the requirement that characters participate in the simulation and the re-
quirements that I formulated there. It also motivates the use of a planner that allows characters
to create plans that allow them to achieve their goals.

2.4.3 Contribution to the plot

By merely acting believably within the simulation the character agents contribute to a consistent
plot but not to a well structured plot. Furthermore there is a part of the simulation that cannot
be recorded into fabula by the Plot Agent. This is the “mind” of the character agent. I will
discuss these two contributions here.

17

Insight into the mind of characters

Not recorded from the simulation of the story world is the internal state of character agents.
Often in a story we would like to show what goes on in the mind of the characters. The char-
acter agents should provide the Plot Agent, which records a fabula, with fabula elements that
represent these internal workings.

The fabula elements that the character agent may be able to generate and communicate to the
Plot Agent are:

• perception psychologically causes belief

• belief psychologically causes intention

• intention motivates action

• desire motivates intention

• belief psychologically causes belief

These are all processes that happen within the character agents that should be recorded in the
fabula. The communication of these fabula elements to the Plot Agent is a requirement that I
place on the character agents.

An example of a fabula causality that the character agent Cinderella might provide is when
Cinderella perceives that the prince is in the palace. This will lead her to believe that the prince
is in the palace. And thus the character agent can present the fabula causality, Perception(the
prince is at the palace) psychologically causes Belief(the prince is at the palace).

2.4.4 Collaboration with the Plot Agent

In section 2.2, I discussed the ways in which the Plot Agent might intervene in the simulation.
Some of these methods place requirements on the character agents. Most of them do not because
they were already implied by the “participation in the simulation” requirements. World updates,
events and perceptions that were influenced by the plot agent do not require anything that the
participation in the simulation does not already place on the character agent. It is however
the case that the way the simulation works is not fixed. The workings of the simulation are
subject to demands placed on it by the research done using it. In chapter 5 I do in fact make a
number of changes to the suggested simulation. So these requirements are not directly placed
on the character agents but on the simulation. The simulation should allow for world updates,
allow for events and use perceptions. The last point means that the characters should not be
omniscient and should use an internal model of the state of their environment that can be wrong.
This allows the Plot Agent to influence the story by making use of the partial availability of
knowledge of the world that the character agents have.

The last technique suggested in [30] that the Plot Agent might use to influence the story is
to suggest goals and actions to the character agents. This leads to the idea that the character
agents may be able to suggest to the Plot Agent what choices are available.

Finally, the “collaboration with the Plot Agent” requirement is the basis for the research
on having character agents use improvisations.

18

Chapter 3

Planners in the artificial intelligence
field

In this chapter I list a number of different types of planners that are known from the field of
Artificial Intelligence. But before I can begin to answer the question of what type of planner to
use in a character agent and what such a planner has to be able to do I must first know what
the character agent in general looks like. Therefore I begin this chapter by looking at Intelligent
Agents.

3.1 Practical Reasoning Agents, BDI-Agents

In chapter 4 of [40] Practical Reasoning Agents are described. Practical Reasoning is defined
to be deliberation followed by means-ends reasoning. This means a Practical Reasoning Agent
first determines its intentions and then tries to find a way to bring them about. A Practical
Reasoning Agent is a BDI-agent. A BDI-agent is an agent that has beliefs, desires and intentions.
A belief is a statement about the world that the agent assumes to be true. A BDI-agent creates
a model of its environment by it’s set of beliefs. A desire is a general goal that the agent has.
An intention is a goal that the agent has committed to achieve. The processes that take place in
a BDI agent are knowledge management, deliberation and planning. Knowledge management is
the process up updating beliefs. The beliefs will usually be changed after a round of perceptions
has been received. After receiving new perceptions the agent will decide what beliefs to add or
delete. Deliberation is the process that alters the intentions an agent has. Intentions may be
dropped if the agent believes they cannot be achieved or if they already have been achieved. New
intentions may be added during deliberation. Intentions should never be in conflict. Desires
can be in conflict with each other however. New intentions are created based on the desires
the agent has. Finally, planning is goal directed action selection. The “goal” that the planner
uses is the set of intentions. BDI-agents are well suited to operate in a world that is partially
observable and dynamic because of their explicit representation of beliefs and goals.

3.2 Planning

To decide what action to take to achieve its intentions the character agents use a planner. This
is the planning problem, a planning problem has three inputs:

• The initial state of the environment.

19

• The goal state.

• The actions.

A way to represent states and actions is by using the STRIPS [10] language. STRIPS uses
first-order predicate logic. A world state is represented as a conjunction of predicates.

An example of the way to represent that Cinderella is at home and the prince is at the palace
is the following:

(cinderella, supportedBy, house) ∧ (prince, supportedBy, palace) (3.1)

To get from one world state to another an agent has actions available to it. These actions are
ways for the agent to get from one world state to another. The actions specify what set of world
states they can be used in and in what set of world states the agent will end up. Actions are
represented in action schemata. An action schema has a name and a set of variables. The fact
that it uses a set of variables as input is what makes it a schema; a specific action is specified
by binding the variables to a value. An action schema specifies in what way the world state
changes by the add and delete lists. The add list has all the predicates that must be added to
the world state and the delete list has all predicates that must be deleted from the world state.

The intentions of a BDI-agent are used to specify the goal state for the planner. The beliefs
are used to specify the initial state to the planner.

3.3 Return to the running example

In 2.1.2 I introduced the example story of Cinderella that I will use extensively in this chapter.
This time I add a goal for Cinderella however which is to be at the palace and to wear a nice
dress. The character agent that controls ‘cinderella’ will have the goal of being in the palace
and wearing the nice dress: (cinderella, supportedBy, palace), (nicedress, wornBy,
cinderella). A planner should find a plan which results in this situation, such as pick up the
dress, dress up in the dress and walk to the palace:

PickUp(cinderella, nicedress, none, none, house),
Dress(cinderella, nicedress, none, none),
WalkFromTo(cinderella, none, palace, road, house).

3.4 Types of planners

To find out what type of planning to use in a character agent I will go by a number of different
options that are available.

3.4.1 Planners that use a library of plans

A number of planners use a library of plans. These planners are discussed below. In all cases
the library of plans must be created by a human author. From the storytelling perspective this
presents an opportunity to author the character agent that uses the planner. But this will also
limit the agent to the plans that it has available to it.

20

Scripted

The first type of planning is one that does not actually do any planning. It chooses the first
action from a predetermined list, which is the script. A scripted agent does not change its
action selection based on perceptions. It chooses an action without taking the environment into
account. A scripted agent will take no computation time. It needs to be authored as it needs
the one plan that it will perform.

A scripted version of Cinderella will have one predefined plan: pick up the dress, dress up
in the dress and walk to the palace:

PickUp(cinderella, nicedress, none, none, house),
Dress(cinderella, nicedress, none, none),
WalkFromTo(cinderella, none, palace, road, house).

This plan has to be created by a human author in advance. This leaves no room for emer-
gent behavior and thereby emergent narrative. Cinderella would also easily get into trouble. If
a stepsister is introduced who picks up the nice dress before Cinderella does Cinderella will fail
and either stop or arrive at the palace without a nice dress.

Simple reflex

A simple reflex agent is an agent that has no internal state. It chooses an action based on the
perceptions it receives without creating a model of the environment. Typically it will have a
table that links actions with perceptions. A simple reflex agent takes virtually no computation
time. This type of agent could be used to simulate simple agents such as goldfish and birds;
simple animals that must not take to much computation time but that must react to the world
in a specific way.

A simple reflex agent version of Cinderella would have a list of reactive behaviors represented
as a set of rules. These rules could be:

• If the nice dress is here, pick it up:
beliefs: (cinderella, supportedBy, ?x), (nicedress, supportedBy, ?x)
implies ⇒
action: PickUp(cinderella, nicedress, , , ?x)

• If there is no dress here and I have no dress, walk to another location:
beliefs: (cinderella, supportedBy, ?x), not(nicedress, supportedBy, ?x)
implies ⇒
action: walkFromTo(cinderella, , palace, road1, ?x)
or ∨
action: walkToFrom(cinderella, , house, road1, ?x)

• If I have a dress, dress up in it:
beliefs: (nicedress, heldBy, cinderella)
implies ⇒
action: dress(cinderella, nicedress, , ,)

• If I am wearing a dress, walk to the palace:
beliefs: (nicedress, wornBy, cinderella)

21

implies ⇒
action: walkFromTo(cinderella, , palace, road1, house)

Hierarchical Task Networks

A Hierarchical Task Network planner solves problems by decomposition. The initial problem
statement, the initial state and goal are viewed as a single action that must be decomposed
into lower level actions. On the lower levels actions are decomposed further until only primitive
actions remain. There will often be choices available to the planner when choosing a decom-
position for an action. An action decomposition specifies a way to turn an action into a plan.
The planner uses a library of decompositions.

As an example Cinderella, ‘cinderella’, will have the goal of being in the palace and wearing
the nice dress: (cinderella, supportedBy, palace), (nicedress, wornBy, cinderella)
as before.
One of the actions she can choose from is:

• AttendBall(Agens, Patiens, Target, Instrument, CurrLoc, DressLoc)
preconditions: (Agens, supportedBy, CurrLoc),
(Patiens, supportedBy, DressLoc)
add effects: (Agens, supportedBy, Target)
(Patiens, wornBy, Agens)
delete effects: (Agens, supportedBy, CurrLoc)
decomposition:
TakeDressFromHouse(Agens, Patiens, Target, Instrument, CurrLoc),
JourneyToLocation(Agens, none, Target, none, CurrLoc)
or ∨
BuyDress(Agens, Patiens, Target, none, CurrLoc),
JourneyToLocation(Agens, none, Target, none, CurrLoc)

• TakeDressFromHouse(Agens, Patiens, Target, Instrument, CurrLoc, DressLoc)
preconditions: (Agens, supportedBy, CurrLoc),
(Patiens, supportedBy, DressLoc)
add effects: (Agens, supportedBy, DressLoc)
(Patiens, wornBy, Agens)
delete effects: (Agens, supportedBy, CurrLoc),
(Patiens, supportedBy, DressLoc)
decomposition: JourneyToLocation(Agens, none, DressLoc, none, CurrLoc),
PickUp(Agens, Patiens, Target, none, DressLoc),
Dress(Agens, Patiens, none, none, DressLoc),

Cinderella will now choose the AttendBall action and, if there is no store to buy a dress,
decompose it into TakeDressFromHouse and JourneyToLocation. TakeDressFromHouse will
be decomposed into a primitive action PickUp, which has no further decomposition, another
primitive action, Dress and a JourneyToLocation action. This decomposing of actions goes
on until only primitive actions are left.

Because of the library of plans this type of planner offers a good authoring tool. It also
gives the agent an interesting way of explaining its behavior. As all actions are the result of a

22

decomposition the reason for performing a certain action is clear. Also these reasons are actions
that are of a higher abstraction level. This means that an agent can communicate not only that
it has chosen a particular action to achieve some goal or precondition of another action but the
actual higher level reason.

In the example we see that Cinderella would pick up a dress from her home, house and
wear it. These two actions would be motived by the TakeDressFromHome action which in
turn is motivated by the AttendBall action. The character agent that controls Cinderella can
communicate these motivations to the Plot Agent and they can be used in the fabula.

An often used hierarchical planner is SHOP [20] of which a Java implementation is available,
JSHOP2.

Procedural Reasoning Systems

A Procedural Reasoning System uses an intention stack. The intentions stack is a list of goals
that must be achieved. The PRS has a library of plans that can be used to achieve goals.
These plans have a set of preconditions that need to be satisfied. A plan in the PRS gives
sequences of primitive actions and goals that must be achieved. The actions can be performed
immediately and goals are put onto the intention stack. If there are different plans that all
have their preconditions satisfied and achieve the goal then the agent has a choice that the
planner is indifferent to. The plan library of a procedural reasoning system is similar to that
of a Hierarchical Task Network planner. It may also provide a good authoring tool. It seems
more difficult to keep track of the motivation for actions. A plan is chosen to achieve some goal
and actions of that plan are thus motivated by that same goal. This structure seems much less
elegant as a way to identify motivations.

One such PRS is the JAM [15] system which is implemented in Java.

3.4.2 First principles planning

A first principles planner constructs plans using only primitive actions. It does not have a
library of plans. This type of planner needs to bridge the distance from the initial state to
the goal state by finding a sequence of primitive actions that get to the goal state. This will
typically take a lot of computation time. This is because there are many actions to choose from
and the actions can be put into many different orderings. The number of total possibilities is
theoretically big.

State space search

A state space search planner searches for a path along world states to the goals state. A
world state can be reached by using an action. A forward searching planner starts with the
initial state of the world and constructs a list of all reachable world states. These possi-
ble world states are nodes in the search tree. It will then choose one and repeat the pro-
cess until it reaches a goal state. It will usually have a heuristic that gives rules for which
node to expand, which world state to try first. A good heuristic function is important to
make the planning fast. The search can also start at the goal state. This is backward or
regression planning. Regression planning may have a smaller space to search trough. A
state space planner will return a single plan. Actions in the plan are sometimes motivated
by the next action in the plan but we cannot be sure of this. And sometimes actions are
motivated by actions that are further along the plan. This is because actions that are in
the plan are placed in a sequence that will make the preconditions of the actions be satis-
fied at the time they are executed. An example of this is when the character agent that

23

simulates Cinderella would make the plan: PickUp(cinderella, nicedress, none, none,
house), WalkFromTo(cinderella, none, palace, SomeRoad, house), Dress(cinderella,
nicedress, none, none, palace). There is no way of knowing that the PickUp action is
needed for the Dress action. This information could be reconstructed but it is not immediately
available. The planner has placed the PickUp action somewhere before the Dress action but
there is no explicit connection between the actions. This also means that if after the PickUp
action something happens that makes Cinderella lose the nice dress, the plan will fail only at
the point at which Cinderella tries the Dress action. Thus if the environment of the agent
changes after a plan has been created it is difficult to update the plan. The sequence of actions
is no help in determining where to mend the situation.

Partial-Order planning

Partial-order planning changes the search space by not searching the world states but instead
searching for actions. The difference with state space search is that the state of the world is not
made explicit during the search. A sequence of actions is constructed by adding actions that
reduce the difference between the goal state and the initial state. This effectively means that
the planner considers groups of states rather than individual ones. Also as a consequence of
the search method often multiple actions are used to get closer to a certain goal state but their
mutual ordering is undetermined. This means that it does not have to find out what order to
use which effectively makes the search space smaller. And it is where the name comes from.
A partial-order planner constructs a set of causal links during the planning process. This set
of causal links seems very useful to identify the motivations for actions. There are replanning
versions of the partial-order planner. The availability of the causal links makes it possible to
inspect the flaws of the plan when the environment changes. This also means that the agent
knows what impact a perception and consequent new belief has on its plan.

Partial-order planning with decomposition

In [22], a combination of Hierarchical Task Network planner and a Partial-Order planner is
shown. This combination may make it possible to attain some of the properties of both types
of planning. It may make it possible to offer authoring possibilities while still giving the agent
the possibility to solve unforeseen problems. A partial-order planner with decomposition does
the same things as a partial-order planner but is modified to also be able to decompose actions.
It can choose from the primitive actions but also from actions that have to be decomposed.
Thus during planning it adds primitive actions as well as actions that must be decomposed.
The result is a planner that can profit from the predefined hierarchical plan database and if no
complete plan can be made, the plans will be mended with primitive actions.

Graph planning

In [38] and [22], Graph plan planning is explained. In Graph planning a plan is extracted from
a graph. The graph consists of levels of literals that could be true and levels of actions of which
the preconditions could be true. The graph is constructed starting at level 0 where all literals
that are currently true are represented, these are true or false depending on the initial state and
there are no other possibilities. Then a level of actions for which the preconditions hold in first
level is added. This is followed by another level of literals that could hold if an action makes
it true. Each level of literals gives the literals that could possibly be made true at that level
depending on choices made earlier. Each level of actions gives all actions that could be used at
that level depending on earlier choices.

24

The Graphplan algorithm creates the graph in steps; if at the current level of literals all
literals from the goal are present without mutex relations between them a solution plan may
exist in the current graph. Otherwise the graph is expanded by adding a new level of actions
and a resulting literals level. If the graph possibly contains a solution the algorithm tries to
find it. In figure 3.1 such a graph is shown for the Cinderella setting. Cinderella has the goal of
being at the palace and wearing a nice dress, in this graph the goal literals are present in the
level that was added last, S2:

(cinderella, at, palace),
(nicedress, wornBy, cinderella).

Not all of these literals were present in earlier levels, S1 and S0. The algorithm will now
search for a plan in this graph. In [22], a greedy backward search is done on the level cost of
literals. The level cost of a literal is the number of the first level it appears on. In the example
(nicedress, wornBy, cinderella) would be selected first and the only action available would
be the dress action. At level S1 there are two literals that must be achieved: (cinderella,
at, palace) and the precondition of dress; (nicedress, heldBy, cinderella). To achieve
the first of these the walk action could be selected or for the second the PickUp actions could
be selected. At level S0 however we would still need to achieve the other literal of the two. But
there are no steps left. Thus the algorithm would proceed to add a new level to the graph; A2
and S3.

The Graphplan algorithm was much faster than other algorithms in 1998, but now other
planners have caught up again. Though a graph planning algorithm may be very fast this
seems to be the only merit over partial order planning. According to [22] Partial-Order planners
with good heuristics are also very fast. And partial-order planners have some properties that
graph planners may not have. I do not know whether a graph planner can be combined with
decompositions. Also the causal link structure that a partial-order planner creates during
planning seems more easily used to study the internal state of the character agent. A graph
planner constructs a graph that uses no variables, because of this the graph becomes very large
if the world contains many objects.

3.4.3 Hybrid systems

An agent may use more than one planning system. This idea is found in the subsumption archi-
tecture [5]. The subsumption architecture uses a number of concurrently operating behaviors.
The subsumption architecture proposed in [5], uses only simple reflex behaviors. To choose what
action to take when the behaviors all select an action the behaviors are layered, meaning that
they are placed in an order. Lower layers have higher priorities. One can put a more complex
planning system in a higher layer and get the best of both. The reactive layer would provide
fast responses when needed and the higher layers can pursue long term goals. The environment
of the character agents is static. There is no need to have a fast reaction layer that deals with
changes quickly. However it seems to me that adding a reactive layer to character agent may
help their believability.

3.5 Conclusions

I believe that a HTN planner would be a good choice if one wants to create authoring oppor-
tunities for the user of the storytelling system. I am interested in emergent behavior however
and for this a partial-order planner seems the most interesting option. It further seems to have

25

Figure 3.1: Planning graph for the Cinderella setting. Shaded rectangles are actions, squares are
persistence/dummy actions. White rectangles are literals. Actions are linked to precondition
literals to the left and effect literals to the right. The gray lines are mutual exclusion (mutex)
relations.

26

the best potential to achieve the requirements that were formulated in chapter 2.4. The causal
links that a partial-order planner creates are a useful tool for appraisal, for the representation
of the “mind” of the character agents and for dealing with a changing simulation environment.
Furthermore I do not think the simulation worlds will present the character agents with difficult
problems. The complexity of the environment will not be so high that it has be approached
using techniques that narrow down the search space. A first principles planner can find any
plans that other planning systems such as a hierarchical planner would find. The hierarchical
planner would be advantageous of the environment is too complex for a first principles planner
to compute a plan in, because of computation time limitations.

Based on the material in this chapter I believe the partial-order planner with decompositions,
which is a combination of POP and HTN, is the best choice for the Virtual Storyteller. This is
because we are interested in emergent narrative but also want to create authoring opportunities.
Because I am interested more in the emergent narrative aspect and because off constraints on the
size of this research project, I will use a partial-order planner without decompositions. Before
committing to this choice I will discuss planners that are used in other storytelling systems.

27

Chapter 4

Planners in related storytelling
systems

The storytelling systems that I am interested in are those that generate stories by simulating a
world with character agents in it. In these systems character agents choose and perform actions
as if they were living in the simulated world. I do this to answer my first research question,
which was:

What are the characteristics of the planners used in other storytelling systems and
in the field of AI in general and what characteristics do we want for the planner that
will be used by character agents in the Virtual Storyteller?

Storytelling systems, that use a simulation, generate stories based on the actions of the char-
acters. Therefore such simulation based systems are often called character driven or character
based systems [37, 34].

In simulation based systems the story emerges from the simulation. In such systems it
is difficult to create a simulation run that results in a story that is coherent or dramatically
interesting. Therefore many storytelling systems use a simulation in combination with some
method of influencing the simulation such that a degree of plot is introduced, instead of a
completely free simulation. This is also the approach taken in the Virtual Storyteller [34].

Past storytelling systems have focused on a number of different goals of automated story-
telling. I will sum up these goals. The first is automating story content generation, generating
story content that was not scripted by a human author, which is done by emergent narrative in
the systems I have studied. The second is offering authoring possibilities, providing a human
author with as much room as possible to create an artistic vision or accomplish an educational
goal. A third goal that is in line with the previous, is conveying a specific story to the user. It
is the need to tell the story that was intended by the author. This can become difficult when
facing the next goal. This final goal is offering the experience of agency and participation to
the user. This is normally done by providing interactivity by giving a human user control over
one of the characters in the simulation.

Giving control of a character to a human user is not always done to provide agency and
participation to the user. Another reason to give control of one (or more) of the characters to a
human user is to provide the story generation process with creative input. Interactivity is also
often used as a means to get the message that the author has across. By offering participation
in the story that message will have a better chance of reaching the audience. A system that
provides interactivity often provides a graphical interface to the human user. This in turn places
a real-time requirement on the system. Alternatively a text based interface is used which places
less pressure on the speed of the system but still requires a reasonable response time.

28

Another problem of interaction is that the choices made by a human user are difficult to
combine with a predefined plot. The choices made by the human user may deviate from the
set course of the plot. This is a central dilemma to all storytelling systems that try to combine
conveying a certain plot with interactivity. This dilemma is not one that I am interested in
directly but it seems closely related to the problem of combining freely simulated characters
with a well-structured plot. As the simulated characters have no notion of the story they are
participating in, the difference between a simulated character and a human user interacting
with the system through control of a character could be much the same. Thus the solutions to
the interaction versus narrative dilemma that are presented in other storytelling systems are of
interest to me.

The goals of storytelling that receive attention influence choices made in the design of these
systems and on the design of character agents in these systems. In section 4.6 I will give an
overview of the systems I discuss below and how well they are able to deal with the goals of
storytelling systems I presented above.

4.1 The Oz project

The Oz project was a research project at the School of Computer Science, Carnegie Mellon
University. According to [18] and [2], which are two overview papers on the Oz project, the Oz
project tries to bring artists and artificial intelligence researchers together. In [18] it is stated
that the Oz project gives “equal attention to both character (believable agents) and story
(interactive drama)”. In the Oz project research is directed at creating interactive storytelling
authoring opportunities for artists.

The Oz project uses a simulated world with character agents. It further has a drama manager
and a separate presentation layer. As such it has an architecture that is very similar to that of
the Virtual Storyteller. In the Oz project much attention is given to character believability. In
[16] the requirements for believability of characters are studied. These were discussed in section
2.4.

4.1.1 Edge of Intention

In [16], research on how to create believable characters is presented. For this the works of artists
from traditional character based arts are studied. The attributes of character believability found
in these works are applied in an architecture for believable agents. The architecture includes
a language, called Hap, in which a human author can design personality rich characters. The
complete agent is specified in Hap so that all parts of the agent can be adressed by the author.
It further was designed to address some of the requirements for believable agents in a real-
time environment. Hap uses an active behavior tree, which initially holds the initial goals of
the agent. This tree is hierarchically expanded. It is very similar to a procedural reasoning
system design which I described in chapter 3. The choice of creating a reactive architecture
similar to a procedural reasoning system, was made because such systems allow for explicit goals
and deliberation combined with reactivity and responsiveness. A description of a procedural
reasoning system is given in subsection 3.4.1. Hap was extended from a basic reactive system
with a model of emotion, support for use in real-time animated worlds, a unified architecture
of an agent’s mind and personality specific behavior.

The example domain, “the Edge of Intention”, given for the use of Hap in [16] uses actions
that are tightly integrated into the physical presentation of the characters. In “Edge of Inten-
tion” the characters have a body that is a simple sphere with two eyes. Some of the actions
used in “Edge of Intention” are: ‘Jump’, ‘Spin’, ’SpinEyes’, ‘ChangeColor’. These actions re-

29

spectively make the body of the agent jump to another place in the simulated world, turn the
direction it faces, turn the direction the eyes are facing and change the color of the body. Many
of the actions can be performed simultaneously. The character agents can for example spin
their body and change the color of it at the same time. In this example system the focus is on
interaction and believability of the characters. There is no story and no drama manager in this
system.

4.1.2 Façade

Façade is an interactive storytelling system that was created after the Oz-project had already
ended. It was created by people who previously worked on the Oz-project however and it is
based on work from the Oz-project. Façade is described as an interactive drama [19], which I
would say is the same as an interactive story. The aim of this project is to create an interactive
game in which the human player can experience human relationships. To do this the creators
of Façade want to create characters that do more than just display physical action, as is usual
in current games. With Façade the characters should communicate with the human player of
the game in natural language such that these characters can express human relationships. To
do this they wish to create the possibility of authoring characters that are able to express their
personality and emotions wile being responsive to human player interaction. They therefore
design them to operate in real-time. For this they use an agent architecture that is based on
Hap, the procedural reasoning system architecture from [16].

They further argue that narrative structures historically have been a successful way to
represent human relationships. But they also wish to give the player a high degree of freedom
and agency. Thus they want to create a game in which the player has freedom but that has
a system that reacts to the human player and tries to create a story structure. This system
is a drama manager. This drama manager has its own planner to manage the story resulting
from the simulation. For this the drama manager uses beats. A beat is the smallest unit
of dramatic action the moves a story forward. Beats are authored by a human author and
are given preconditions and effects. The preconditions specify when the beat can be applied
and the effects specify what the result will be in the story state. The set of beats together
implicitly defines a narrative graph. By traversing the beats in some sequence, which depends
on the interaction of the human player, the story is moved forward by the drama manager.
Because the number of different ways in which beats can be sequenced is large the player can
experience a lot of freedom in what story is experienced. The way the drama manager changes
the simulation is by modifying the behavior of the characters; it adds and removes behaviors
while the simulation runs. In Façade the number of beats is approximately 200 and they are
used about once every minute.

The approach taken in Façade is to create a complete interactive drama game. By aiming
at a complete game the designers hope to get feedback on their system and to force themselves
to create a complete story. And indeed the game is available1.

4.2 I-Storyteller

In [6] and [7] an interactive storytelling prototype is presented. The aim is to create storytelling
systems that allow a user to intervene and change “the ending of an otherwise well-defined
narrative structure”. They try to find a solution to the problem of characters versus plot and
interaction versus narrative. The first dilemma is solved by having the characters drive the
plot. Their approach is to use hierarchical task networks, which I described in chapter 3, to

1it can be downloaded at InteractiveStory.net

30

describe the behavior of characters. They see this as a formalization of representing the plot.
The plot is viewed as depending on nothing more than the choices made by the characters. The
hierarchical task network descriptions of the characters give all variants of the story, the story
emerges from the actions of the characters. Their solution to the second dilemma is by limiting
user involvement in the story. This is also done by driving the plot with the behavior of the
characters. As the plot is moved along by the other automated characters the user can intervene
but not completely change the plot. User interaction is possible at any time however as the
human user can intervene in the story physically in the simulation or by giving information to
the characters. This way the human user can change the outcome of the story but it is still
delimited by the predefined behavior of the other characters.

The story is presented using an interactive graphical virtual environment which places a
real-time demand on the system. This is one of the reasons hierarchical task networks are used
for the character agents.

4.3 Mission Rehearsal Exercise

Mission Rehearsal Exercise [14] is a system that aims at immersing human participants in
interactive stories in which the participant can experience the same things as they would in a
real world scenario. The system presents a scenario that was predefined by a human author
to the human participant. The human participant is immersed in the scenario by a real-time
graphical virtual environment and realistic sounds. This is done with pedagogical goals in mind.
The scenarios used in the version presented in the article are used for military training. The
aim in this system is therefore to convey a specific scenario/plot to the human participant and
strengthening the experience by interactivity.

In Mission Rehearsal Exercise different types of character agents are used. The underlying
idea is that the techniques used for different elements that create the end result do not have to
be the same as long as they are composited together in such a way that the result is convincing.
The first type of agent is the scripted agent, a scripted agent in MRE waits for a trigger and then
performs a predefined sequence of actions. It receives no perceptions and cannot be interrupted.
This type of agent is used for characters that play a small role and therefore do not merit the
development time and the computation time of a full AI-based character. The second type of
agents use a hierarchical task network planner, which I discussed in chapter 3. These agents can
therefore create plans to get to a goal and adapt to changes in the world. The third category
of character agents also use a hierarchical task network planner but use emotions based on the
work of Gratch [13] to generate emotions and Marsella et al. [17] to express emotions.

4.4 FearNot

In [1] the general design of character agents is discussed. They call them synthetic characters
or intelligent virtual agents, and specifically mean graphically embodied agents. An important
aspect of these intelligent virtual agents to them is their believability. They discuss these
intelligent virtual agents using the example of the Fearnot! agent framework. The Fearnot!
agent framework is designed for use in an emergent drama system, by which they seem to mean
same as an emergent narrative. Emergent narrative is described in [1] as narrative generated
by the interaction of characters. Their example domain is an anti-bullying education system.
In this example system the intelligent virtual agents are used to create characters in a bullying
scenario. The human participant is shown a run of the simulation in which a bullying scenario
emerges. After such an episode the human participant can interact with one of the characters

31

and influence this character. In this example domain and in other emergent drama they wish
to attain a high degree of character believability to create a high degree of empathy for the
characters in the story as a basis for the pedagogical objectives. They use a first principles
planner, a partial-order planner, combined with an emotional framework that is a subset of
the OCC model [23]. The character agents need to have and express emotions. The first
principles planner is used to allow the characters to be used to generate from their behavior a
large number of different episodes, as they wish human participants to experience the basically
same scenario many times without losing their suspension of disbelief in the characters. They
compare this against scripted characters which will react the same in different episodes. The
character agents have two levels of appraisal and action selection. One level is fast and reactive
and one is deliberate and allows for more complex sequential behavior. The deliberative layer
uses a continuous partial-order planner.

One of the observations they make is that in the emergent drama domain plans are short
while goals are many. They observe that goal management is at least as important as planning.
The selection of goals is done by the affective appraisal system because it controls the importance
of goals. Another important observation made in this article is that conventional planners focus
on correctness and efficiency while the focus in interactive drama is on responsiveness and
believability. Responsiveness is the degree to which a character agent reacts to interaction
with a human participant. They have doubts that graph-planning algorithms can contribute
anything to emergent narrative because graph-planning is detached from execution and difficult
to make interactive, see section 3.4.2.

An aspect of believability that is mentioned specifically in this article is that the characters
must communicate their internal state to the user. Though this is done through the actions
the character chooses it may be necessary to add other mechanisms to do this. In Fearnot!
this mechanism is expressive behavior. Expressive behavior is possible because of the virtual
embodiment of the character agents. Expressive behavior is the way a virtual agent communi-
cates its internal state such as its emotional state using its virtual embodiment. The need to
communicate the internal state of character agents was discussed in section 2.4.

4.5 Projects of the Liquid Narrative group

The Liquid Narrative group does research on content creation for interactive environments.
They do this by narrative modeling [41]. Narrative is modeled firstly by dividing the creation
of stories into the creation of story content and of discourse. The content consists of all the
characters, locations and actions that take place in the story. The discourse is the telling of
the story, what elements to include and in what order, the way the story is communicated to
the audience. This is very similar to the process used in the Virtual Storyteller. They further
model the content of stories in terms of plans. A story is viewed as the result of a plan that
moves the virtual environment to a goal state. Most of their work takes a plot-based approach
instead of character-based approach which other systems I discuss use. Even so, much of their
work provides useful insights that can be used when a character-based approach is taken.

4.5.1 Actor Conference

One of the systems created at the Liquid Narrative Group is the Actor Conference system
[28]. It constructs stories based on the multiagent blackboarding paradigm. In a blackboard
architecture, multiple expert systems work together to solve a single problem. In this case each
expert system is an expert on one character and can thus be called an “Actor”. This idea seems
to later have been replaced by the Fabulist architecture which I discuss below. This system

32

shows however that there have been attempts at creating story generation systems that use
character based planners to work toward a well-structured plot. The character agents in this
system used a partial-order planner.

4.5.2 Fabulist

The Fabulist system of [29] is not a character based system. It is relevant however because
character believability is given explicit attention.

In [29] it is suggested that “planning is a good candidate for a computational model of
dramatic authoring.” Plot coherence is defined to be “the perception that the main events of a
story are causally relevant to the outcome of the story”. And character believability is defined
to be “the perception that the events of a story are reasonably motivated by the beliefs, desires
and goals of the characters that participate in the events.” The Fabulist system is a plot-based
story generation system as it uses a single planner to generate the complete content of the
stories. All actions of the characters in the story are decided by a single planner. This planner
is modified such that it uses the intentions of the characters. The result is a system that creates
a story using one central planner that during planning integrates the intentions of characters.
The planner tracks whether a chosen action of a character is in line with its intentions. This
way the otherwise plot-based system guarantees character believability (as far as intentionality
is concerned). The result is a a partial-order planner that tracks the intentionality of the
characters used in the plan.

[I will add an example of how the planner creates a story plan while integrating
character intentions]

Fabulist creates the story off-line; there is no place for interaction. This is addressed in [26]
in which the system generates a branching narrative graph. All choices that the user has are
analyzed beforehand and problems with the plot are fixed. This branching narrative allows for
interaction; the user can traverse this graph. This is also done in the Mimesis system in the
next subsection which is an interactive system.

4.5.3 Mimesis

Mimesis is an architecture that integrates intelligent narrative control, by which plan-based
narrative is ment, into existing gaming environments [25]. The existing game environment that
is used, is Unreal Tournament. The system provides a real-time interactive story environment.
Although no character agents are used, Mimesis is a simulation based system. Here a combina-
tion is made between a plot-based system and real-time interaction. This is done by mapping
the simulation environment onto an abstract state space and declarative actions. A partial-
order planner creates a plan that represents a story in the interactive game. This story plan is
created off-line. The story is stored in a branching narrative structure. Any choices that the
human player of the game makes have been planned for in advance by the planner and will lead
to some version of the predesigned story.

[I will add an example of this here]

4.6 Conclusions

At the beginning of this chapter I described four goals of storytelling systems. In table 4.1, I
give the systems that I discussed, the planner that they use and the goals of the system; whether

33

system planner interactive specific plot authoring
1. Edge of Intention PRS yes no yes
2. Façade PRS yes yes yes
3. I-Storyteller HTN yes yes yes
4. Mission Rehearsal Exercise HTN yes yes yes
5. Fearnot! POP yes no no
6. Actor Conference POP no no no
7. Fabulist POP* no no no
8. Mimesis POP* yes yes yes

Table 4.1: Table of storytelling systems. * Not used in character agents but as the central
planner.

they are interactive, whether they are used to convey a specific plot and whether they try to
create authoring possibilities. The goals of creating emergent narrative and conveying a specific
plot seem to never occur simultaneously in a system, systems always have either of these as a
goal. Therefore I have only used one column for this. Systems 1, 2, 3 and 4 are interactive and
use PRS or HTN for speed, in 5 POP is used even though speed is required for interaction there
as well. In 3 and 4 HTN is used as a way to convey a specific predefined plot. In 2 a specific
plot is conveyed by using a drama manager that influences the PRS of the character agents.
Systems 7 and 8 do not use autonomous character agents and are therefore difficult to compare
with the other systems, I have put them in the table for completeness.

The type of planning used in storytelling systems depends on the goals set for the system. In
most of the systems that I have reviewed the goals of the system are such that much attention
is given to the fact that the systems uses a real-time graphical interface. This is done in [16]
where the actions of the example domain of “The Edge of Intention” are closely related to
the graphical representation of the world. The planning system used for the character agents
in [16] and in [19] is much like a procedural reasoning system. It was chosen for a number
of character believability reasons, such as the possibility of representing goals explicitly and
enabling the authoring of personality specific behavior. It was also chosen because it allows
for fast reaction of the agents. In the I-Storyteller project of [6, 7] a hierarchical task network
planner is used so that the characters can be expressed in the plan library of the HTN planner.
The intended plot structure is also specified in the plan library of the characters as they take
the view that the plot completely depends on the behavior of the characters. They also choose
the hierarchical task network planner because it is fast enough for use in a real-time graphical
system that must react to the human user. Much like the I-Storyteller project of [6, 7] the
Mission Rehearsal Exercise system of [14] uses a hierarchical task network for the important
character agents and this system also aims at conveying a rather specific predefined story while
providing an interactive experience.

In the storytelling system of [1] a first principles planner is used in the character agents.
Though the system also uses a real-time graphical interface the planner is fast enough because
the plans that it must find are short.

In the systems of [19, 7, 1] there is no clear separation between the generation of content of
a story and the presentation of it as the presentation is done concurrently.

In the storytelling systems of the Liquid Narrative Group the creation of content for a story
is done separately from the presentation of it. In many of the storytelling systems created by the
Liquid Narrative group a first principles planner is used, the planner is not used for character
agents but it is used to plan the complete story. Because of the time taken by the planner to

34

compute a story the stories are created off-line. By off-line I mean that the story is created
some time earlier, before it is presented to the audience as in [29]. To create interactive stories,
the off-line creation of the stories includes the creation of a branching narrative. All choices
that the human user may make are computed beforehand. The separation of content creation
and the presentation of the story at a later step in the process is the same as the procedure used
in the Virtual Storyteller project. In the Virtual Storyteller project the storytelling system is
also divided into a content generation step followed by a presentation step. The generation of
content is done off-line, without interaction. A graphical or verbal representation of the story
will be done at a later point in time in the story generation process. Therefore the character
agents in the Virtual Storyteller are not required to react fast. This opens up the possibility
of having the character agents using, possibly more time consuming, first principles planning,
which will allow them to find action sequences that need not be authored in advance by a human
user. The use of a single planner to create the complete contents of the story may make it more
difficult to model more complex characters however. The characters in the Fabulist system do
not have a model of emotions for example. Therefore I will stay with the use of autonomous
character agents.

The aspect of automated storytelling which interests me most is creating emergent narrative.
I would like to be surprised by the storytelling system. If no solution to a problem was given
by a human author a character agent should come up with a solution. I would not want to
miss any opportunity to help the author of a story by having the system create as much of the
story as possible by itself. I will therefore use a first principles planner. If in future research
the system develops such that the character must react faster I believe first principles planning
will not necessarily result in bad performance. This was suggested in [1] in which it is argued
that plans are short in the domain of storytelling.

In chapter 3 I concluded that a partial-order planner with decompositions would be the best
choice for the Virtual Storyteller, though I will use a partial-order planner without decomposi-
tions in this project. In view of the discussion of storytelling systems in this chapter I conclude
that this is indeed a good choice.

35

Chapter 5

Design of a modified partial-order
planner

In this chapter I present the design for a partial-order planner with a number of extensions.
These extensions enable the character agent to collaborate with the Plot Agent. This planner
can be used in the character agents of the Virtual Storyteller.

5.1 General character agent design

Before I present the design for the planner I will show a design for the complete character agent
which it is a part of. In section 2.4 the requirements for the character agents are given. The
first of these is participation in the simulation, to participate in the simulation the character
agents must:

• receive perceptions and create and internal representation of the environment based on
them

• choose actions to perform

The second requirement is that they act believably. To do this they must:

• have goals and pursue them

These properties can be found in a BDI-agent [4, 12]. BDI stands for Belief, Desire, Intention. A
BDI-agent has an internal representation of the environment, it has beliefs about the state of the
world. It further has Desires which are its goals and Intentions which are its immediate goals,
whose achievement it has committed to. Lastly a BDI-agent has plans which are sequences
of actions that take it to an intended world state. The BDI agent framework fits onto a
character agent because we want character agents to have an internal representation of the
world and to have explicit goals. Furthermore the BDI framework is suitable for use in a
changing environment as it aims at finding a balance between replanning for any change in
the environment or completely ignoring any changes. In the BDI framework a separation is
made between means-ends-reasoning and deliberation. Deliberation is reasoning about what
immediate goals, intentions, to pursue in order to achieve desires. Means-ends-reasoning is
finding a plan to achieve those intentions.

36

An example of deliberation would be the following: Cinderella has the desire to meet the
prince at the ball. For this ball, which is at the palace, she needs to wear a nice dress which in
fact she is already wearing. After deliberation she might take up the intention of going to the
palace. When going out of the house she is stopped by her stepmother who takes away her nice
dress. As her plan fails she will now deliberate and drop the intention of going to the palace
and might take up the intention of obtaining some nice dress.

The perception manager should receive the perceptions and update the beliefs. An example
of this is when Cinderella sees her stepmother at the palace. The perception module of the
character agent that controls Cinderella will add a belief that the stepmother is at the palace
and will remove beliefs that are incompatible with the new belief, such as a belief that the
stepmother is at home.

Figure 5.1 shows the architecture of the agent. In this architecture one can see the planner
in the context of the rest of the agent. The deliberation module chooses intentions based on
the beliefs and the desires of the agent. The Planner does the means-ends-reasoning.

The architecture of the character agent is meant to give the place that the planner that I
have designed can take. I will discuss both the deliberation module and perception module in
chapter 7.2. In this chapter I will continue with the planner.

To give the Plot Agent the opportunity to direct a character agent, it can suggest actions
to the character agent. The character agent will always choose the action it wishes to perform
however.

5.2 The planning problem

A shown before in chapter 3 a planning problem has three inputs.

1. The initial state of the environment.

2. The goal state.

3. The available actions.

The initial state in the case of a character agent is the state it believes the world to be in.
This state is thus the list of beliefs. In chapter 2 the STRIPS like representation proposed in
[37] was discussed. This virtual world will be used in this project with a few changes. The
character agents beliefs are a list of RDF-triples1. The beliefs the character currently has are
used as the initial state to the planning problem.

The intentions of the agent are the goals for the planner. The goal is a set of positive
facts and a set of negative facts. This is the same format as the preconditions used in action
descriptions.

Example:
The character agent that acts as cinderella has the following beliefs:
(cinderella, supportedBy, house)
(nicedress1, supportedBy, house)
(road1, fromGeographicarea, palace)
(road1, toGeographicarea, palace)

1as specified in chapter 2

37

Figure 5.1: BDI agent architecture. The enclosed boxes are modules. The open boxes are data
stores.

38

And it has these intentions:
(nicedress1, wornBy, cinderella)
(cinderella, supportedBy, palace)

This would mean that the agent believes that it is at the house, that the nice dress is there and
that there is a road to the palace. It has the intention of going to the palace and to be wearing
the nice dress. Both the beliefs and the intentions form partially specified possible world states.

To get from the initial state to the goal state an agent uses actions. The actions proposed
by [37] are used but without numbers and numerical comparisons. Also all preconditions and
effects are facts. This is discussed in chapter 2. The actions I use have a name, a list of variables,
positive and negative preconditions and positive and negative effects.

Example:
Action walkFromTo(Agens, Target, Instrument, CurrLoc)
Positive Preconditions: (Instrument, toGeographicArea, Target),
(Instrument, fromGeographicArea, CurrLoc), (Agens, supportedBy, CurrLoc)
Negative Preconditions:
Positive Effects: (Agens, supportedBy, Target)
Negative Effects: (Agens, supportedBy, CurrLoc)

Action get(Agens, Patiens, CurrLoc)
Positive Preconditions: (Agens, supportedBy, CurrLoc),
(Patiens, supportedBy, CurrLoc)
Negative Preconditions:
Positive Effects: (Patiens, heldBy, Agens)
Negative Effects: (Patiens, supportedBy, CurrLoc)

Action dress(Agens, Patiens)
Positive Preconditions: (Patiens, heldBy, Agens)
Negative Preconditions:
Positive Effects: (Patiens, wornBy, Agens)
Negative Effects: (Patiens, heldBy, Agens)

Names that start with a capital letter indicate variables.

The ‘walkFromTo’ action moves the Agent (Agens) from its current location (Currloc) to a
target location (Target) if there is a road (Instrument) between the locations.

The ‘get’ action moves an object (Patiens) from the current location (CurrLoc) to the agent
(Agens). This works if the object and the agent both are at the current location (CurrLoc).
The object ends up being held by the agent.

The ‘dress’ action changes the relationship between the agent and an object from holding it
to wearing it. The action can be performed if the agent is holding the object.

The actions in the example are a bit simplified, the dress action could have an additional
precondition (Patiens, isType, wearableItem). Furthermore the actions would have coun-
terparts: ‘walkToFrom’, ‘put’ and ‘undress’.

39

5.3 A new action design

In chapter 2 I looked at the actions that were proposed in [37]. The ontology of these actions
seems fine to me and I will adopt this to use in my work. They were designed for use with the
Story World Core ontology also proposed in [37] that I also use. Though I use the same set of
actions I have decided to change their internal structure. These changes are described in the
following subsections.

5.3.1 Action Arguments

Variables that are used anywhere in the description of an action must also appear in the list of
arguments of the action schema [10]. In the implementation that accompanied the thesis [37]
this was not always done. And conversely if any of the first four mandatory variables are not
used they must still be bound to some value and so these are always set to none explicitly in
the action database that I use.

If for example we look at the dress action we see that it uses the variables Agens, Patiens,
Target, Instrument and Vars where Vars is a list of extra variables. But it does not use the
Instrument variable and it also does not use any extra variables. The version as suggested in
[37]:

dress(Agens, Patiens, Target, Instrument, Vars)
preconditions

(Patiens, swc:heldBy, Agens)
(Patiens, owlr:typeOrSubType, swc:’WearableItem’)

effects
add

(Patiens, swc:wornBy, Agens)
del

(Patiens, swc:heldBy, Agens)

In the new action schema the mandatory variable Instrument is thus set to none explicitly and
the extra variables are removed. And all variables are placed in a list which makes it possible to
remove the extra variables and which is why the ‘[’ and ‘]’ brackets were added. The new version:

dress([Agens, Patiens, none, none])
preconditions

(Patiens, swc:heldBy, Agens)
(Patiens, owlr:typeOrSubType, swc:’WearableItem’)

effects
add

(Patiens, swc:wornBy, Agens)
del

(Patiens, swc:heldBy, Agens)

5.3.2 Action preconditions

The preconditions of actions must always be positive or negative RDF-triples. The actions
proposed in [37] allowed for mathematical formulae in the preconditions. These were not part
of OWL and would therefore have to be recognized by the planner and treated in a special way

40

outside of standard OWL reasoning. One could create such a special preconditon checker but
I think it is good to stay consistent within the OWL reasoning. These mathematical formulae
should always be static preconditions: preconditions that are either always true or always false
given the initial state of the world. This is because it is very difficult for the planner to find
a way to achieve the satisfaction of such mathematical formulae, given that actions are added
that change the premises of the formulae.

From the WalkToFrom action I will now show a subset of its preconditions, that belong to-
gether, of which the last one is a mathematical formula. The example is in KIF [11] notation
as was used before in chapter 2.

Example of a mathematical precondition:

(and
(swc:width ?INSTRUMENT ?pathWidth)
(swc:width ?AGENS ?agensWidth)
(> ?pathWidth ?agensWidth)

)

In this example the ?AGENS is the object in the story world that the character agents controls.
The ?INSTRUMENT is a road or path from some location to another. For both of these the width
is retrieved and compared to see if the agent fits through the path.

If the planner matches the first two of the RDF-triples with the effects of the initial state of
the environment then it can determine the truth of the third. Thus if it is intended to be a static
precondition this is fine if one adds a special check to the planner. If one intends to use such a
precondition as a dynamic one then the planner gets into trouble. The mathematical formula
is difficult to match against the effects of actions because no action will have (> ?pathWidth
?agensWidth) in its effects. There may be an action that makes the width, swc:width of a
path slightly more:

WidenPath(?PATIENS)
Preconditions :

(and
(swc:width ?PATIENS ?pathWidth)
(+ ?newpathWidth ?pathWidth 1)

)
InterEffects to ADD:
InterEffects to DELETE:
Effects to ADD:

(swc:width ?INSTRUMENT ?newpathWidth)
Effects to DELETE:

(swc:width ?INSTRUMENT ?pathWidth)

If initially the path has a width of 3 and the agent has a width of 13 then there is no way
for the planner to decide to use WidenPath ten times. The actions that I use will have no
mathematical formulae as they are not OWL. The action I use will have no numbers except for
a duration which I will show in subsection 5.3.3.

Apart from the mathematical formulae there are static preconditions that are part of OWL.
Such a precondition can be found, for example, in the Dress action:

41

Dress(Agens, Patiens, Target, Instrument)
preconditions: (Patiens, heldBy, Agens)
(Patiens, type, wearableItem)
add effects: (Patiens, wornBy, Agens)
delete effects: (Patiens, heldBy, Agens)

The (Patiens, type, wearableItem) RDF-triple will normally not be in the knowledge base
of the agent. An RDF-triple that would instead be in its knowledge base is (SomeItem, type,
clothing), where SomeItem could be the nicedress object. In the Story World Core ontology
as presented in [37] the class clothing is a subclass of the class wearableItem. Therefore
via OWL reasoning from the (SomeItem, type, clothing) RDF-triple the (Patiens, type,
wearableItem) RDF-triple can be derived. This reasoning step will only work on RDF-triples
from the current beliefs/knowledge base. The same as with the mathematical formulae there
will typically not be actions that have (Patiens, type, wearableItem) as an (add) effect.
These preconditions do fall within standard OWL reasoning however and so I use these. If one
would want the planner to be able to plan for the achievement of these preconditions, that is,
make then non-static, a solution would be to create many versions of the Dress action. These al-
ternative versions of the Dress function would have explicit versions of the preconditions. In the
example the (Patiens, type, wearableItem) precondition would be replaced by (Patiens,
type, clothing) in one version and (Patiens, type, jewellery) in another. The alterna-
tive versions of the Dress action could be created automatically by finding all RDF-triples that
would via a reasoning step satisfy the (Patiens, type, wearableItem) RDF-triple. This al-
lows an action such as:

Knit(Agens, Patiens, Target, Instrument)
preconditions: (Patiens, heldBy, Agens), (Patiens, type, wool)
add effects: (Patiens, type, clothing)
delete effects: (Patiens, type, wool)

I have not used this solution and will keep such preconditions as static.

5.3.3 Action duration

The actions proposed in [37] have a duration. This duration is given in a special field and is
an integer. In [37] it is suggested that these durations might be made dependent on objects
used in the action. I use the action durations as proposed and have also used the suggested
modification to allow for durations that depend on objects used in the action. With this I allow
for the use of integers in preconditions of actions and in world descriptions in certain cases. This
is no problem as durations are always static preconditions. Specifically I used this in transit
actions where the duration depends on the length of the pathway that is used.

5.3.4 Action inter duration and inter effects

In [37] actions are designed to have an inter duration and inter effects. The inter effects are
used in transit actions. After the inter duration the inter effects are performed and later after
the complete duration other effects are performed. This makes it possible for someone to be
on a pathway during the action duration. This will prevent a character from “standing at the

42

door” and then suddenly disappearing and reappearing somewhere else, which might be quite
far away.

One of the basic assumptions of classical planners is that actions are atomic. Actions with
inter effects are not atomic because they can, and will, be executed halfway. The planner will
have to know what the inter effects of the action are to check whether they interfere with the
plan. There is no place for inter effects in the planner however. A solution might be to guarantee
that the inter effects are always undone by the effects of the action in which case the planner
can ignore them, but then they can just as well be removed altogether. The solution I suggest
is splitting up action that have inter effects into two actions. In the case of transit actions one
action will move the character onto the path and another moves it away from the path. These
two actions will always succeed each other because there would be only one action that moves
the character off the pathway that the other action moved it onto. This will make it possible to
use standard planning techniques with atomic actions. In the implementation of actions that
I use I have simply removed the inter effects of actions and I ignore the problem of characters
“standing at the door”.

5.4 Partial-order Planner

The design is very close to the algorithm presented in [21]. At any time during planning the
partial-order plan is a set of steps, a set of ordering constraints, a set of causal links and a set
of variable bindings. The planner revises the plan until a solution is found.

5.4.1 Plan structure and the initial plan

A step has the same structure as an action. The variables in a step may be bound to a specific
value in the set of variable bindings.

Before the planner starts an initial plan is created. The initial plan contains two steps. A
start step which contains the initial situation and a finish step which contains the goal. The
start step contains the initial situation in the effects part of the step description. It has no
preconditions. The finish step contains the goals as its preconditions and it has no effect. This
way the complete problem is caught in a plan.
I will explain the partial-order planner algorithm using the example from section 3.3.

Example:
Step Ss start()
Positive Preconditions:
Negative Preconditions:
Positive Effects: (cinderella, supportedBy, house),
(nicedress1, supportedBy, house), (road1, fromGeographicarea, palace),
(road1, toGeographicarea, palace)
Negative Effects:

Step Sf finish()
Positive Preconditions: (nicedress1, wornBy, cinderella),
(cinderella, supportedBy, palace)
Negative Preconditions:
Positive Effects:
Negative Effects:

43

We also have ordering constraints in every plan. An ordering constraint is a tuple with ref-
erences to two different steps from the set of steps. It is a constraint that specifies that the first
step of the tuple must be performed before the second step in the tuple, it does not have to be
performed directly before it, just anytime before it. The initial plan will contain an ordering
constraint that places the start before the finish.

Example:
Ordering (Ss, Sf)

A plan further has causal links. A causal link is a triple containing two steps and a precondition.
A causal link indicates that the first step achieves the specified precondition of the second step.
An initial plan does not contain any causal links.

Lastly a plan has a set of bindings which contains tuples of variables and their binding, if
they are bound.

5.4.2 The POP algorithm

The planner adds steps, ordering constraints, causal links and bindings to the plan until it finds
a solution. The algorithm backtracks if no solution can be found after any choice has been made.

These are the POP instructions:

• Check for solution. The first instruction in the algorithm is to check whether the plan is
finished. A plan is finished if there are no more unsatisfied preconditions. A precondition
is satisfied if it is present in the set of causal links.

• Choose an unsatisfied precondition. The next instruction is to choose any unsatisfied
precondition. Any one will do and this is not a backtracking point. I will refer to the step
that has this unsatisfied precondition as Sα.

• Choose a step from the plan or create a new step that achieves the precon-
dition. The algorithm now first checks whether a step currently in the plan can be
used to achieve the unsatisfied precondition. This is done by comparing the precondition
with the effects of the step. This comparison is a unification. Any bound variables are
directly compared. Unbound variables can be bound such that they equal the variable
in the precondition. These bindings are added to the set of bindings. If no step already
in the plan can be used a new step is created. For this an action is selected that has an
effect that achieves the selected precondition. The procedure is the same as when a step
from the plan would have been selected.

• Add causal link and ordering constraint. The existing step or the newly added step,
which I will call Sβ, is now used in a new causal link that takes the step that achieves the
precondition of step Sα. Also an ordering constraint is added that places step Sβ before
Sα.

• Resolve threats. The algorithm needs to check whether the new step, Sβ, is a threat
to the causal links; Sβ may have an effect that removes the effect of some other step, Sγ
that achieves a precondition of yet another step, Sδ. This can be solved by promoting or
demoting Sβ, meaning placing it before Sγ or after Sδ.

• Loop. Now the algorithm starts at the first instruction again, Check for solution.

44

Example:
Continuing with the initial plan show in the previous examples I will show how the POP algo-
rithm finds a plan.

The plan currently is the initial plan:
Steps: (Ss, Sf)
Orderings: (Ss, Sf)
Links: none

• Check for solution. The plan is not yet completed as there is a precondition of Sf that
does not appear in the list of causal links, which is empty.

• Choose an unsatisfied precondition. Sf has an unsatisfied precondition, (nicedress1,
wornBy, cinderella).

• Choose a step from the plan or create a new step that achieves the precondition. For this
a new step is needed. An effect of the ‘dress’ action can be unified with the precondition.
(Patiens, wornBy, Agens) can be unified with (nicedress1, wornBy, cinderella)
by binding Patiens to nicedress1 and Agens to cinderella. And the new step is added
to the plan.
Step S1 dress(cinderella, nicedress1)
Positive Preconditions: (nicedress1, heldBy, cinderella)
Negative Preconditions:
Positive Effects: (nicedress1, wornBy, cinderella)
Negative Effects: (nicedress1, heldBy, cinderella)

• An ordering constraint and a causal link are added to the plan. The plan now is:
Steps: Ss, Sf, S1
Orderings: (Ss, Sf), (S1, Sf)
Links: (S1, Sf, (nicedress1, wornBy, cinderella))

• Resolve threats. S1 does not have an effect that threatens any causal link.

• Now the algorithm starts at the beginning, and checks whether the plan is a solution. It
is not yet a solution because there are preconditions that are not in the list of causal links.

• Select precondition. The algorithm may now choose the
(nicedress1, heldBy, cinderella) precondition from S1.

• Choose an existing step or create a new one. We can unify the (Patiens, heldBy,
Agens) effect of the ‘get’ action with (nicedress1, heldBy, cinderella) and add:
Step S2 get(cinderella, nicedress1, Currloc)
Positive Preconditions:
(cinderella, supportedBy, Currloc), (nicedress1, supportedBy, Currloc)
Negative Preconditions:
Positive Effects: (nicedress1, heldBy, cinderella)
Negative Effects: (nicedress1, supportedBy, Currloc)

45

• An ordering constraint and a causal link are added to the plan. The plan now is:
Steps: Ss, Sf, S1, S2
Orderings: (Ss, Sf), (S1, Sf), (S2, S1)
Links: (S1, Sf, (nicedress1, wornBy, cinderella)),
(S2, S1, (nicedress1, heldBy, cinderella))

• It can reuse the start step Ss to achieve (nicedress1, supportedBy, Currloc) by bind-
ing ‘Currloc’ to ’house’. It can then also reuse the start step Ss to achieve (cinderella,
supportedBy, house), which will make the plan:
Steps: Ss, Sf, S1, S2
Orderings: (Ss, Sf), (S1, Sf), (S2, S1), (Ss, S2)
Links: (S1, Sf, (nicedress1, wornBy, cinderella)),
(S2, S1, (nicedress1, heldBy, cinderella)),
(Ss, S2, (nicedress1, supportedBy, house)),
(Ss, S2, (cinderella, supportedBy, house))

• Now it adds:
Step S3 walkFromTo(cinderella, palace, Instrument, Currloc)
Positive Preconditions: (Instrument, toGeographicArea, palace),
(Instrument, fromGeographicArea, CurrLoc),
(cinderella, supportedBy, CurrLoc)
Negative Preconditions:
Positive Effects: (cinderella, supportedBy, palace)
Negative Effects: (cinderella, supportedBy, CurrLoc)
to achieve (cinderella, supportedBy, palace)).
The plan now is:
Steps: Ss, Sf, S1, S2, S3
Orderings: (Ss, Sf), (S1, Sf), (S2, S1), (Ss, S2), (S3, Sf)
Links: (S1, Sf, (nicedress1, wornBy, cinderella)),
(S2, S1, (nicedress1, heldBy, cinderella)),
(Ss, S2, (nicedress1, supportedBy, house)),
(Ss, S2, (cinderella, supportedBy, house)),
(S3, Sf, (cinderella, supportedBy, palace))

• Ss will be used to achieve in turn:
(Instrument, toGeographicArea, palace),
(Instrument, fromGeographicArea, CurrLoc),
(cinderella, supportedBy, CurrLoc) which will bind ‘Instrument’ to ‘road1’ and ‘Cur-
rloc’ to ’house’.

The plan now is:
Steps: Ss, Sf, S1, S2, S3
Orderings: (Ss, Sf), (S1, Sf), (S2, S1), (Ss, S2), (S3, Sf), (Ss, S3)
Links: (S1, Sf, (nicedress1, wornBy, cinderella)),
(S2, S1, (nicedress1, heldBy, cinderella)),
(Ss, S2, (nicedress1, supportedBy, house)),
(Ss, S2, (cinderella, supportedBy, house)),
(S3, Sf, (cinderella, supportedBy, palace)),

46

(Ss, S3, (road1, toGeographicArea, palace)),
(Ss, S3, (road1, fromGeographicArea, house)),
(Ss, S3, (cinderella, supportedBy, house))

• The resolve threats step now finds that a delete effect of S3, (cinderella, supportedBy,
house) threatens the causal link: (Ss, S2, (cinderella, supportedBy, house))). An
ordering is added that places S3 after S2. Placing S3 before Ss cannot be done as Ss has
already been placed before S3.

The plan now is:
Steps: Ss, Sf, S1, S2, S3
Orderings: (Ss, Sf), (S1, Sf), (S2, S1), (Ss, S2), (S3, Sf), (Ss, S3),
(S2, S3)
Links: (S1, Sf, (nicedress1, wornBy, cinderella)),
(S2, S1, (nicedress1, heldBy, cinderella)),
(Ss, S2, (nicedress1, supportedBy, house)),
(Ss, S2, (cinderella, supportedBy, house)),
(S3, Sf, (cinderella, supportedBy, palace)),
(Ss, S3, (road1, toGeographicArea, palace)),
(Ss, S3, (road1, fromGeographicArea, house)),
(Ss, S3, (cinderella, supportedBy, house))

This plan can be ordered as Ss, S2, S1, S3, Sf or Ss, S2, S3, S1, Sf. This means Cinderella must
first pick up the nice dress and then either go to the palace and put on the nice dress or first
put on the nice dress and then go to the palace.
Note that in the example no backtracking was shown. All choices made were the correct ones
at the first try. I will show an example of backtracking during planning.

Example of backtracking in partial-order planning:
In the last step of the example an ordering constraint was added that placed S3 after S2.
If however during execution of the planning algorithm the choice is made instead to add an
ordering constraint that placed S3 before Ss. The algorithm will then check whether there are
conflicting ordering constraints and find that there are. As it runs into a failure it will backtrack
to its last choice point and choose a different ordering constraint.

5.4.3 Iterative deepening

The search space of the planner needs to be bounded. I have chosen to use iterative deepening.
As the depth of a plan I have chosen to count the number of steps. Iterative deepening means
the planner first tries to find a plan that uses no steps (except the start and finish). If that fails
it then tries to find a plan that uses one step. It keeps doing this until a plan is found or until
the maximum depth has been reached. This maximum depth is a parameter that would be set
to some practical number. Iterative deepening guarantees that if there is at least one plan, the
planner will find the shortest one.

5.4.4 Initial state and reasoning

To explain the design of the partial-order planner I put the initial state of the environment
in a list of effects of the start step. Actually the start step is treated as a special case by

47

the planner. When it would check the effects of the start step when searching for a step that
achieves an open precondition, it instead directly searches its knowledge base/beliefs. Here an
OWL-reasoner makes it possible for the initial state to “achieve” RDF-triples that have to be
derived. This was explained in 5.3.2.

5.5 Special features of the planner

In this section I show the special features I added to the planner that make collaboration with
the Plot Agent possible.

5.5.1 Providing insight into the mind of characters - Fabula structure

The content of stories is generated by storing the history of a simulation run into a fabula
structure, see section 2.3. The mind of the characters that are in the story are part of the
simulation and can provide useful content. Therefore some of the fabula elements and fabula
causalities are produced by the character agents. These fabula elements are goals, actions,
outcomes and internal elements. This last category contains beliefs.

Fabula elements

An action fabula element, A, is produced at the time the character agent sends an action to the
plot agent. During execution of the simulation every round the plot agent requests an action
from the character agent. The character agent responds with some action it wishes to perform.
At this time the character agent also declares a fabula element of the action type. This means
that whenever an action is performed by an agent a new action is also added to the fabula.

Internal element fabula elements, IE, of the belief subtype are produced by the character
agent after it receives a round of perceptions. After receiving a set of perceptions the character
agent updates its beliefs. These new beliefs are declared as fabula elements to the plot agent.

A goal fabula element, G, is declared when the character agent chooses a new intention.
Such changes to the intentions are made by the deliberation module of a character agent (for
which no design is presented in this thesis).

An outcome fabula element, O, is declared during appraisal when a new belief relates to a
goal. If a new belief fulfills an intention a positive outcome fabula element should be declared.
If a new belief makes the fulfillment of a goal impossible a negative outcome should be declared.
This was not implemented.

Fabula causalities

A character agent also sends fabula causalities to the Plot Agent. Immediately after declaring
an action fabula element the character sends a ‘goal motivates action’ fabula causality, in which
the action is the same as the one in the action fabula element and the goal is the intention used
to generate the plan that the action was taken from.

An ‘internal element enables action’ fabula causality is sent for each belief the character
agent has that was needed for the action it sends to the plot agent.

A ‘perception psychologically causes internal element’ fabula causality is declared after re-
ceiving a perception. When a perception is received some beliefs of the character agent change.
And this connection between perceptions and beliefs is stored in the aforementioned fabula
causality.
The fabula causalities created by the character agent are: G m A, P ψ IE, IE e A, IE ψ O

48

The partial-order planner can also declare ‘action enables action’ fabula causalities as it
knows which actions have causal links between them. Such ‘enables’ causalities are part of the
physical world and not part of the mental process of the character agent. A possibility would
be to produce ‘action motivates action’ causalities. Actions are not meant to motivate other
actions however. These are therefore not in the current design. During planning if an agent
tries to plan the use of an action the preconditions of the action can be viewed as new goals.
Other actions are used to achieve these goals and so a structure of ‘goal motivates action’ can
be built up.

5.5.2 Room for suggestion - Presenting plans

When trying to steer the events of the simulation to create a well-structured plot we want the
Plot Agent to be able to make suggestions to the character agents on what actions to take. In
a plot driven story generation system the actions of the characters would be chosen by some
system that focuses on well-structuredness of the plot. The believability requirement of goal
directed action selection limits this idea.

The fact that a character tries to achieve some goal does not mean it has a fully determined
sequence of actions. There may sometimes be choices a character agent has when planning,
that it is indifferent to. These choices leave room for directions from the Plot Agent.

The standard design of a partial-order planner searches for a plan until it finds a plan, one
plan, that achieves the goal situation. The plan that is produced by the partial-order planner
is a partially ordered plan. That means that during execution of the plan the agent may have a
number actions to choose from as there are different possibilities of ordering the actions in the
plan. Based on the goal directedness believability requirement this choice is meaningless to the
agent. This is therefore an opportunity to direct the character agent without compromising its
believability.

In addition to this, the plan that the partial-order planner finds may not be the only possible
plan. There can be more plans that achieve the goal situation. These different plans give the
character agent more choices that have no meaning to it based on its goal directed action
selection, and that provide more directing opportunities.

Multiple plans

The partial-order planner as described earlier finds one plan. This planner can be used to
search for more plans after finding the first. The number of possible plans is usually unlimited,
as usually plans can be produced with cycles in them. The search must therefore be limited.
To limit this search I store the length of the first plan found. This first plan is one of shortest
plans that are possible, as described in section 5.4.3. The search for plans is then limited to
plans that have a length of a certain variable x times the length of the first plan. This variable
x must be larger than or equal to 1, x >= 1 otherwise no other plans can be found. Choosing
a longer plan is not strictly rational, however rationality is not a believability requirement so
some measurement of irrationality could be permitted. In addition to this it may be difficult
to prove irrationality in a partially observable, dynamic world. The idea therefore is to choose
x such that the plans stay within some range of being believable. I will use x = 1.1 but I have
no idea what value would be suitable.

Finding more plans is done by forcing the planner to backtrack after finding a plan. This
way another plan is found, or else no more plans are found that are of length length <
x · length(firstplan). The planner will backtrack to some choice point and make a differ-
ent decision. Such a decision can be choosing a different action to achieve some precondition
of another action. This way a set of plans is found. This set may now contain plans that

49

contain cycles. These cycles may be short enough such that the plan did not grow to long. Still
such a cycle will make the plan appear very irrational and I believe this will compromise the
believability of the agent. The resulting set of plans is filtered by comparing the plans against
each other and removing plans that contain the exact steps of another plan and more steps.
This way plans with cycles are filtered out but true alternatives are preserved.

As an example of the filtering of plans with cycles is as follows.
The first plan the the planner finds looks like:

• step 1 Move to from square 1 to square 2

• step 2 Move to from square 2 to square 3

• step 3 Move to from square 3 to square 4

• step 4 Move to from square 4 to square 5

• step 5 Move to from square 5 to square 6

The second plan the the planner finds looks like:

• step 1 Move to from square 1 to square 2

• step 2 Move to from square 2 to square 3

• step 3 Move to from square 3 to square 4

• step 4 Move to from square 4 to square 3

• step 5 Move to from square 3 to square 4

• step 6 Move to from square 4 to square 5

• step 6 Move to from square 5 to square 6

The second plan has a cycle at step 4. This plan will be filtered out because it has exactly all
the steps that are in the first plan but it has still more steps.

Each of the resulting plans and the ordering of the steps in those plans, where this ordering is
not specified, are presented to the Plot Agent. Though no design or implementation is available
of the Plot Agent presumably this will make it possible for the Plot Agent to direct the character
agents and steer the story toward a well-structured plot. An example is when Cinderella has a
choice of going to the palace via the road through the forest or via the village. If the Plot Agent
wants Cinderella to meet someone, like the Big Bad Wolf, who is in the forest, it may prefer the
road through the forest. After the character agent suggests both plans the Plot Agent would
then request the character agent to choose the first plan, in which Cinderella takes the road
though the forest. This agreement is between the character agent and the Plot Agent. The
character “Cinderella” knows nothing about this agreement. The assumption is that she has
no preference for either choice and would decide on a whim and either choice is likely. This will
therefore not comprimise the believability of the character.

50

The length of plans and an example using multiple pathways

An issue that I have not brought up yet is what exactly the length of a plan is. There are a
few possibilities for the length of a plan. The first is to count the number of steps in the plan.
Another is to count the number of causal links. These two are related mostly to the difficulty
of finding such plans for the planner. Other options are costs of actions. Actions may specify
the use of resources, such a resource can be used to determine the cost of a plan and this cost
is then the length of the plan. Such a cost could be spending money or other resources. The
actions that were proposed for use in the Virtual Storyteller in [37] have a duration value. The
duration is the time it takes to perform the action and is a type of cost. If the simulation uses
these durations then using them for determining the length of plans seems the most appropriate
choice.

Choosing a different route to get from one place to another is probably one of the most
common places where multiple plans are possible. I have therefore added a duration value for
transit actions that depends on the length of a connection between locations.

As an example I will use the Cinderella setting as it is shown in 5.5.2. In this setting there are
many paths from the house to the palace.

There are the locations: palace, courthouse, church, forest, field, garden, house.
And there are connections between these locations with a path length value:
house, garden, 5
garden, forest, 5
forest, field, 17
field, palace, 11
house, square, 17
square, palace, 19
house, tavern, 13
tavern, courthouse, 13
courthouse, palace, 11
square, courthouse, 11

The starting situation and the goal of the planner are:
start: (cinderella, supportedBy, house)
goal: (cinderella, supportedBy, palace)

By doing an iterative deepening search on the length of the plan as determined by the durations
of the actions used, which in the case of transit actions such as WalkFromTo will be the path
length, the planner will now find the shortest plan (nr 1.):
WalkFromTo(cinderella, none, square, SomeRoad, house)
WalkFromTo(cinderella, none, palace, SomeRoad, square)

This plan has a length of 17 + 19 = 36. Now we search for all plans that have a length, l,
l < 36 · x, with x = 1.1. The plans that are then created are:

WalkFromTo(cinderella, none, tavern, SomeRoad, house)
WalkFromTo(cinderella, none, courthouse, SomeRoad, tavern)
WalkFromTo(cinderella, none, palace, SomeRoad, courthouse)
With a length of 13 + 13 + 11 = 37 and 37 < 36 · 1.1.

51

Figure 5.2: An extension of the Cinderella setting. In this picture is a version of the Cinderella
setting in which there are many routes from the house to the palace. The rounded boxes are
locations. The connections/roads are the black arrows with a number next to them, indicating
the length of that road. Cinderella, cinderella, is depicted as an oval with a gray arrow
pointing to the initial location of cinderella.

52

WalkFromTo(cinderella, none, garden, SomeRoad, house)
WalkFromTo(cinderella, none, forest, SomeRoad, garden)
WalkFromTo(cinderella, none, field, SomeRoad, forest)
WalkFromTo(cinderella, none, palace, SomeRoad, field)
With a length of 5 + 5 + 17 + 11 = 38 and 38 < 36 · 1.1.

WalkFromTo(cinderella, none, square, SomeRoad, house)
WalkFromTo(cinderella, none, courthouse, SomeRoad, square)
WalkFromTo(cinderella, none, palace, SomeRoad, courthouse)
With a length of 17 + 11 + 11 = 39 and 39 < 36 · 1.1.

It will not find:
WalkFromTo(cinderella, none, tavern, SomeRoad, house)
WalkFromTo(cinderella, none, courthouse, SomeRoad, tavern)
WalkFromTo(cinderella, none, square, SomeRoad, courthouse)
WalkFromTo(cinderella, none, palace, SomeRoad, square)
It will not find this plan because this plan it too long, it has a length of 13 + 13 + 11 + 19 = 56,
56 > 36 · 1.1

Room for suggestion - conclusion

The character agent will offer such a set of plans to the Plot Agent. The Plot Agent can now
inspect the plans of different agents and find situations that move the plot along or which are
dramatically interesting. It may be, for example, that the Plot Agent wants Cinderella to meet
the Fairy Godmother who is in the forest. The Plot Agent will thus suggest the plan that leads
Cinderella through the forest to the character agent that controlls Cinderella. The character
agent should then have no reason not to choose the suggested plan.

5.5.3 Improvisation

In [32] it is suggested that storytelling systems which use an emergent approach to story gener-
ation use techniques from improvisational theater. One of these techniques is late commitment.
In this section I will show how I have used this idea as an extension to the planner.

An improvisation of the late commitment type can be that a character agent introduces an
object to the simulation world. The newly introduced object should be treated by all character
agents as always having been part of the simulation. Such an improvisation can be made by a
character that wishes to light a fire and improvises a lighter. The character agent will declare
that it always was in the possession of a lighter. This is an appropriate improvisation because
the lighter could indeed have been in the possession of the character and would not have been
noticed by other agents. The introduction of the lighter would be inappropriate if another
character asked for a lighter earlier in the story and was refused because it did not have one.

Characters agents need a way to choose and use improvisations and a way to know when to
use them. I have chosen to represent improvisations as a special set of actions. These actions
are in most ways equal to the normal actions described earlier. Representing improvisations
this way allows the character agents to have a set of improvisations to choose from. It also
makes it possible to specify when an improvisation is appropriate. Thirdly the planner can use
improvisations in its plans.

53

Limiting improvisations

To limit the use of improvisations the planner is not allowed to use them when first trying to
find a plan. If the planner cannot find a plan it is allowed to use one improvisation action. If
it still cannot find one the number of improvisation actions that is allowed is increased. The
result is an iterative deepening search on plans using ever more improvisation actions. I have
no idea how many improvisation actions would be appropriate in one plan, maybe one or two
or a certain limitation per story. When there is more experience with generating stories this
may become clear.

The planner will plan improvisation actions anywhere within the sequence of steps in its
plan. An improvisation action will usually change the world as if it always was that way.
Improvisation actions are therefore requested to the Plot Agent immediately, meaning before
any other actions are performed. And they are then performed/resolved before the character
agent continues with the rest of its plan. Other character agents will receive the effects of an
improvisation as a world change instead of perceptions enabling them to respond appropriately.

Though the improvisations are limited in their use by having preconditions specified they
may still be inappropriate. If a character wishes to use an improvisation it will therefore make a
request to the Plot Agent. The Plot Agent can then decide whether the requested improvisation
can be allowed.

Placing objects into the world

An example of an improvisation of the late commitment type is one that creates a new object
in the story world.
Example of an object creation improvisation action:

improvise(tree, Location, TreeId)
preconditions:
(Location, type, forest)
add effects:
(TreeId, type, tree)
(TreeId, supportedBy, forest)
del effects:
none

This improvisation action creates a tree with identifier TreeId at any location that is of type
forest.
The improvisation action in the example introduces a new object to the simulation world. This
is a problem because of the static preconditions in some actions as shown in 5.3.2. To solve
this the improvisation actions should merely move objects to a new location. The objects are
placed in a special location in the initial setting.

An improvisation action of this type, in which the special location is the ‘improvRoom’, looks
like:

getFromImprovRoom(Agens, Patiens, Target, none, Location)
preconditions: (Patiens, locatedAt, improvRoom)
(Target, type, geographicArea)
deleffects: (Patiens, locatedAt, improvRoom)

54

Figure 5.3: The Cinderella Setting with improvRoom
In this picture is the Cinderella setting with an improvisation room. The rounded boxes are
locations, the house and the palace and the improvRoom. The black arrow is the road between
the locations. The two ellipses are humans/character agents, the Prince and Cinderella. The
small rectangle is an item, the nice dress, which is now in the improvisation room.

addeffects: (Patiens, locatedAt, Location)

This is a way to create the possibility of initial state revision as proposed in [27] but keep a
closed world instead of an open world.

Here is an example of the use of an improvisation:
I reuse the simple Cinderella setting where there are two locations, the house and the palace
and cinderella is at the house. She has the goal of being at the palace and to wear a nice
dress. If in this setting there would not be a nice dress at the house nor anywhere else she will
not be able to find a plan to satisfy the goals. The first iteration of finding a plan without
improvisations fails. The second try at finding a plan will allow for one improvisation. This
time the planner can use the GetFromImprovRoom and place the nicedress at the house, then
plan to pick it up, wear it and then walk to the palace.

Making offers

In improvisational theater an actor may say something like: “Look out! Don’t drop the nice
dress!”. This would be an offer to another actor who would then go along with it and drop the
nice dress accidentally. In live improvisational theater the offer has to be made verbally as the
actors must communicate such an idea to each other. In the Virtual Storyteller the character
agents can communicate via the Plot Agent and so the offer can be made more directly, without
the need to imply it during presentation of the story, as would be done in a live play with human
actors.
Example of an offer improvisation action which makes Agens, such as Cinderella’s stepsister
accidentally drop Patiens, such as a nice dress:

droppedBy(Agens, Patiens, Target, none, Location)
preconditions: (Patiens, heldBy, Agens)

55

(Agens, supportedBy, Location)
deleffects: (Patiens, heldBy, Agens)
addeffects: (Patiens, supportedBy, Location)

In such an improvisation action the character agent that requests the action asks that another
character does something, such as accidentally drop something. The character agent is allowed
to bind the Agens parameter to any agent in the simulation, not just itself as it would with
normal actions. In this case Cinderella can suggest that her stepsister accidentally drops the
nice dress. She can then continue creating a plan to pick it up and wear it to the ball at the
palace.

Improvisation conclusion

The general idea is that improvisation actions allow for alterations to the simulation world that
the character by itself could not bring about. These can be initial state alterations as with
the improvisation that introduce objects into the world or improvisation actions that really are
events. These events will be suggested to the Plot Agent by the character agents and will thus
be significant to the development of the plot.

56

Chapter 6

Discussion

6.1 Status of the implementation

A basic working implementation of the character agents has been created. Character agents
have a knowledge base with their beliefs. The planner has been implemented with the extensions
as presented in chapter 5. Character agents choose actions and communicate these to the Plot
Agent and they will create and perform plans that take them to their goals. The planner can
and has been used to create multiple plans but there is no implementation that presents these
plans to the Plot Agent. The planner can and has been used with improvisation actions but
the implementation does not make a request for them to the Plot Agent. The character agent
communicates its internal state in the form of pieces of fabula structure.

In the simulation runs that I have tried the characters have been omniscient, they could
observe the complete world state. If the character agent has no knowledge of the existence of a
certain object it will not try to find it.

6.2 Discussion of the use of the special extensions made to the
planner

In chapter 5 I showed the design for a partial-order planner with some special extensions. I will
discuss the results of using these extensions here.

6.2.1 The creation of fabula structure

When supplying the Plot Agent with fabula structure that describes the internal state of the
character agent there were troubles with defining what one goal is. A goal can be a defined as
one RDF-triple or it could be a conjunction of RDF-triples. The goal of Cinderella to go to
the palace and to wear a nice dress can be viewed as one goal or as two separate goals. If we
ask the planner to create a plan that achieves both of these simultaneously there is no way now
to determine if individual actions are motivated by one or the other goal and one cannot know
now if they interfere with each other in any way.

During the creation of a plan actions are connected by causal links. An action that has a
causal link to another action is chosen because it achieves a precondition of the other action.
This precondition can be viewed as a new goal. Declaring all their preconditions as goals is
clearly too much but sometimes they could be significant and would merit to be declared as
goals. They could be worth noting when they are the cause of a failure. How to choose whether
to declare such a precondition as a goal is unclear.

57

The knowledge base that the character use gives no identifier to their beliefs but in the
fabula structure they are given an identifier. In the fabula strucure this identifier is used to
creates links to this belief. The solution that I have used was to create a separate list of beliefs
in which they do get an identifier but this does not seem to be an elegant one.

6.2.2 Discussion of the creation of multiple plans

The ability of the planner to create multiple plans depends on the environment and the goals
of the agent. If the character agent has a set of intentions that it wishes to achieve at the same
time that are not technically related such as Cinderella who wants to go to the place and wear
a nice dress then there will be many plans possible as the two goals are fairly independent. The
environment in combination with the available actions must allow the existence of multiple plan
paths. If there simply are many roads or many fairly equal other types of choices then there
will be more alternatives for the Plot Agent.

In the current implementation the character agents create a complete new plan every time
they are asked what action they wish to perform. If the Plot Agent selects a plan from the set
of plans that a character agent presents then the character agents should try to use that plan.

The usefulness of the presentation of multiple plans to the Plot Agent depends of course on
the creation of a Plot Agent that can actually make use of them. The Plot Agent has to be
able to reason about the plans of characters.

6.2.3 Discussion of the use of improvisations

The usefulness of this extension depends on the creation of good improvisation actions. The
ability to move new objects into the simulation world is useful as the character agents can
determine where they would like to place the object. Some balance between a determined world
state and the freedom to choose it will have to be found.

A problem with the use of improvisations is the interaction with the partial-observability
of the world. The improvisations are now used whenever a character cannot create a plan.
Failure to create a plan can be the result of a lack of knowledge however. If a plan could have
been made by the character agent if it would have had more knowledge of its surroundings it
should not use an improvisation. Instead it should obtain more knowledge first. This would
presumably be solved by a denial of the Plot Agent to execute the improvisation. In a similar
way a character can make in improvisation that will help its plan along but it will not perceive
this improvisation and so it will not be helped by it.

An example of a character making an improvisation that is unnecessary is when Cinderella uses
an improvisation the places a nice dress in the garden because she does not know that there is
one at the palace that she should use.
An example of a character making an improvisation that it does not perceive is when Cinderella
is in the garden and knows that her stepsister is in the house. She knows that her stepsister is
holding a nice dress that she wants to have. If Cinderella now makes an improvisation which
lets her stepsister drop the nice dress, she will not actually see her sister dropping it and so it
will not help her. This will mean that the character may continue asking for improvisations that
have no real relevance to it as it never finds out the results. Or if it does receive information
about its improvisation request it will gain knowledge that it should not have.

58

6.3 Compatibility with future work on the character agents

I expect that the planner is compatible with future work on the character agents such as the
addition of emotions. The addition of emotions can be done in the deliberation part of the
agent. Meaning that emotions will be used to choose the goals that the character has the way
it was done in [24]. The causal links created in the plans by the planner can be used to do
appraisal on new beliefs and generate emotions as is done in [1]. When a new belief is created it
is checked against the list of causal links in the current plan. This way it can be determined if
new beliefs help or hinder the plan a character has and then generate the appropriate emotion
such as hope or fear.

In future work other domains and scenarios may be used. I expect that the ideas that I
have tried out in the domain of fairy tales and in the scenario of the Cinderella story will work
without trouble in any other domain or setting. I see no direct dependence on the fairytale
domain.

6.4 Performance and scalability

The current implementation of the planner can become quite slow when no plan can be found
that achieves the goal. Especially if it tries two improvisation actions and then still fails. The
combination of creating multiple plans with the use of improvisations can result in an explosion
of possibilities which slows the systems down quite a bit. The implementation of the planner has
not been optimized for speed at the moment and I expect that a review of the implementation
can result in significant speedups.

Because the architecture is agent based we can run character agents on multiple workstations
this makes it very scalable. I expect that the Plot Agent will get into trouble when there are a
large number of character agents that present their plans to it.

59

Chapter 7

Conclusions and Future work

7.1 Conclusions

On the question what type of planner to use in the Virtual Storyteller I conclude that a partial-
order planner is a good choice. The worlds in which the characters make plans are not very
complicated and thus computing a plan can be done at an acceptable speed. Because in the
Virtual Storyteller generation and presentation of stories is done in separate steps there is no
need for real-time reactions from characters and so when computation of a plan takes a bit
longer on occasion this is no problem.

It is difficult to say whether or not the extensions that I created to the planner are successful.
I believe that they do suggest that there is some room for direction by a drama manager, the Plot
Agent, in the choice of actions by character agents that can then still act without compromising
their believably. Though I have given only a few examples of when this would work the existence
of these examples proves that this idea can contribute to the creation of stories in automated
story generation systems.

For the use of improvisations by character agents I have also shown only a few examples
but from these I conclude that it is possible to generate stories in which the initial state of the
world has not been completely defined, as in the case of improvisation actions that add objects
to the world. It also shows that the character agents can themselves suggest actions or events
that should take place in the simulation and so they can do more than only plan their own
actions.

7.2 Future work

In this section I list a number of issues for future work.

7.2.1 The perception module

The perception module that I have used takes perceptions and creates beliefs based on these
directly. If an agent receives the perception that Cinderella is in the palace it will add the belief
that Cinderella is in the palace. It will not remove any beliefs that conflict with this new belief.
It will not remove the belief that Cinderella is at home, if it has such a belief. The perception
module needs to be updated to do such things. An approach could be to remove any beliefs that
create an inconsistent world if combined with the new beliefs obtained from the perceptions.

60

7.2.2 A deliberation module

The character agents have no deliberation module. The deliberation module should choose
the goals that are supplied to the planner. This could be done using a given list of possible
intentions and a system that chooses from this list. This could possibly be done the same way as
was done in [24], by using emotions that trigger the activation of certain goals and deactivation
of other goals. This deliberation module can offer choices to the Plot Agent in the same spirit
as the planner. If a number of possible goals are very equal in likeliness the choice can be left
to the Plot Agent.

7.2.3 Some small additions to the planner

Here I give a few points that are specific to the planner.

Concurrent Actions

In [16, 2.7.2] it is stated that characters sometimes execute actions in parallel and if they can
do this this makes them more believable. A dog wagging its tail while walking toward someone
is an example of this. In most cases in which character execute multiple actions in parallel
only one of them will be significant to the simulation. The other actions can be added in the
presentation layer of the storyteller. The dog will not wag its tail in the simulation but in the
presentation layer it can be added based on the knowledge that it is happy.

In [37] it is suggested to give an agent resources such as arms, legs and a mouth. Actions
will have specified what resource they use. If two actions do not use the same resources they
can be executed simultaneously. I think it may be possible to make character agents be made
up of a number of “agents” such as left-arm, right-arm, legs, mouth, and give actions to these
agents. These agents are then controlled by one character agent.

Adding intentions

If the deliberation module wants to add an intention the planner should be able to indicate
whether this new intention is possible to be achieved by itself and if it would collide with existing
intentions. First the planner should try to find a plan that achieves the new intention by itself,
this prevents long search times for the complete plan in which all intentions are pursued. Then
the planner should try to find a plan that achieves all intentions including the new one. If this
does not work the new intention collides with the old ones and it should be refused.

Maintain goals

The planner can be adopted for use with maintain goals. A maintain goal is a situation that the
character wishes not to change. A maintain goal of Cinderella would be to keep her nice dress
clean. Moving through the forest may have as an effect that her nice dress will become dirty. If
we add a causal link in the otherwise empty initial plan from the start step to the finish step,
then we can create maintain goals if this causal link holds the condition of the maintain goal as
its protected fact.

7.2.4 Determinism

In story generation some random factors are usually introduced. This is a way to generate
different runs. The system can be run multiple times to try to generate interesting stories.
These random factors are usually introduced in the internal mechanisms of the character agents

61

or in the actions. However instead of actually using randomness these random factors should
be used to allow the Plot Agent to make choices. The outcome of random events can be used
to direct the plot.

In the related work section 4 I mentioned Fearnot. In [1] they say that “If stories are literally
repeatable, then one loses the sense that characters have any control over their virtual lives,”
This is true if believability is an ongoing issue spanning multiple narratives. In our system,
the Virtual Storyteller, repeated behavior would be logical because the system is episodic, by
which I mean that one expects the same actions of the characters when the story is generated a
second time. It would not be a new story in which we revisit the same characters but another
rendition of the same story.

Actions can also be used to introduce a random factor. Non-deterministic actions, actions
that have a chance of failure create suspense. Also some actions may be perceived as more
realistic (believable) if they have a chance of failure. It is a good idea to have the Plot Agent
choose whether an action fails. This would mean that the Plot Agent can use an outcome based
on chance or choose the outcome. Choosing the outcome will increase the ability of the Plot
Agent to create a plot.

It is good to be able to repeat an experiment. For testing purposes but also for trying out
the effects of the initial setting on the story I think it is important to be able to repeat results,
to be able to generate the same story again. This means that using random factors to generate
different stories is no problem as long as we can choose to get the exact same outcomes again.
Thus I suggest that the Plot Agent should have control over any random factors in the story
generation process.

7.2.5 Character agent abilities and fairy tales

There are a number of abilities a character agent could have. It is tempting to try to create a
very complex character agent that simulates a complete personality in a fairy tale. To keep the
amount of features of a character agent in check one should identify what aspects of a simulated
character are important. These aspects can be found in the type of fairy tales that one wishes
to create. Some of these have been identified as important to character believability such as
the ones in [16], such as emotions. But others have not been looked at, such as how a character
deals with uncertainty and incomplete world knowledge. How important are speech acts in fairy
tales? Should characters be able to make deals? Do characters have different ways to determine
whether to trust someone? Do characters in fairy tales lie and is that important? What types
of goals do characters have in fairy tales. Do we see characters come to wrong conclusions after
perceiving something? Is it important to have actions that have a certain duration or can we
use an abstract simple system. What are the most important additions to the ontology we
need? Maybe we need friendships and marriage, family relations.

In all fairy tales that I have studied it is important that the characters are able to commu-
nicate beliefs and goals and that they are able to make deals. In the “Frog Prince” story the
deal between the princess and the frog is central. This is the deal where the princess promises
the Frog Prince that she will kiss him if he gets her golden ball from the pond. In the “Golden
Goose” story three brothers are each asked for food and drink by a mysterious character in the
woods. When the third brother agrees to give some food and drink he is rewarded. In these
stories the communication and exchange of goals is very important. I would therefore claim
that the most important next step in the creation of an automated storyteller system is to add
ways for characters to exchange beliefs and goals.

62

Bibliography

[1] Aylett, R. S., Dias, J., and Paiva, A. An affectively-driven planner for synthetic characters.
In ICAPS 2006. AAAI Press, 2006.

[2] Bates, J. The nature of character in interactive worlds and the Oz project. Technical
Report CMU-CS-92-200, School of Computer Science, Carnegie Mellon University, 1993.

[3] Bechhofer, S., Harmelen, F. v., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A. Owl web ontology language, http://www.w3.org/tr/owl-
ref/, 2004.

[4] Bratman, M. E., Israel, D., and Pollack, M. Plans and resource-bounded practical reason-
ing. In R. Cummins and J. L. Pollock, editors, Philosophy and AI: Essays at the Interface,
pages 1–22. The MIT Press, Cambridge, Massachusetts, 1991.

[5] Brooks, R. A. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

[6] Cavazza, M., Charles, F., and Mead, S. J. Characters in search of an author: AI-based
virtual storytelling. First International Conference on Virtual Storytelling,LNCS 2197,
Avignon, France, pages 145–154, 2001.

[7] Cavazza, M., Charles, F., and Mead, S. J. Planning characters behavior in interactive
storytelling. The Journal of Visualization and Computer Animation, 13:121–131, 2002.

[8] Dini, D., van Lent, M., Carpenter, P., and Iyer, K. Building robust planning and execution
systems for virtual worlds. In Artificial Intelligence and Interactive Digital Entertainment.
2006.

[9] Faas, S. Virtual Storyteller: An approach to computational storytelling. Master’s thesis,
University of Twente, 2002.

[10] Fikes, R. and Nilson, N. STRIPS: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

[11] Genesereth, M. R. and Fikes, R. Knowledge interchange format, version 3.0 reference
manual. Technical Report Logic-92-1, Computer Science Department, Stanford University,
1992.

[12] Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. The belief-desire-
intention model of agency. In J. Müller, M. P. Singh, and A. S. Rao, editors, Proceedings
of the 5th International Workshop on Intelligent Agents V : Agent Theories, Architec-
tures, and Languages (ATAL-98), volume 1555, pages 1–10. Springer-Verlag: Heidelberg,
Germany, 1999.

63

[13] Gratch, J. E. Marshalling passions in training and education. In Proceedings of the Fourth
International Conference on Autonomous Agents, pages 325–332. ACM Press, 2000.

[14] Hill, R., Gratch, J., Johnson, W. L., Kyriakakis, C., LaBore, C., Lindheim, R., Marsella,
S., Miraglia, D., Moore, B., Morie, J., Rickel, J., Thiebaux, M., Tuch, L., Whitney, R.,
Douglas, J., and Swartout, W. Toward the holodeck: integrating graphics, sound, character
and story. In AGENTS 01: Proceedings of the fifth international conference on Autonomous
agents, page 409416. ACM Press, 2001.

[15] Huber, M. JAM: A BDI-theoretic mobile agent architecture. In The Third International
Conference on Autonomous Agents, pages 236–243. 1999.

[16] Loyall, A. B. Believable Agents: Building Interactive Personalities, Tech report CMU-CS-
97-123. Ph.D. thesis, Carnegie Mellon University, 1997.

[17] Marsella, S., Johnson, W., and LaBore, C. Interactive pedagogical drama. In Proceedings of
the Fourth International Conference on Autonomous Agents, pages 301–308. ACM Press,
2000.

[18] Mateas, M. An Oz-centric review of interactive drama and believable agents. Technical
Report CMU-CS-97-156, School of Computer Science, Carnegie Mellon University, 1997.

[19] Mateas, M. and Stern, A. Façade: An experiment in building a fully-realized interactive
drama. In Game Developers Conference, Game Design track. 2003.

[20] Nau, D., Cao, Y., Lotem, A., and Muñoz Avila, H. SHOP: Sipmle hierarchical ordered
planner. In IJCAI, volume 2, pages 968–973. 1999.

[21] Norvig, P. and Russell, S. Artificial Intelligence: A Modern Approach. Printice Hall, 1
edition, 1995.

[22] Norvig, P. and Russell, S. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd
edition, 2003.

[23] Ortony, A., Clore, G., and Collins, A. The Cognitive Structure of Emotions. Cambridge
University Press, 1988.

[24] Rensen, S. Agent-gebaseerde generatie van interessante plots. Master’s thesis, University
of Twente, 2004.

[25] Riedl, M. and Young, R. M. Towards an architecture for intelligent control of narrative in
interactive virtual worlds. In Proceedings of the 2004 International Conference on Narrative
Intelligence and Learning Environments. Liquid Narrative Group, North Carolina State
University, 2003.

[26] Riedl, M. and Young, R. M. From linear story generation to branching story graphs. IEEE
Journal of Computer Graphics and Applications, pages 23–31, 2006.

[27] Riedl, M. and Young, R. M. Story planning as exploratory creativity: Techniques for
expanding the narrative search space. New Generation Computing, 2006.

[28] Riedl, M. O. Actor conference: character-focused narrative planning. Technical Report
TR03-000, North Carolina State University Liquid Narrative Group, 2003.

64

[29] Riedl, M. O. Narrative Planning: Balancing Plot and Character. Ph.D. thesis, North
Carolina State University, 2004.

[30] Swartjes, I. The Plot Thickens: bringing structure and meaning into automated story
generation. Master’s thesis, University of Twente, 2006.

[31] Swartjes, I. and Theune, M. A Fabula Model for Emergent Narrative, Technologies for
Interactive Digital Storytelling and Entertainment, Third International Conference, TIDSE
2006, volume 4326 of Lecture Notes in Computer Science, pages 49–60. Springer Verlag,
Heidelberg, 2006.

[32] Swartjes, I. and Vromen, J. Emergent story generation: Lessons from improvisational the-
ater. In AAAI Fall Symposium on Intelligent Narrative Technologies (to appear). Arlington
VA, USA, 2007.

[33] Theune, Faas, Nijholt, and Heylen. The virtual storyteller. ACM SIGGROUP Bulletin,
23:20–21, 2002.

[34] Theune, M., Faas, S., Heylen, D., and Nijholt, A. The virtual storyteller: Story creation
by intelligent agents. In S. G. obel, N. Braun, U. Spierling, J. Dechau, and H. Diener,
editors, TIDSE 2003: Technologies for Interactive Digital Storytelling and Entertainment.
Fraunhofer IRB Verlag, 2003.

[35] Theune, M., Slabbers, N., and Hielkema, F. The narrator: NLG for digital storytelling.
In S. Busemann, editor, ENLG-07 11th European Workshop on Natural Language Gener-
ation, DFKI Document Series, pages 109–112. DFKI (Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH), Germany, 2007.

[36] Trabasso, T., van den Broek, P. W., and Suh, S. Y. Logical necessity and transitivity of
causal relations in stories. Discourse Processes, 21:1–25, 1989.

[37] Uijlings, J. Designing a virtual environment for story generation. Master’s thesis, Univer-
sity of Amsterdam, 2006.

[38] Weld, D. S. Recent advances in AI planning. AI Magazine, 20(2):93–123, 1999.

[39] Wielemaker, J. SWI-Prolog 5.6 Reference Manual. HCS, University of Amsterdam, 2007.

[40] Wooldridge, M. J. An Introduction to MultiAgent Systems. Wiley, 2002.

[41] Young, R. M. Story and discourse: A bipartite model of narrative generation in virtual
worlds. Interaction Studies, 2006.

65

Appendix A

Prolog Implementation

A.1 Prolog from Java

The Virtual Storyteller was implemented in Java. Parts of the World Agent and parts of the
character agent were implemented in SWI-Prolog [39]. To be able to use Prolog from Java,
where all the control is, we used JPL. JPL provides and interface between Java and Prolog. It
is a standard package with the SWI-Prolog distribution.

A.2 Small introduction to Prolog

Parts of the character agent were implemented in Prolog. These parts are the knowledge base
and the planner. I will now give a small example of how Prolog works. Prolog tries to satisfy
goals that one presents to it. It does this by searching a space of possible answers. If a specific
answer does not satisfy the goal it backtracks in the search space.

Example:

beast(X) :-
member(X, [lion , gorilla , bear]).

ape(X) :-
member(X, [gorilla , chimpanzee])

?- beast(X), ape(X).

Here we say that something is a beast if it is a lion, gorilla or bear and that something is an
ape if it is a gorilla or a chimpanzee. We can then ask Prolog to try to satisfy the goal of X

being a beast and an ape. Prolog will first satisfy beast(X) by choosing X = lion and find that
it cannot satisfy ape(X) because lion cannot be unified with either gorilla or chimpanzee. Now
it must backtrack to an earlier choice point. It may satisfy beast(X) by choosing X = gorilla

and now ape(X) can be satisfied as well. Thus Prolog will answer X = gorilla

A.3 Prolog files

This section contains a description of all the prolog files that have been created or altered during
my research. There are two types of files that I describe here: the first are only used by the
character agents, the second all deal with story operators and are used by the character agents,
Plot Agent and World Agent.

66

A.3.1 Rational agent files

The character agent, Plot Agent and World Agent are all subclasses of the ration agent class.
Each of them use the following files.

The prolog files that are used by all rational agents are:

files location
knowledgebase.pl \
owlRules.pl \
swcRules.pl \
consultOntologiesandTools.pl \
loadFabulaAndSWC.pl \
schemaTools.pl \
loadCind.pl \

• knowledgebase.pl is loaded by the prolog knowledge manager class which is used by the
rational agent class. It initialises the OWL reasoning modules.

• consultOntologiesandTools.pl loads loadFabulaAndSWC.pl, schemaTools.pl and
loadCind.pl.

• loadFabulaAndSWC.pl loads the fabula and action ontology and the Story World Core
ontology.

• schemaTools.pl contains operator functionality which will be described in the next section.

• loadCind.pl loads the Cinderella setting.

If you want to use another setting change loadCind.pl to another file with a similar content
that loads antoher setting.

A.3.2 Story operator files

The prolog files that deal with story operators are:

file location
schemaTools.pl \
actions.pl \schemas
events.pl \schemas
improvisations.pl \schemas
transfer.pl \schemas
transitmove.pl \schemas

• schemaTools.pl contains tools that deal with operators.

• actions.pl loads files that contain action operators such as transfer.pl and
transitmove.pl.

• events.pl contains event operators.

• improvisations.pl contains improvisation operators.

• transfer.pl contains actions from the transfer class.

67

• transitmove.pl contains actions from the transitmove class.

To create new events or improvisations simply add them to the events.pl or
improvisations.pl files respectively. Actions should be added to the file named after the
subclass they belong to. A new action should also be added to the ontology in the fabula and
action ontology file. Though depending on the preconditions of the action it may work without
adding it to the ontology.

A.3.3 Character agent files

The prolog files that are used by the character agent are:

file location
BasicCharacterAgent.pl \CharacterAgent
iPop.pl \CharacterAgent
pop.pl \CharacterAgent
iPop test.pl \CharacterAgent

• BasicCharacterAgent.pl contains a few simple functions that are only used by the character
agent. One of the functions contained in this file is one with which the character agent
creates a belief in its database that specifies what character agent it controls. Other
functions are used to get information that is used in the display of the character agent
GUI.

• iPop.pl contains interface functions to the partial-order planner.

• pop.pl contains the partial-order planner, it is loaded by iPop.pl.

• iPop test.pl contains code that was used for testing and experimenting with the prolog
code of the character agents.

A.4 Action database

The character agents use the actions from the masters thesis of Jasper Uijlings [37], with some
changes mentioned earlier in 5. The action database was partially implemented. This partial
implementation was done in Prolog. Along with the database Jasper Uijlings implemented a
number of functions for use with the world agent.

A.4.1 Action hierarchy

Jasper Uijlings prepared the database to be converted to a version in which part of the pre-
conditions and effects of actions are moved to a superaction. This would result in a clearer
database. A few actions had already been split up in this manner. I have completed this work
for Walk, PutOn, Dress, TakeFrom and Undress and all actions above and below those in the
ontology tree.

A downside to this hierarchical ordering is that the order in which preconditions are checked
cannot be changed freely. Often the efficiency of precondition checking can be increased by
placing certain checks up front. I have therefore decided not to use the hierarchical action
database. All actions are completely defined in their own schema. If one likes this idea of a
hierarchical specification of actions I suggest using a separate action definition language that
can be compiled into the actions used by the planner.

68

A.4.2 Action naming

In the implementation by Jasper Uijlings actions were implemented in Prolog in the following
way:

takeFrom(AgentID , Agens , Patiens , Target , Instrument , Vars)

Here Vars is a list of other variables, the variables specifically used in this action.
This means the name takeFrom cannot be used as a value. This way one cannot search for

the action name. Therefore I changed this to:

action(takeFrom , (AgentID , Agens , Patiens , Target , Instrument , Vars))

Now takeFrom is a value and because of this it can be changed to the name of the action
as specified in the OWL action ontology. This eliminated the need for a conversion table from
names in the action database to the ontology names. The result is:

action(’http ://www.owl -ontologies.com/FabulaKnowledge.owl#TakeFrom ’,
(AgentID , Agens , Patiens , Target , Instrument , Vars))

Finally events and improvisations were added to the Virtual Storytelling system. This led
to the introduction of the more general class schema with a class field for actions, events and
actions. Also the structure of schemas was made more flexible by making it a flexible set of
values. Furthermore the AgentID has become obsolete due to merger with the Agens variable.

schema ([
class(action),
head([

type(’http ://www.owl -ontologies.com/FabulaKnowledge.owl#TakeFrom ’),
agens(Agens), patiens(Patiens),
target(Target), instrument(Instrument)
])]).

A.4.3 Action schemata

Based on the action database create by Jasper Uijlings [37] I have created a version of this
database with an altered schema for actions. The ontology of the actions is the same. I defined
an action schemata as a six-placed tuple. It has a head a cost and four lists of OWL-triples,
the positive preconditions, negative preconditions, positive effects and negative effects.

schema ([
class(action),
head([

type(’http ://www.owl -ontologies.com/FabulaKnowledge.owl#TakeFrom ’),
agens(Agens), patiens(Patiens),
target(Target), instrument(Instrument)
]),

duration(D),
posPreconditions(PosPreconditions),
negPreconditions(NegPreconditions),
posEffects(PosEffects),
negEffects(NegEffects),

The head, Head, of an action is a set with the name of the action, in the type field, this is
the name as given in the ontology, and a list of variables that are used in the schema. The
first four variables in this list are always Agens, Patiens, Target, Instrument, if the action
does not use one of the mandatory variables it is set to none, otherwise it is left out. The

69

duration, Duration, of an action is an integer value that will be not be used by the planner
if a path length value is present. The positive preconditions, PosPreconditions are the OWL-
triples that must be true before the action can be performed. The negative preconditions,
NegPreconditions are the OWL-triples that must be false before the action can be performed.
The positive effects, PosEffects are the OWL-triples that will become true when the action is
performed. The negative effects, NegEffects are the OWL-triples that will be false when the
action is performed. The positive effects are add effects, the negative effects are delete effects.

A.4.4 Numbers

In chapter 5 it was decided not to use numbers in action preconditions, except for the length of
roads between two locations. This was implemented by simply removing all preconditions that
used numbers from the actions.

70

Appendix B

Partial-order planner
implementation

In this chapter I describe the implementation of the partial-order planner. The partial-order
planner was implemented in SWI-Prolog.

B.1 Data types

The planner uses the following data types:

• An owl-triple is a 3 placed predicate: (Subject, Relation, Object).
Subject, Relation and Object are replaced by symbols from the ontology, see 2.

• A plan which is a 4 placed predicate: (Steps, Orderings, Links, Counters).
Steps, Orderings and Links are lists of type step, ordering and causal links respectively.
Counters holds a counter variable.

• A counters variable Counters is a triple with three counters in it:
(Depth, Cost, Improvs) The Depth value is the number of actions in the plan. The Cost value
is the total cost of the plan. The Improvs value is the number of improvisations in the
plan. A counters variable is used to count the plan and also as a maximum.

• A step which is a 5 placed predicate:
(Description, PosPreconditions, NegPreconditions, PosEffects, NegEffects).
Description is an action description.
PosPreconditions, NegPreconditions, PosEffects and NegEffects are lists of owl-triples.

• An action description is a 3 placed predicate:

• An ordering which is an unnamed predicate with two places: (Step1, Step2)

Step1 and Step2 are steps.

• A causal link which is a 4 placed predicate:
(Step1, Step2, PosPrecondition, NegPrecondition)

Step1 and Step2 are steps.
PosPrecondition and NegPrecondition are RDF-triples. Either PosPrecondition or
NegPrecondition is set to none as a causal link has only one condition.

71

B.2 The planner implementation in SWI-Prolog

Here I present the SWI-Prolog code of the partial-order planner itself. It can be found in the
file ’pop.pl’.

counterDepth ((Depth , _Cost , _Improvs), Depth).

counterCost ((_Depth , Cost , _Improvs), Cost).

counterImprovs ((_Depth , _Cost , Improvs), Improvs).

counterZero ((0 ,0 ,0)).

This is a set of functions that access a counter variable and retrieve one of the counters
contained in it. counterZero returns a counter value with all counters set to zero.

% idPop /4 MaxDepth , PosGoal , NegGoal , ? Plan

idPop(MaxDepth , PosGoal , NegGoal , Plan) :-

popIterator(MaxDepth , 0, PosGoal , NegGoal , Plan).

idPopC(MaxDepth , PosGoal , NegGoal , Plan) :-

popIteratorC(MaxDepth , 0, PosGoal , NegGoal , Plan).

popIterator(MaxDepth , Depth , PosGoal , NegGoal , Plan) :-

pop((Depth , 30000 , 0) , PosGoal , NegGoal , Plan);

(Depth1 is Depth + 1,

Depth1 =< MaxDepth ,

popIterator(MaxDepth , Depth1 , PosGoal , NegGoal , Plan)).

popIteratorC(MaxDepth , Depth , PosGoal , NegGoal , Plan) :-

pop ((30000 , Depth , 0), PosGoal , NegGoal , Plan);

(Depth1 is Depth + 1,

Depth1 =< MaxDepth ,

popIterator(MaxDepth , Depth1 , PosGoal , NegGoal , Plan)).

This is the iterative deepening function. It calls the pop function with an increased Depth

parameter. The Depth is increased until a plan is found or until the maximum depth is reached.
There are two versions of this iterator: one on the number of actions and one on the cost of
actions. idPop which calls popIterator does iterative deepening on the number of actions in the
plan. idPopC which calls popIteratorC does iterative deepening on the cost of the plan.

% pop /4 +Max , + PosGoal , + NegGoal , ? Plan

% pop returns a partial order plan

% uses the database as input

pop(Max , PosGoal , NegGoal , Plan) :-

makeMinimalPlan(PosGoal , NegGoal , MinimalPlan),

findPlan(Max , MinimalPlan , Plan).

The main function pop takes as input a parameter Max that contains a number of parameters that
give the maximum depth, maximum cost and maximum number of improvisations in integers.
There are two lists of goals: PosGoal is a list of owl-triples that need to be true and NegGoal

is a list of owl-triples that must be untrue when the plan is finished. The function returns a
partial-order plan Plan.

% startStep defines the startStep.

startStep ((s, dummy)).

% makeMinimalPlan /3 + PosGoal , + NegGoal , ? Plan

% makeMinimalPlan returns an initial plan containing a start and a finish step

makeMinimalPlan(PosGoal , NegGoal ,

([FinishStep], [(StartStepname , f)], [], CounterZero)) :-

counterZero(CounterZero),

startStep ((StartStepname , _StartStepHead)),

FinishStep = (f, [

72

class(action),

head([

type(finished)

]),

duration (0),

posPreconditions(PosGoal),

negPreconditions(NegGoal),

posEffects ([]),

negEffects ([])

]).

The first function used by pop is makeMinimalPlan which returns an initial plan as described in
section 5.4. The steps in the plan initially is only the finish step. There is one ordering tuple in
which the start step is ordered before the finish step. It would look like (s,f) The causal links
are empty and the counters are set to zero with counterZero. A difference is that the effects of
the start step are not listed here and that the start step is not in the list of steps. The start step
is treated as a special case and the effects are retrieved directly from the knowledge database,
as we will see when we get to that part of the implementation. The finish step is constructed
such that it contains the goals as positive and negative preconditions and it will now be treated
the same as any step in the plan.
findPlan(MaxDepth , Plan , NewPlan) :-

choosePrecondition(Plan , Stepname , PosCondition , NegCondition) ->

(

chooseOperator(MaxDepth , Plan , Stepname ,

PosCondition , NegCondition , Plan2),

resolveThreats(Plan2 , Plan3),

findPlan(MaxDepth , Plan3 , NewPlan)

) ;

NewPlan = Plan.

If the plan has an open precondition findPlan tries to extend the plan. The first open precondi-
tion is chosen. The plan is extended by calling chooseOperator and then fixing any threats using
resolveThreats. If the plan had an open precondition the function calls itself to keep extending
the plan. If there is no open precondition the plan is finished and the result is returned.
choosePrecondition ((Steps , _Orderings , Links , _Depth),

Stepname , PosPrecondition , none) :-

member ((Stepname , StepOperator), Steps),

actionPosPreconditions(StepOperator , PosPreconditions),

member(PosPrecondition , PosPreconditions),

\+ memberchk ((_X , Stepname , PosPrecondition , none), Links).

choosePrecondition ((Steps , _Orderings , Links , _Depth),

Stepname , none , NegPrecondition) :-

member ((Stepname , StepOperator), Steps),

actionNegPreconditions(StepOperator , NegPreconditions),

member(NegPrecondition , NegPreconditions),

\+ memberchk ((_X , Stepname , none , NegPrecondition), Links).

The choosePrecondition function chooses a precondition from the lists of preconditions of all steps
in the plan and checks whether the chosen precondition is present in the list of causal links. If
it is not it is not yet achieved by another step. The function has two versions; one that tries to
find a positive precondition and one that tries to find a negative precondition.
% chooseOperator /4 + CurrentPlan , + Step , + Condition , - BetterPlan

% choose either a step from the plan or a new action

chooseOperator(Max , CurrentPlan , AskStepname ,

PosCondition , NegCondition , NewPlan) :-

chooseStart(Max , CurrentPlan , AskStepname ,

73

PosCondition , NegCondition , NewPlan);

chooseStep(CurrentPlan , AskStepname ,

PosCondition , NegCondition , NewPlan);

chooseAction(Max , CurrentPlan , AskStepname ,

PosCondition , NegCondition , NewPlan);

chooseImprovisation(Max , CurrentPlan , AskStepname ,

PosCondition , NegCondition , NewPlan).

To achieve a precondition chooseOperator is called. It first tries whether the start step, the initial
situation, can be used. The start step is treated as a special case because it directly consults
the current beliefs the agent has. If this fails it tries another step that is already part of the
plan. If this does not work it will try to create a new step from an action schema. Lastly it
will try an improvisation. This will quickly fail ofcourse if the maximum number of allowed
improvisations is set to zero.
conditionCost ((_S , R, O), D) :-

(R = ’http :// www.owl -ontologies.com/StoryWorldCore.owl#length ’,

O = literal(type(’http :// www.w3.org /2001/ XMLSchema#int ’, L)))

->

atom_to_term(L, D, _Bindings)

; D = 0.

% chooseStart

% reuse the start (current) state

chooseStart(Max , (Steps , Orderings , Links , (Depth , Cost , Improvs)),

AskStepname , PosCondition , none , NewPlan) :-

query(PosCondition),

conditionCost(PosCondition , D),

counterCost(Max , MaxCost),

Cost1 is Cost + D,

Cost1 =< MaxCost ,

startStep ((NewStepname , _NewStepOperator)),

NewPlan = (Steps ,

[(NewStepname , AskStepname) | Orderings],

[(NewStepname , AskStepname , PosCondition , none) | Links],

(Depth , Cost1 , Improvs)).

% chooseStart

% reuse the start (current) state

chooseStart(_Max , (Steps , Orderings , Links , Counters),

AskStepname , none , NegCondition , NewPlan) :-

unpQuery(NegCondition),

startStep ((NewStepname , _NewStepOperator)),

NewPlan = (Steps ,

[(NewStepname , AskStepname) | Orderings],

[(NewStepname , AskStepname , none , NegCondition) | Links],

Counters).

The function above tries to reuse the start step. The function query consults the knowledge
base for beliefs. If the precondition is a positive one and it is a belief or if the precondition is a
negative one and it is not a belief then the start step is used in a new causal link. The NewPlan

contains a new causal link and a new ordering. Using certain owl-triples, a belief from the
knowledgebase, to satisfy a precondition can mean that we now know a cost. The conditionCost

function returns the extra cost for the plan when a triple is used. The cost is zero unless the
owl-triple is a length relation in which case the length is used as the cost.
% chooseStep

% reuse a step in the plan that achieves the precondition

chooseStep ((Steps , Orderings , Links , Counters),

AskStepname , PosCondition , NegCondition , NewPlan) :-

74

member ((Stepname , StepOperator), Steps),

notBefore(Orderings , (AskStepname , Stepname)),

effectMember(PosCondition , NegCondition , (Stepname , StepOperator)),

NewPlan = (Steps ,

[(Stepname , AskStepname) | Orderings],

[(Stepname , AskStepname , PosCondition , NegCondition) | Links],

Counters).

chooseStep tries to find a step that is already in the plan to achieve the precondition. With
notBefore(Orderings, (AskStepname, Stepname))) it makes sure that the two steps involved have not
already been ordered in a conflicting way. Meaning that the step with the open precondition
already has an ordering constraint such that it is before the step that is now under consid-
eration. If the step with the open precondition is before the step that is under consideration
then this step cannot be used to achieve this precondition. The function then checks using
effectMember(PosCondition, NegCondition, (Stepname, StepOperator)) if the step has an effect that
achieves the open precondition.

% chooseAction

% put an action in the plan that achieves the precondition

chooseAction(Max , (Steps , Orderings , Links , (Depth , Cost , Improvs)),

AskStepname , PosCondition , NegCondition , NewPlan) :-

counterDepth(Max , MaxDepth),

counterCost(Max , MaxCost),

Depth1 is Depth + 1,

Depth1 =< MaxDepth ,

schema(NewOperator),

getFromSchema(NewOperator , class(action)),

NewStep = (Depth , NewOperator), %Depth is used as the name for a new action

effectMember(PosCondition , NegCondition , NewStep),

getFromSchema(NewOperator , duration(D)),

Cost1 is Cost + D,

Cost1 =< MaxCost ,

NewPlan = ([NewStep | Steps],

[(Depth , AskStepname) | Orderings],

[(Depth , AskStepname , PosCondition , NegCondition) | Links],

(Depth1 , Cost1 , Improvs)).

chooseAction tries to use an action as a new step in the plan. It works that same as chooseStep

except that it selects a new action in staid of a step from the plan. It also updates the counters
and checks to see if this exceeds one of the maximum values.

% chooseImprovisation

% put an action in the plan that achieves the precondition

chooseImprovisation(Max , (Steps , Orderings , Links , (Depth , Cost , Improvs)),

AskStepname , PosCondition , NegCondition , NewPlan) :-

counterDepth(Max , MaxDepth),

counterImprovs ((Max , MaxImprovs),

Depth1 is Depth + 1,

Depth1 =< MaxDepth ,

Improvs1 is Improvs + 1,

Improvs1 =< MaxImprovs ,

schema(NewOperator),

getFromSchema(NewOperator , class(improvisation)),

NewStep = (Depth , NewOperator), %Depth is used as the name for a new action

effectMember(PosCondition , NegCondition , NewStep),

getFromSchema(NewOperator , head(H)),

getFromHead(H, agens(Agens)),

query ((myself , iam , Agens)),

checkAgent(NewStep),

NewPlan = ([NewStep | Steps],

75

[(Depth , AskStepname) | Orderings],

[(Depth , AskStepname , PosCondition , NegCondition) | Links],

(Depth1 , Cost , Improvs1)).

chooseImprovisation does the same thing as chooseAction except that it selects an improvisation
instead of an action. It also updates and checks the improvisation counter.

% checkAgent checks whether Agent is the agent itself.

% Is also makes sure the Agent does not bind any other variables

to its own "name"

checkAgent ((_Stepname , Operator)) :-

query ((myself , iam , Agens)),

getFromSchema(Operator , head(H)),

getFromHead(H, agens(Agens))

This function finds out what it is called in the virtual world and binds the Agent variable to an
object that is controlled by the agents’ name in the virtual world. It also makes sure the agent
does not bind any other variables to that same controlled object. This way the agent will not
pick itself up.

effectMember(PosCondition , none , (_Stepname , Operator)) :-

getFromSchema(Operator , posEffects(PEs)),

member(PosCondition , PEs).

effectMember(none , NegCondition , (_Stepname , Operator)) :-

getFromSchema(Operator , negEffects(NEs)),

member(NegCondition , NEs).

These two functions try to unify either a positive precondition or a negative precondition with
the effects of some operator, which is a step or action.

resolveThreats ((Steps , Orderings , Links , Counters), BetterPlan) :-

(member ((Stepname , StepHead), Steps),

member(Link , Links),

threatens(Orderings , (Stepname , StepHead), Link))

->

(addOrdering(Orderings , Stepname , Link , Ordering),

resolveThreats ((Steps , [Ordering | Orderings], Links , Counters), BetterPlan))

; BetterPlan = (Steps , Orderings , Links , Counters).

addOrdering(Orderings , Step , (Step1 , _Step2 , _PosCondition , _NegCondition),

(Step , Step1)) :-

notBefore(Orderings , (Step1 , Step)).

addOrdering(Orderings , Step , (_Step1 , Step2 , _PosCondition , _NegCondition),

(Step2 , Step)) :-

notBefore(Orderings , (Step , Step2)).

threatens(Orderings , (Stepname , Action),

(Step1 , Step2 , PosCondition , NegCondition)) :-

actionPosEffects(Action , PosEffects),

actionNegEffects(Action , NegEffects),

notBefore(Orderings , (Stepname , Step1)),

notBefore(Orderings , (Step2 , Stepname)),

((ground(PosCondition), groundMember(PosCondition , NegEffects));

(ground(NegCondition), groundMember(NegCondition , PosEffects))).

The resolveThreats function returns an unchanged plan if there are no threats in the plan. It
returns a plan with extra orderings constraints if there are threats in the plan. addOrdering

checks that there is no conflicting ordering already in the plan. The function threatens checks
if a specific step threatens a specific causal link. A step threatens a link if it does not have an

76

ordering constraint such that it is already before or after the two steps that have the link. It is
also not a threat if its effects and the precondition of the causal link are not both completely
ground. Ground means that all variables have been bound to a value. Thus this implementation
uses the ‘resolve later’ way to deal with possible threats as discussed on page 357 of [21].

groundMember(TestElement , [Element | List]) :-

(ground(Element), TestElement = Element);

groundMember(TestElement , List).

Above is the groundMember function which is used in the threatens function to check if the element
is a ground member of the list.

notBefore(Orderings , (Step1 , Step2)) :-

Step1 \= Step2 ,

\+ memberchk ((Step1 , Step2), Orderings),

forall(member ((Step1 , SomeStep), Orderings),

notBefore(Orderings , (SomeStep , Step2))).

notBefore is the function that checks if a step is not somewhere before another step in the
ordering of the steps in the plan.

B.3 A note on maintain and avoid goals

The planner normally works toward a goal, an attain goal. A situation that is not be disturbed,
maintained or avoided can be planned around by the planner. If a causal link is added to the
initial plan that holds a triple that is not to be disturbed then the planner will not do so.

A example of such a causal link in the implementation as given above would be:

(s, f, (cinderella , supportedBy , palace))

The step names s and f are taken from the implementation code and refer to the start and finish
steps. Adding the above causal link to the initial plan will mean the planner does not create
any plans in which cinderella changes her location (if we interpret the supportedBy relation as
such).

B.4 Planner interface and multiple plans in Prolog

To provide access to the partial-order planner from Java I have created a number of functions.
Creating multiple plans is also provided in this same set of functions. They can be found in the
file ’iPop.pl’. Note that the ‘i’ in ’iPop’ stands for interface.

planFilter(_OldPlans , [] , []).

planFilter(OldPlans , [Plan| Plans], NewPlans) :-

planSteps(Plan , Steps),

maplist(stepTail , Steps , StepTails),

member(OtherPlan , OldPlans),

OtherPlan \= Plan ,

planSteps(OtherPlan , OtherSteps),

maplist(stepTail , OtherSteps , OtherStepTails),

forall(member(OtherStepTail , OtherStepTails),

member(OtherStepTail , StepTails)),

planFilter(OldPlans , Plans , NewPlans).

planFilter(OldPlans , [Plan| Plans], [Plan| NewPlans]) :-

planFilter(OldPlans , Plans , NewPlans).

77

This function takes a list of plans and returns a new list that contains only those plans which
have no shorter versions. This was explained in the 5 chapter in section 5.5.2. The function
actually takes the original list twice. One of those is used to iterate over all the elements, Plans
and the other is used as the original list, OldPlans, to refer to when comparing plans. The first
plan of the list of plans [Plan| Plans] is examined by taking all the steps in the plan and taking
the step without its name (label). Such a name might be one of [s, f, 1, 2, ...]. Then it tries
to find a plan, OtherPlan in the list of original plans, OldPlans for which all steps in that plan
are also steps in the plan that is examined. If such a plan can be found the plan that is under
examination is thrown out.
createMultiPlan(MaxCost , X, PosGoal , NegGoal , NewPlans) :-

idPopC(MaxCost , PosGoal , NegGoal , P),

planCounters(P, C),

counterCost(C, Cost),

Cost1 is round(Cost * X),

maxInt(MaxInt),

bagof(Plan , pop((MaxInt , Cost1 , 0) , PosGoal , NegGoal , Plan), Plans),

planFilter(Plans , Plans , NewPlans).

The function above returns a list of plans that achieve the goals. The goals are taken as input
in two lists; the positive goals and the negative goals, PosGoal, NegGoal They should contain
OWL-triples. The MaxCost is an input variable that specifies the maximum cost of a plan. The
function further takes a multiplier value X as input that specifies what the maximum cost of the
plans to be returned should be compared to the shortest plan. The function first creates one
plan, P. The cost of this plan is multiplied by X. It then creates all plans that have a cost with a
maximum set to this value, this is why ‘pop’ is called directly without iterating over the depth.
The plans are then filtered such that only the plans that have no “shorter” versions remain.
This was explained in the 5.5.2 section of chapter 5.

B.5 Character Agent Prolog Code

A part of the character agent is implemented in Prolog. This part is in the basicCharacterAgent

Prologmodule in the file ’basicCharacterAgent.pl’. This file contains:

% setAgentID /1 + Agens

% add a belief to the KB so that the agent knows who it is , remove others

setAgentID(Agens) :-

forall(

query ((myself , is , X)),

delEffects ([(myself , is , X)])

),

addEffects ([(myself , is , Agens)]).

The function setAgentID is used to create a belief in the knowledge base that states the identifier
of the agent. After using this function the agent knows who it is. This function must be called
before the partial-order planner can be used.
% getControlledBy

% Retrieve what is controlled by AgentID

getControlledBy(AgentID , Controllee) :-

query ((Controllee , swc:’controlledBy ’, AgentID)).

% hasActions

% Retrieve the actions AgentID has

hasAction(Agens , ActionName) :-

query(Agens , swc:’hasAction ’, ActionName).

78

actionSubAction(ActionName , SubActionName) :-

query(SubActionName , rdfs:subClassOf , ActionName).

hasSubAction(Agens , SubActionName) :-

hasAction(Agens , ActionName),

actionSubAction(ActionName , SubActionName).

hasPrimitiveAction(Agens , ActionName) :-

hasSubAction(Agens , ActionName),

action (((ActionName , _Predicate), _PP , _NP , _PE , _NE)).

canDo(Agens , ActionName , (ActionName , [Agens | Vars])) :-

validateAction ((ActionName , [Agens | Vars]) , [] , []).

The above functions are used in the user interface in Java. They retrieve the objects the agent
controls, the actions it has and what actions it could preform at the moment.

79

