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This paper establishes performance guarantees for online algorithms that schedule stochastic, nonpreemptive
jobs on unrelated machines to minimize the expected total weighted completion time. Prior work on unrelated
machine scheduling with stochastic jobs was restricted to the offline case, and required linear or convex
programming relaxations for the assignment of jobs to machines. The algorithms introduced in this paper
are purely combinatorial. The performance bounds are of the same order of magnitude as those of earlier
work, and depend linearly on an upper bound on the squared coefficient of variation of the jobs’ processing
times. Specifically for deterministic processing times, without and with release times, the competitive ratios
are 4 and 7.216, respectively. As to the technical contribution, the paper shows how dual fitting techniques
can be used for stochastic and nonpreemptive scheduling problems.

The point is, ladies and gentlemen, that greed, for lack of a better word, is good. Greed is right,
greed works (Gordon Gekko in Wall Street [41])

1. Introduction. Scheduling jobs on multiple, parallel machines is a fundamental problem
both in combinatorial optimization and systems theory. There is a vast amount of different model
variants as well as applications, which is testified by the existence of the handbook [25]. A well
studied class of problems is scheduling a set of n nonpreemptive jobs that arrive over time on m
unrelated machines with the objective of minimizing the total weighted completion time. In the
unrelated machines model the matrix that describes the processing times of all jobs on all machines
can have any rank larger than 1. The offline version of the problem is denoted R | rj |

∑
wjCj in the

three-field notation of Graham et al. [11], and the problem has been a cornerstone problem for the
development of new techniques in the design of (approximation) algorithms, e.g. [4, 16, 24, 38].

This paper addresses the online version of the problem where jobs sizes are stochastic. In the
online model jobs arrive over time, and the set of jobs is unknown a priori. For pointers to relevant
work on online models in scheduling, refer to [19, 34]. In many systems, the scheduler may not
know the exact processing times of jobs when the jobs arrive to the system. Different approaches
have been introduced to cope with this uncertainty. If jobs can be preempted, then non-clairvoyant
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schedulers have been studied that do not know the processing time of a job until the job is com-
pleted [33, 5, 22, 12, 17]. Unfortunately, if preemption is not allowed then any algorithm has poor
performance in the non-clairvoyant model, as the lower bound for the competitive ratio against
the offline optimal schedule is Ω(n). This is even true if we consider the special case where all jobs
have the same unit weight wj.

This lower bound suggests that the non-clairvoyant model is too pessimistic for non-preemptive
problems. Even if exact processing times are unknown to the scheduler, it can be realistic to
assume that at least an estimate of the true processing times is available. For such systems, a
model that is used is stochastic scheduling. In the stochastic scheduling model the jobs’ processing
times are given by random variables. A non-anticipatory scheduler only knows the random variable
that encodes the possible realizations of a job’s processing time. If the scheduler starts a job on
a machine, then that job must be run to completion non-preemptively, and it is only when the
job completes that the scheduler learns the actual processing time of the job. With respect to
the random processing times, both the scheduler and the optimal solution are required to be non-
anticipatory, which means that only the (conditional) distribution of a job’s processing time may
be used at any point in time. Stochastic scheduling has been well-studied, including fundamental
work such as by Möhring et al. [30, 31] and approximation algorithms, e.g. [32, 40, 28, 39, 36].

This paper considers online scheduling of non-preemptive, stochastic jobs in the unrelated
machine model to minimize the total weighted completion time. This is the same problem as con-
sidered in the paper [28] by Megow et al., but here we address the more general unrelated machines
model. In the stochastic unrelated machine model, the scheduler is given machine-dependent prob-
ability distributions that describe a job’s potential processing time for each of the machines. For
a given job the processing times across different machines need not be independent, but the pro-
cessing times of different jobs are assumed to be independent.
Identical machines, special processing time distributions. Restricting attention to non-
preemptive policies, when all machines are identical, perhaps the most natural algorithm is
Weighted Shortest Expected Processing Time (WSEPT) first. When a machine is free, WSEPT
always assigns the job to be processed that has the maximum ratio of weight over expected size.
When all jobs have unit weight, this algorithm boils down to the SEPT algorithm that greedily
schedules jobs with the smallest expected size. When there is a single machine and all jobs arrive at
the same time, WSEPT is optimal [35]. For multiple machines with equal weights for all jobs, if the
job sizes are deterministic and arrive at the same time, SEPT is optimal [15]. For multiple identical
machines with equal weights for all jobs, SEPT is optimal if job sizes are exponentially distributed
[6, 45], or more generally, are stochastically comparable in pairs [44]. Some extensions of these
optimality results to the problem with weights exist as well [23]. For more general distributions,
simple solutions fail [42], and our knowledge of optimal scheduling policies is limited.
Identical machines, arbitrary processing times. To cope with these challenges, approximation
algorithms have been studied. With the notable exception of [20], all approximation algorithms
have performance guarantees that depend on an upper bound ∆ on the squared coefficient of
variation of the underlying random variables. Möhring, Schulz and Uetz [32] established the first
approximation algorithms for stochastic scheduling on identical machines via a linear programming
relaxation. Their work gave a (3 + ∆)-approximation when jobs are released over time (yet known
offline), and they additionally showed that WSEPT is a (3+∆)/2-approximation when jobs arrive
together1. These results have been built on and generalized in several settings [40, 29, 28, 36, 39, 21],
notably in [28, 36] for the online setting. The currently best known result when jobs are released
over time (yet known offline) is a (2+∆)-approximation by Schulz [36]. In the online setting Schulz
gives an algorithm with performance guarantee of (2.309 + 1.309∆) [36]. These results build on an

1 The ratio is slightly better, but for simplicity we ignore the additive Θ(1/m) term.
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idea from Correa and Wagner [10] to use a preemptive, fast single machine relaxation, next to the
relaxation of [32]. The work of Im, Moseley and Pruhs [20] gave the first results independent of ∆
showing that there exist poly-logarithmic approximation algorithms under some assumptions. All
these papers address problems with identical machines.
Unrelated machines, arbitrary processing times. For some 15 years after the results of
Möhring et al. [32] for the identical machines case, no non-trivial results were known for the
unrelated machines case despite being a target in the area. Recently Skutella, Sviridenko and
Uetz [39] gave a (3 + ∆)/2-approximation algorithm for the unrelated machines model when jobs
arrive at the same time, and a (2+ ∆)-approximation when jobs are released over time (yet known
offline). Central to unlocking an efficient approximation algorithm for the unrelated machines case
was the introduction of a time-indexed linear program that lower bounds the objective value of
the optimal non-anticipatory scheduling policy. It is this LP that allows the authors to overcome
the complexities of the stochastic unrelated machines setting.

The work introduced in this present paper targets the more realistic online setting for scheduling
stochastic jobs on unrelated machines. A priori, it is not clear that there should exist an algorithm
with small competitive ratio for this problem. Prior work for the offline problem requires sophis-
ticated linear [39] or convex [3] programming relaxations. Good candidates for online algorithms
that might also have practical impact are desired to be simple and combinatorial, but even discov-
ering an offline approximation algorithm that is simple and combinatorial has remained an open
problem for (stochastic) scheduling on unrelated machines.
Related work for deterministic processing times. For special cases and deterministic pro-
cessing times, approximation algorithms have been known to exist. For example for the online
unrelated machine case with deterministic processing times, Hall, Schulz, Shmoys and Wein [14]
obtain an 8-competitive algorithm. Their algorithm is based on the idea to partition time into
geometrically increasing intervals, and then maximizing the total weight of (available) jobs that
can be scheduled in these intervals. Algorithms with better competitive ratios have been obtained
by Chakrabarti et al. [7] by using randomization in the definition of these intervals, and resulting
in a randomized 5.78-competitive algorithm. As far as we know, this is the state of the art when it
comes to competitive analysis for the online problem with release times and on unrelated machines.
The deterministic greedy algorithm proposed in this paper is 6-competitive.

For the offline problem with deterministic processing times, the following is known. When there
are no release times and processing times are deterministic, the currently best known approximation
algorithms have performance bounds slightly below 3/2, based on semidefinite relaxations [4] and
more recently also on linear relaxations [26]. For the offline case with release times, the (2 + ε)-
approximation of [37] was the best known until recently Im and Li [18] gave a 1.878-approximation
algorithm. The problem has also been looked at through the lens of game theory, and for the offline
problem without release times, Cole et al. [8] show that when machines follows the WSPT rule,
Nash equilibria of selfish jobs that minimize their own completion time yield schedules which are
at most a factor 4 above optimum. Interestingly, our paper shows that the same approximation
guarantee can be obtained online by a simple greedy algorithm. We note that the work of [8] is
offline, and moreover their algorithm and analysis differs from that of this paper.

With respect to lower bounds on performance guarantees of online algorithms, we are aware
of only one lower bound on the competitive ratio of any online algorithm, which is the 1.309
lower bound of Vestjens [43]; this lower bound holds for the problem on identical machines with
deterministic processing times.
Results. This paper suggests two combinatorial online algorithm for stochastic scheduling on
unrelated machines that have a performance guarantee of order O( ∆), where ∆ is an upper bound
on the squared coefficient of variation of the processing time distributions Pij. More specifically,
in the online-list model where jobs arrive online (at time 0) and must be assigned to a machine
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immediately upon arrival, this paper establishes a performance guarantee of (4 + 2∆). For this
problem the algorithm assigns jobs to machines so as to minimize the expected contribution to the
objective function, while per machine the jobs are sequenced by largest ratio wi/E[Pij] first. For
deterministic processing times, the proposed greedy algorithm has a competitive ratio of 4, and the
paper also gives a lower bound instance showing that the analysis is tight. Arguably more relevant
is the online-time model where jobs arrive over time at individual release times. Here, the paper
establishes a performance guarantee of (7.216 + 3.608∆)h(∆), where h(∆) = 1 +

√
∆/2 for ∆≤ 1,

and h(∆) = 1+∆/(∆+1) for ∆≥ 1. Observe that h(·) is a concave, increasing function of ∆ which
is bounded from above by 2. Here, the greedy assignment of jobs to machines is the same, but the
sequencing per machine is augmented by possibly introducing forced idle time. The idea here is to
work with a “nominal” schedule based on expected processing times, and never start processing a
job before its nominal starting time. For deterministic processing times ∆ = 0 and h(∆) = 1, hence
the competitive ratio equals 7.216. As the algorithm is a deterministic algorithm, this improves
upon the competitive ratio 8 from [14], and but falls only slightly behind the randomized 5.78-
competitive algorithm that was proposed in [7].

Even though the performance bounds for the case with nontrivial release times are most probably
not tight, we believe our results are interesting for the following reasons: (1) It is the first analysis of
a combinatorial algorithm for stochastic scheduling on unrelated machines, and the first result for
stochastic online scheduling in the unrelated machine model. (2) Even for the deterministic setting,
it is the first time to analyze an (arguably) intuitive combinatorial algorithm that simply assigns
jobs to machines where their expected contribution is minimal. (3) The analysis uses the idea of
dual fitting, hence we demonstrate that this technique can be used for bounding the performance
of scheduling policies in non-preemptive and stochastic scheduling. (4) The performance bounds,
even where not tight, have the same order of magnitude as those of earlier results in the literature,
while considering a more general problem.

We now briefly discuss the proposed algorithms in relation to prior work. The algorithms rest on
the following ingredients to solve the machine assignment and the scheduling problem. Generally
speaking, at any point in time a job with highest ratio wj/E[Pij] is scheduled from the set of jobs
that are assigned to and available on machine i. This is the well known WSEPT rule. For the case
with release dates, however, jobs possibly have to wait for “artificial” release times before they are
declared available for processing. The necessity of such forced idle time is well known whenever jobs
are released over time, even for single machine problems [27]. Next to this standard manipulation
of release times, we work with a “nominal” schedule that is based on expected processing times,
and never allow jobs to be started before their nominal starting times. The assignment of jobs to
machines is solved by greedily assigning jobs to the machines where (a proxy for) the expected
increase of the objective is minimal. Comparable greedy-type algorithms have been used also before,
e.g. in [2, 27, 28], however not for an unrelated machine setting. Note that the Ω(∆) lower bound
for fixed assignment policies in [39] yields that our results are asymptotically tight in ∆ among
policies that must irrevocably assign jobs to machines at the time of their release. As mentioned
above, the analysis proposed in this paper uses dual fitting techniques. The technique has been
used e.g. in [1] for deterministic and preemptive scheduling problems.

2. Notation & Preliminaries. The input to the problem consists of a set of unrelated paral-
lel machines M of cardinality m. The set of jobs J , of cardinality n, is unknown and only disclosed
gradually over time. Each job needs to be executed on exactly one (and any one) of the machines
in M , and each machine can process at most one job at a time. The jobs are nonpreemptive. This
means that a job, once started, must not be interrupted until its completion.

This paper considers two online models. In the first model, known as online-list, the scheduler
is presented the jobs j ∈ J one after the other. Whenever a job is presented, the algorithm has
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to assign it to one of the machines before the next job is presented. The decision when the job
begins being processed can be deferred until all jobs have arrived. It is unknown how many jobs
will arrive, but once all jobs in J have arrived, the jobs assigned to any one of the machines must
be sequenced on that machine in some order. In the second model, known as online-time, time
progresses and jobs appear over time at their individual release times. Let rj denote the release
time of job j. At the moment of arrival rj, or possibly at a later point in time, a job must be
assigned to a machine. Once assigned to a machine, the job may possibly wait until an even later
point in time to be processed.

The jobs are stochastic, meaning that each job j’s processing time is revealed to the scheduler
at the point of arrival in the form of a random variable Pij for every machine i ∈M . If job j is
assigned to machine i, its processing time will be random according to Pij. It is allowed that certain
jobs j ∈ J cannot be processed on certain machines i∈M , in which case E[Pij] =∞.

In the stochastic scheduling model, the realization of the processing time of a job j becomes
known at the moment that the job completes. This paper considers designing a non-anticipatory
scheduling policy Π that minimizes the expected total weighted completion time E

[∑
j wjCj

]
,

where Cj denotes the random variable for the completion time of job j under policy Π.
We assume that the random variables Pij are discrete and integer valued. This can be assumed at

the cost of a multiplicative factor of (1+ε) in the final approximation ratio, for any ε > 0 [39]. Our
analysis will make use of the following facts about first and second moments of discrete random
variables; these facts also appear in [39].

Lemma 1. Let X be an integer-valued, nonnegative random variable. Then,∑
r∈Z≥0

P[X > r] =E[X] and
∑
r∈Z≥0

(r+ 1
2
)P[X > r] =

1

2
E[X2] .

Definition 1. Let X be a nonnegative random variable. The squared coefficient of variation
is defined as the scaled variance of X. That is,

CV[X]2 :=Var[X]/E[X]2 ,

where Var[X] =E[X2]−E[X]2.

2.1. Stochastic Online Scheduling & Policies The setting considered in this paper is that
of stochastic online scheduling as defined in [28]. This means that (the existence of) a job j is
unknown before it arrives, and upon arrival at time rj, only the distribution of the random variables
Pij for the possible processing times on machines i= 1, . . . ,m are known to the scheduler. At any
given time t, a non-anticipatory online scheduling policy is allowed to use only the information that
is available at time t. In particular, it may anticipate the (so far) realized processing times of jobs
up to time t. For example, a job that has possible sizes 1, 3 or 4 with probabilities 1/3 each, and
has been running for 2 time units, will have a processing time 3 or 4, each with probability 1/2. It
is well known that adaptivity over time is needed in order to minimize the expectation of the total
weighted completion time, e.g. [42]. We refer the reader to [28] for a more thorough discussion of
the stochastic online model.

For simplicity of notation, denote OPT as the expected total weighted completion time of an
optimal, non-anticipatory scheduling policy for the problem where the set of jobs, their release
times rj and their processing time distributions Pij are known in advance. That is to say, the
benchmark that we compare our algorithms to, knows the set of jobs and their parameters, but
not the actual realizations of processing time distributions Pij.

We seek to find a non-anticipatory online scheduling policy (an algorithm) ALG with expected
performance ALG close to OPT. For convenience, and in a slight abuse of notation we use the
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same notation for both the algorithm and its expected performance. That is to say, both ALG and
OPT denote the expected performance of non-anticipatory scheduling policies, and by linearity of
expectation we have ALG=

∑
j wjE[CALG

j ] and OPT=
∑

j wjE[COPT
j ].

Definition 2. A scheduling policy is said to have a (multiplicative) performance guarantee
α≥ 1, if for every possible input instance,

ALG≤ αOPT .

We remark that OPT is not restricted to assigning jobs to machines at the time of their arrival.
The only restriction on OPT is that it must schedule jobs non-preemptively, and that it is non-
anticipatory. Note that our approximation guarantees hold against an adversary who knows all
the jobs and their release times rj, as well as the processing time distributions Pij in advance,
but not the actual realizations of Pij. That implies that the model generalizes the classic offline
stochastic scheduling model (assuming all paramaters are disclosed to the scheduler, too), as well
as traditional competitive analysis (assuming deterministic processing times).

Finally, we may assume w.l.o.g. that no pair of job and machine exists with E[Pij] = 0. That
said, we may further assume that E[Pij]≥ 1 for all machines i and jobs j, by scaling.

3. Linear Programming Relaxations. This section introduces a linear programming relax-
ation for the problem. This relaxation was previously discussed in [39, §8]. The LP uses variables yijs
to denote the probability that job j is being processed on machine i within the time interval [s, s+1],
under some given and fixed scheduling policy. It is known that yijs can be linearly expressed in
terms of the variables xijt, which denote the probability that job j is started at time t on machine
i, as follows

yijs =
s∑
t=0

xijt P[Pij > s− t] . (1)

The fact that any machine can process at most one job at a time can be written as∑
j∈J

yijs ≤ 1 for all i∈M , s∈Z≥0. (2)

Moreover, by the fact that scheduling policies are non-anticipatory we know that whenever a job
j is started on a machine i at time t, it will in expectation be processed for time E[Pij], so its
expected completion time is t+E[Pij]. Now, conditioning on a job being processed on machine i,
making use of (1) and the first part of Lemma 1, together with the fact that each job must be
completely processed, gives the constraint that

∑
s∈Z≥0

yijs
E[Pij ]

= 1. Unconditioning on the machine

assignment yields the following constraints∑
i∈M

∑
s∈Z≥0

yijs
E[Pij]

= 1 for all j ∈ J . (3)

Finally, with the help of (1) and the second part of Lemma 1, the expected completion time of a
job j can be expressed in yijs variables as

CS
j :=

∑
i∈M

∑
s∈Z≥0

(
yijs

E[Pij]

(
s+ 1

2

)
+

1−CV[Pij]
2

2
yijs

)
for all j ∈ J , (4)

where we labeled the expected completion time variables with a superscript S for “stochastic”,
for reasons that will become clear shortly. For completeness, equation (4) is proved in Lemma 9
(Appendix A).
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For the analysis to follow, we also need to express the fact that the expected completion time of
a job cannot be smaller than its expected processing time, which is generally not implied by (4).

CS
j ≥

∑
i∈M

∑
s∈Z≥0

yijs for all j ∈ J . (5)

The following LP relaxation for the unrelated machine scheduling problem can be derived with
these observations. This LP extends the LP given in [39] by adding the constraints (5).

min zS =
∑
j∈J

wj C
S
j

s.t. (2), (3), (4), (5)
yijs ≥ 0 for all j ∈ J , i∈M , s∈Z≥0.

(S)

The analysis in this paper will work with the dual of this relaxation. However the term −CV[Pij]
2

in the primal objective would appear in the dual constrains. As we do not know how to deal with
this negative term in the analysis that is to follow, we are going to factor it out.

To that end, define a simpler, i.e., deterministic version for the expected completion times (4),
labeled with “P” to distinguish it from the previous formulation, by letting

CP
j =

∑
i∈M

∑
s∈Z≥0

(
yijs

E[Pij]

(
s+ 1

2

)
+
yijs
2

)
for all j ∈ J . (6)

Consider the following linear programming problem

min zP =
∑
j∈J

wj C
P
j

s.t. (2), (3), (6)
yijs ≥ 0 for all j ∈ J , i∈M , s∈Z≥0 .

(P)

This corresponds to a time-indexed linear programming relaxation for a purely deterministic, unre-
lated machine scheduling problem where the random processing times are fixed at their expected
values E[Pij]. Also note that we have dropped constraints (5).

In the following, a relationship between these two relaxations is established. To begin, define an
upper bound on the squared coefficient of variation by
Definition 3. Define ∆ as a universal upper bound on the squared coefficient of variation of

the processing time of any job on any machine, that is

∆ := max
i,j

CV[Pij]
2 .

Observe that ∆ = 0 for deterministic processing times, and ∆ = 1 for processing times that are
NBUE (new better than used in expectation), that is, the expected remaing processing time of a job
never exceeds its total expected processing time. Specifically, ∆ = 1 for exponential distributions.
Next, for any given solution y of (S) or (P), define

H(y) :=
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

yijs .

Let yS denote an optimal solution to (S) and recall that OPT is the expected total weighted
completion time of an optimal non-anticipatory scheduling policy. By constraints (5),

H(yS) =
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

ySijs ≤
∑
j∈J

wjC
S
j = zS(yS)≤OPT .

The following lemma establishes the relation between the two relaxations and is crucial for our
analysis.
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Lemma 2. The optimal solution values zP and zS of the linear programming relaxations (P)
and (S) fulfill

zP ≤
(
1 +

∆

2

)
zS .

Proof. Let yP be an optimal solution to (P) and yS be an optimal solution to (S). Clearly, yS is
a feasible solution also for (P) which is less constrained. Hence we get the following, where zP (yP )
is the value of yP on LP (P).

zP = zP (yP )≤ zP (yS)

= zS(yS) +
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

CV[Pij]
2

2
ySijs

≤ zS(yS) +
∆

2
H(yS)

≤
(
1 +

∆

2

)
zS(yS) .

(7)

Note that the second-to-last inequality only uses the definitions of ∆ and H(·). The last inequality
holds because H(yS)≤ zS(yS). �

Recalling that (S) is a relaxation for the stochastic scheduling problem, we conclude the following.

Corollary 1. The optimal solution value zP of the linear programming relaxation (P) is
bounded by the expected performance of an optimal scheduling policy by

zP ≤
(
1 +

∆

2

)
OPT .

The dual program of (P) will have unconstrained variables αj for all j ∈ J and nonnegative variables
βis for all i∈M and s∈Z≥0:

max zD =
∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βis

s.t.
αj

E[Pij]
≤ βis +wj

(
s+ 1

2

E[Pij]
+

1

2

)
for all i∈M,j ∈ J, s∈Z≥0 ,

βis ≥ 0 for all i∈M,s∈Z≥0 .

(D)

Like the analysis in [1], we will define a feasible solution for the dual (D), such that this solution
corresponds to the schedule created by an online greedy algorithm for the original stochastic
scheduling problem. Similar greedy algorithms have been used before, both in deterministic and
stochastic scheduling on parallel machines, e. g. in [2, 27, 28].

4. Greedy Algorithm & Analysis for the Online-List Model. In this section the online-
list model is considered. Assume without loss of generality that the jobs are presented in the order
1,2 . . . , |J |. On any machine i, let H(j, i) denote the jobs that have priority no less than that of
job j according to the ratios wk/E[Pik], breaking ties by index. That is,

H(j, i) := {k ∈ J |wk/E[Pik]>wj/E[Pij]}∪ {k ∈ J | k≤ j,wk/E[Pik] =wj/E[Pij]}.

Note that j ∈H(j, i). Also let L(j, i) := J \H(j, i). Further let k→ i denote that a job k has been
assigned to machine i by the algorithm.
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Greedy Algorithm (Online List Model). Whenever a new job j ∈ J is presented to the
algorithm, compute for each of the machines i∈M the instantaneous expected increase in the cost
if job j is assigned to machine i, and all jobs already present on i are scheduled in non-increasing
order of the ratios weight over expected processing time. Since the expected completion time of
the new job j will be determined by the sum of expected processing times of all jobs in H(j, i), and
all the jobs in L(j, i) will be delayed in expectation by an additional time E[Pij], this cost increase
equals

cost(j→ i) :=wj

( ∑
k→i,k≤j,k∈H(j,i)

E[Pik]

)
+ E[Pij]

∑
k→i,k<j,k∈L(j,i)

wk .

The greedy algorithm assigns the job to one of the machines where this quantity is minimal. That
is, a job is assigned to machine m(j) := argmini∈M{cost(j→ i)}; ties broken arbitrarily. Once all
jobs have arrived and are assigned, the jobs assigned to a fixed machine are sequenced in non-
increasing order of their ratio of weight over expected processing time. This WSEPT ordering is
optimal conditioned on the given assignment [35].

The analysis of this greedy algorithm will proceed by defining a dual solution (α,β) in a way
similar to that done in [1]. Let

αj := cost(j→m(j)) for all j ∈ J .

That is, αj is defined as the instantaneous expected increase in the total weighted completion time
on the machine job j is assigned to by the greedy algorithm. Let

βis :=
∑

j∈Ai(s)

wj ,

where Ai(s) is defined as the total set of jobs assigned to machine i by the greedy algorithm, but
restricted to those that have not yet been completed by time s if the jobs’ processing times were
their expected values E[Pij]. In other words, βis is exactly the expected total weight of yet unfinished
jobs on machine i at time s, given the assignment (and sequencing) of the greedy algorithm.

It is now shown that these dual variables are feasible for the dual linear program. Later this fact
will allow us to relate the variables to the optimal solution’s objective.

Lemma 3. The solution (α/2,β/2) is feasible for (D).

Proof. This proof shows that

αj
E[Pij]

≤ βis +wj

(
s

E[Pij]
+ 1

)
(8)

holds for all i∈M , j ∈ J , and s∈Z≥0. This implies the feasibility of (α/2,β/2) for (D). Fix a job
j and machine i, and recall that k→ i denotes a job k being assigned to machine i by the greedy
algorithm. By definition of αj and by choice of m(j) as the minimizer of cost(j→ i), for all i it is
the case that

αj
E[Pij]

≤ cost(j→ i)

E[Pij]
=wj +wj

∑
k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij]
+

∑
k→i,k<j,k∈L(j,i)

wk . (9)

Next, we are going to argue that the right-hand-side of (9) is upper bounded by the right-hand
side of (8), from which the claim follows. Observe that the term wj cancels. Observe that any job
k→ i, k 6= j, can appear in the right-hand side of (9) at most once, either with value wk, namely
when k ∈L(j, i), or with value wjE[Pik]/E[Pij]≤wk when k ∈H(j, i). We show that each of these
values in the right-hand-side of (9) is accounted for in the right-hand side of (8), for any s≥ 0.
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Fix any such job k→ i. First consider the case that the time s is small enough so that our job
k→ i is still alive at time s, so s <

∑
`→i,`∈H(k,i) E[Pi`]. Then, wk is accounted for in the definition

of βis.
Now consider the case that s≥

∑
`→i,`∈H(k,i) E[Pi`], which means that job k is already finished

at time s. In this case, we distinguish two cases.
Case 1 is k ∈ L(j, i): In this case, job k contributes to the right-hand side of (9) a value of wk,

but as s≥
∑

`→i,`∈H(k,i) E[Pi`], the term wj(s/E[Pij]) in the right-hand side of (8) contains the term
wj(E[Pik]/E[Pij])≥wk.

Case 2 is k ∈ H(j, i): In this case, job k contributes to the right-hand side of (9) a value of
wj(E[Pik]/E[Pij]), which is exactly what is also contained in the term wj(s/E[Pij]), because s ≥∑

`→i,`∈H(k,i) E[Pi`]. �
In the following lemma, the online algorithm’s objective is expressed in terms of the dual vari-

ables, which follows more or less directly from the definition of the dual variables (α,β). Let us
denote by ALG the total expected value achieved by the greedy algorithm.

Lemma 4. The total expected value of the greedy algorithm is

ALG=
∑
j∈J

αj =
∑
i∈M

∑
s∈Z≥0

βis .

Proof. For the first equality, recall that αj is the instantaneous increase in ALG’s expected total
weighted completion time. Summing this over all jobs gives exactly the total expected value of
ALG’s objective. For a formal proof of this, see for example [28, Lemma 4.1] for the case of parallel
identical machines. That lemma and its proof can directly be applied to the case of unrelated
machines.

The second equality follows from the fact that the (expected) total weighted completion time of
any schedule can be alternatively expressed by weighting each period of time by the total weight
of yet unfinished jobs. The equality is true here, because β was defined on the basis of the same
distribution of jobs over machines as given by ALG, and because each job k’s weight wk, given
k→ i, appears in βis for all times s up to a job k’s expected completion time, given jobs’ processing
times are fixed to their expected values. This is exactly what happens in computing the expected
completion times under the greedy algorithm, because it is a “fixed assignment” algorithm that
assigns all jobs to machines at time 0, and sequences the jobs per machine thereafter. �

5. Speed Augmentation & Analysis The previous analysis of the dual feasible solution
(α/2,β/2) yields a dual objective value equal to 0 by Lemma 4. This is of little help to bound
the algorithm’s performance. However following [1], define another dual solution which has an
interpretation in the model where all machines run at faster speed f ≥ 1, meaning in particular
that all (expected) processing times get scaled (down) by a factor f .

Define ALGf as the expected solution value obtained by the same greedy algorithm, except that
all the machines run at a speed increased by a factor of f , where f ≥ 1 is an integer. Note that
ALG= fALGf , by definition. We denote by (αf ,βf ) the exact same dual solution that was defined
before, only for the new instance with faster machines. The following establishes feasibility of a
slightly modified dual solution.

Lemma 5. Whenever f ≥ 2, the solution (αf , 1
f
βf ) is a feasible solution for the dual (D) in

the original (unscaled ) problem instance.

Proof. By definition of (αf , 1
f
βf ), to show feasibility for (D) it suffices to show the slightly

stronger constraint that

αfj
E[Pij]

≤ 1

f
βfis +wj

(
s

E[Pij]
+

1

2

)
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for all i, j, s. Indeed, in the above inequality we have only dropped the nonnegative term
wj/(2E[Pij]) from the right-hand side of (D), hence the above implies the feasibility of (αf , 1

f
βf )

for (D). By definition of α we have αj = fαfj . So the above is equivalent to

αj
E[Pij]

≤ βfis +wj

(
f · s
E[Pij]

+
f

2

)
. (10)

As the assumption was that f ≥ 2, (10) is implied by

αj
E[Pij]

≤ βfis +wj

(
f · s
E[Pij]

+ 1

)
. (11)

Now observe that βfis = βi(f ·s) (and recall that f is integer), so (11) is nothing but inequality (8)
with variable s replaced by f · s. The validity of (11) therefore directly follows from (8) in our
earlier proof of Lemma 3 to demonstrate the feasibility of (α/2,β/2) for (D). �

The first main theorem of the paper is now established.

Theorem 1. The greedy algorithm has a performance guarantee of (4+2∆) for online schedul-
ing of stochastic jobs on unrelated machines to minimize the expectation of the total weighted
completion times E[

∑
j wjCj]. That is, ALG≤ (4 + 2∆)OPT.

Proof. We know from Corollary 1 that zD(αf , 1
f
βf )≤ zD = zP ≤

(
1 + ∆

2

)
OPT , given that f ≥ 2.

Next, recall that ALGf =
∑

j∈J α
f
j =

∑
i∈M

∑
s∈Z≥0

βfis by Lemma 4, and ALG= fALGf . The theorem

now follows from evaluating the objective value of the specifically chosen dual solution (αf , 1
f
βf )

for (D), as

zD(αf ,
1

f
βf ) =

∑
j∈J

αfj −
1

f

∑
i∈M

∑
s∈Z≥0

βfis =
f − 1

f
ALGf =

f − 1

f2
ALG .

Putting together this equality with the previous inequality yields a performance bound equal to
f2

f−1
(1 + ∆

2
), where we have the constraint that f ≥ 2. This term is minimal and equal to (4 + 2∆),

exactly when we choose f = 2. �
We end this section with the following theorem, which we believe was unknown before.

Theorem 2. The greedy algorithm for the deterministic online scheduling problem has compet-
itive ratio 4 for minimizing the total weighted completion times

∑
j wjCj on unrelated machines,

and there is a tight lower bound of 4 for the performance of the greedy algorithm.

Proof. The upper bounds follows as a special case of Theorem 1 as ∆ = 0. As to the lower
bound, we use a parametric instance from [9], which we briefly reproduce here for convenience. The
instances are denoted Ik, where k ∈N. There are m machines, with m defined large enough so that
m/h2 ∈ N for all h= 1, . . . , k. There are jobs j = (h, `) for all h= 1, . . . , k and all `= 1, . . . ,m/h2.
The processing times of a job j = (h, `) on a machine i is defined as

pij =

{
1 if i≤ ` ,
∞ otherwise .

In other words, job j = (h, `) can only be processed on machines 1, . . . , `. All jobs have weight
wj = 1. As jobs have unit length on the machines on which they can be processed, we assume that
the greedy algorithm breaks ties on each machine so that jobs with larger second index ` go first.

The optimal schedule is to assign all jobs j = (h, `) to machine `, resulting in m/h2 jobs finishing
at time h, for h= 1, . . . , k, and hence a total cost m

∑k

h=1 1/h. Now assume that the online sequence
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of jobs is by decreasing order of their second index. Then, as this is the same priority order
as on each of the machines, the greedy algorithm assigns each job at the end of all previously
assigned jobs. That means that the greedy algorithm assigns each job j to one of the machines
that minimizes its own completion time Cj. Here we assume that ties are broken in favour of lower
machine index. It is shown in [9] that the resulting schedule, which is in fact a Nash equilibrium
in the game where jobs select a machine to minimize their own completion time, has a total cost
at least 4m

∑k

i=1 1/i−O(m ). The lower bound of 4 follows by letting k→∞. �

6. The Online Time Model. This section addresses the online-time model where jobs arrive
over time; that is, a job j arrives at release time rj ≥ 0. In particular, the presence of job j is
unknown before time rj. Upon At time rj, the job becomes available and the processing times
distributions Pij become known, for all machines i = 1, . . . ,m. We may assume w.l.o.g. jobs are
indexed such that rj ≤ rk for j < k.

The difficulty in analyzing the problem where jobs arrive over time lies in jobs that block a
machine for a long time, while shortly after, other jobs might be released that cannot be scheduled.
This is a well known problem for the total weighted completion time objective in general, even for
a single machine [27]. In order to counter that effect, a job j is only started after an additional,
forced delay that depends on its own expected processing time. For example for identical machine
problems, [27] and [28] work with modified release times of the form r′j := max{rj, cE[Pj]}, for some
parameter c > 0. Another idea to counter the same effect has been used in [36], namely to start
a job no earlier than its (expected) starting time in a preemptive relaxation on a single machine
that works m times faster. For the unrelated machine problem that we consider here, we use a
combination of these two ideas. The assignment of jobs to machines will follow the same idea as
for the case without release dates, namely to assign a job to a machine where (an approximation
of) the expected increase of the objective value is minimal. Once assigned to a machine, for the
stochastic case the modified release times will be defined on the basis of a “nominal” schedule
where processing times Pij are fixed at their expected values E[Pij]. For that reason, this section
first considers the deterministic problem where the processing times are defined by pij :=E[Pij] for
all jobs j and machines i.

6.1. Nominal Schedule: Online Time Model with Deterministic Processing Times.
Let us first describe the greedy algorithm that is used to assign jobs to machines and schedule jobs
on machines. Per machine, it is actually the same greedy WSPT rule that prefers to schedule jobs
with highest ratios weight over processing time wj/pij, with the only difference that we also take
into account modified release times. The assignment of jobs to machines is done greedily, too.

Greedy Algorithm (Online Time Model for Deterministic Processing Times). Con-
sider any fixed job j that is is released at time t = rj with processing times pij on machines
i= 1, . . . ,m. Then we proceed as follows.

1. Define modified release times: On machine i the release time of job j is modified to rij :=
max{rj, c · pij}; we will optimize parameter c later.

2. Let Ui(t) denote the jobs which have been assigned to machine i at time t and that have not
been started yet (excluding the fixed job j).

3. To decide on the assignment of job j to a machine, we define cost(j→ i) as an upper bound on
the additional cost of job j, when included into a hypothetical greedy WSPT schedule of jobs Ui(rj)
on machine i. The reason to work with an upper bound instead of the exact value, is potential jobs
that could be released in the interval (rj, rij). These could delay the earliest possible start time of
job j beyond rij. In defining cost(j→ i), we account for the maximum additional delay that such
jobs could impose on j; see Lemma 6 below.
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4. Among all machines i∈ {1, . . . ,m}, assign job j to a machine m(j) that minimizes cost(j→ i),
ties broken arbitrarily.

5. On each machine i, we schedule jobs following the greedy weighted shortest processing time
rule (WSPT) with modified release times rij. That is, as soon as a machine falls idle at time t, we
schedule among all unscheduled jobs k assigned to machine i with rik ≤ t, any job j with maximal
ratio wk/pik.

Analysis. We now show that this greedy online algorithm is 7.216-competitive. This is inter-
esting in its own right because it improves on the best prior algorithm that was known to be
8-competitive [14]. As before, let us denote by ALG the total value achieved by the greedy algorithm,
and OPT to be the optimal solution value.
Definition 4. For job j and machine i, define

cost(j→ i) :=wj

(1 +
1

c

)
rij + pij +

∑
k∈Ui(rj),

wk
pik
≥

wj
pij

pik

+
∑

k∈Ui(rj),
wk
pik

<
wj
pij

wkpij .

Lemma 6. If m(j) is the machine to which job j got assigned by the greedy algorithm, then

ALG≤
∑
j∈J

cost(j→m(j)) .

Proof. Let Xi(t) be the remaining processing time of a job that is in process on machine i at
time t, with Xi(t) = 0 if no such job exists. Consider a fixed job j’s contribution to

∑
j wjCj. When

job j is released at time rj, it is assigned to a machine that minimizes cost(j→ i). We estimate
the latest starting time of job j on machine i, given the jobs Ui(rj) that have been assigned to the
same machine: First, job j can be started no earlier than time rij, and at time rij, the machine
might be blocked for another Xi(rij) time units by some job h. Note that such job h could even
get released later than rj, in time interval (rj, rij). Independent of this, j’s start can be further
delayed by “high priority jobs” k from Ui(rj), meaning that wk/pik ≥wj/pij. Finally, job j could
in turn delay the “low priority jobs” from Ui(rj). Hence, the increase of

∑
j wjCj, caused by job

j being assigned to machine i, is at most

wj

(
rij +Xi(rij) +

∑
k∈Ui(rj),

wk
pik
≥

wj
pij

pik + pij

)
+

∑
k∈Ui(rj),

wk
pik

<
wj
pij

wkpij ≤ cost(j→ i) .

To see why the inequality is true, let h be the potential job in process at time rij, then

Xi(rij)≤ pih ≤
rih
c
≤ rij

c
.

The claim now follows by summing over all jobs j ∈ J , and because of the following observation: In
time interval (rj, rij), even more “high priority jobs” k could get released, and such jobs k cause j’s
start being delayed even further. But the delay that these jobs will impose on j, will be accounted
for in the term cost(k→ i). The set of all “low priority jobs” that could get released in interval
(rj, rij), can cause j’s start being delayed by at most Xi(rij). �

Theorem 3. The greedy algorithm for the deterministic online scheduling problem with release
times has competitive ratio 7.216 for minimizing the total weighted completion times

∑
j wjCj on

unrelated machines. That is, ALG≤ 7.216OPT.
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Proof. Let m(j) be the machine to which job j got assigned. Define

αj := cost(j→m(j))

βi,s :=
∑

k:m(k)=i; rk≤s; Ck≥s

wk

By definition of α, β, and by Lemma 6 we then have

ALG=
∑
i,s

βi,s ≤
∑
j

αj .

For this analysis, we again consider a speed scaled problem instance, but now we need to modify

both the release times and the processing times by a factor f as follows.

rfj :=
rj
f

and pfij :=
pij
f
,

so that we have

rfij =
rij
f
.

Consider the same greedy algorithm on the scaled instance. Observe that the machine assignment

in the speed scaled instance is the same as in the original instance. In fact, the speed scaled instance

just scales time by a factor of f . Define, αfj analogously as the upper bound on the increase in

total weighted completion time due to the presence of job j in the speed scaled instance, and βfi,s
as the weight of the unfinished jobs on machine i at time s in the speed scaled instance. Then

αfj =
αj
f
,

βfis = βi(f ·s).
(12)

(Here we assume w.l.o.g. that all job sizes and release times are integer multiples of f , which can

be achieved by scaling.) Also, let us denote by ALGf the value achieved by the greedy algorithm

for the speed scaled instance, and note that ALGf =
∑

i,s β
f
i,s =ALG/f≤

∑
j α

f
j .

In the next section we are going to prove Lemma 7 which gives a lower bound on the optimal

solution value OPT, again via some feasible solution for the dual of a linear programming relaxation

of the form
(

αf

a
, β

f

b

)
for constants (a, b), which will yield that

OPT≥
∑
j

αfj
a
−
∑
i,s

βfis
b
≥ ALG

f

(
1

a
− 1

b

)
,

or

ALG ≤ f ·OPT
1/a− 1/b

.

Now setting parameters c= 2/3, a= 32/23, b= 16/3, and speed f = 23/6 are feasible choices for

using Lemma 7, which gives ALG≤ (7 + 11/51) ·OPT< 7.216 ·OPT. �
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6.2. Linear Programming Relaxation and Dual Lower Bound. Analogous to the earlier
linear programming relaxation (S), we can define the same LP relaxation for the instance with
release times rj. We omit repeating this LP relaxation here as it is exactly the same as (S), except
that the variables yijs are defined only for times s≥ rj. Let us refer to this modified LP relaxation
for the problem with release dates (Sr), and its optimal solution value zSr . Similarly, analogous
to (P) we can define an LP relaxation for the deterministic version of the same problem with
deterministic processing times E[Pij], by dropping all terms −CV[Pij]

2 from the relaxation (Sr),
and eliminating constraints (5). Let us refer to this deterministic LP relaxation (Pr) with optimal
solution value zPr . Lemma 2 and Corollary 1 apply to this linear programming relaxation in exactly
the same way as before. That is, when OPT denotes the expected value of an optimal stochastic
scheduling policy for the unrelated machine scheduling problem with release dates, we have that

zPr ≤
(
1 +

∆

2

)
zSr ≤

(
1 +

∆

2

)
OPT . (13)

Specifically, for the purpose of the proof of Theorem 3, observe that for the case of deterministic
processing times where ∆ = 0, the optimal LP solution value zPr is simply a lower bound for OPT.

Dual Lower Bound. By duality, we can lower bound the optimal solution value zPr for LP
relaxation (Pr) by any feasible solution to its dual linear program, which is:

max zDr =
∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βis

s.t.
αj

E[Pij]
≤ βis + wj

(
s+ 1

2

E[Pij]
+

1

2

)
for all i∈M,j ∈ J, s∈Z≥rj ,

βis ≥ 0 for all i∈M,s∈Z≥0 .

(Dr)

Lemma 7. With αf and βf as defined in (12), the values (αf

a
, β

f

b
) are a feasible solution

for the dual (Dr), given that af ≥ 2(2 + c), 1/c ≤ f(a− 1), and af ≥ b. Specifically for c = 2/3,
a = 32/23, b = 16/3, and speed f = 23/6, the objective function value of the dual solution yields

zDr(αf

a
, β

f

b
) ≥ ALG

f
( 1
a
− 1

b
) = ALG

7+11/51
.

Proof. We are only left to show the feasibility of the solution (αf

a
, β

f

b
). For convenience, let us

write pij for E[Pij]. Then the dual constraints require that, for all jobs j and machines i, and for
all times s≥ rj

αj
pij
≤ βis +wj

s+ 1
2

pij
+wj ·

1

2
. (14)

Let us fix job j and machine i. Plugging in the values αfj /a and βfis/b, we need to show

αfj
a · pij

≤ βfis
b

+wj
s+ 1

2

pij
+wj ·

1

2
(15)

for all s≥ rj. Equivalently, noting that αf =α/f , we have to show that

αj
pij
≤ af · β

f
is

b
+wj

s+ 1
2

pij
· af +wj ·

af

2
. (16)

Since βfis = βi,fs (the version with machines’ speeds scaled by f is just scaling down time by factor
of f), and replacing s+ 1

2
by s, it therefore suffices to show

αj
pij
≤ af · βi,fs

b
+wj

s

pij
· af +wj ·

af

2
(17)
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for all s≥ rj. Due to Lemma 6, and our choice of αj as minimizer of cost(j→ i) we have for all
machines i

αj
pij
≤ wj
pij
·

(1 +
1

c

)
rj + pij +

∑
k∈Ui(rj),

wk
pik
≥

wj
pij

pik

+
∑

k∈Ui(rj),
wk
pik

<
wj
pij

wk . (18)

Hence it suffices to show that the right hand side in (18) is upper bounded by the right hand side
in (17). To that end, we even show a slightly stronger inequality is true: Recall that βi,fs is the
total weight of jobs k assigned to machine i and unfinished at time fs but with rk ≤ fs. As long as
f ≥ 1, and since rj ≤ s, we have rj ≤ fs. Hence, βi,fs ≥

∑
k:m(k)=i,rk≤rj ,Ck≥fs

wk ≥
∑

k∈Ui(rj),Ck≥fs
wk.

Therefore it suffices to show that the right hand side of (18) is bounded from above by

af

b
·

∑
k∈Ui(rj),Ck≥fs

wk +wj
s

pij
· af +wj ·

af

2

=

af
b
·

∑
k∈Ui(rj),Ck≥fs

wk +
wj
pij
· (fs− rj)

+
wj
pij
· (fs(a− 1) + rj) +wj ·

af

2

Multiplying everything with pij, we therefore need to argue that the following inequality is true

wj

(1 +
1

c

)
rij + pij +

∑
k∈Ui(rj),

wk
pik
≥

wj
pij

pik

+
∑

k∈Ui(rj),
wk
pik

<
wj
pij

wkpij

≤

af
b
·

∑
k∈Ui(rj):Ck≥fs

wkpij +wj · (fs− rj)

+wj · (fs(a− 1) + rj) +wjpij ·
af

2
.

Let us rewrite this more conveniently as

wj ·
((

1 +
1

c

)
rij + pij

)
︸ ︷︷ ︸

I

+
∑

k∈Ui(rj),
wk
pik
≥

wj
pij

wjpik +
∑

k∈Ui(rj),
wk
pik

<
wj
pij

wkpij

︸ ︷︷ ︸
II

≤ af

b
·

∑
k∈Ui(rj):Ck≥fs

wkpij + wj · (fs− rj)︸ ︷︷ ︸
II∗

+ wj ·
(
(fs(a− 1) + rj) + pij ·

af

2

)
︸ ︷︷ ︸

I∗

. (19)

The following observations and conditions are sufficient for the above inequality to be true.
1. I ≤ I∗: Distinguish two cases. When rij = rj, we have I = (1 + 1

c
)rij + pij = rj +

rj
c

+ pij.
Moreover, since s ≥ rj, I∗ = (fs(a− 1) + rj) + pij · af2 ≥ rj + f(a− 1)rj + pij · af2 . Therefore, we
get that I ≤ I∗ under the conditions that 1/c ≤ f(a− 1), and af ≥ 2. On the other hand, when
rij = cpij, we get I = (2 + c)pij, and we get that I ≤ I∗ under the condition that 2(2 + c) ≤ af ,
whenever a≥ 1. Summarizing, we get that I ≤ I∗ for both cases, conditioned on 1/c≤ f(a−1) and
2(2 + c)≤ af .

2. II ≤ II∗ : We have by definition of Ui(rj) that

wj(fs− rj)≥wj
∑

k∈Ui(rj),Ck<fs

pik .
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Therefore, under the condition that af
b
≥ 1, we get that II ≤ II∗, because then

II∗− II ≥
∑

k∈Ui(rj),
wk
pik
≥

wj
pij

,Ck≥fs

(wkpij −wjpik) +
∑

k∈Ui(rj),
wk
pik

<
wj
pij

,Ck<fs

(wjpik−wkpik) ≥ 0 .

�

6.3. Online Time Model with Stochastic Processing Times. Let us first describe how
we modify the greedy algorithm from the preceding section for the case with stochastic processing
times.

Greedy Algorithm (Online Time Model with Stochastic Processing Times). When
job sizes are stochastic, we use exactly the same greedy assignment of jobs to machines as we used
in the preceding section for the deterministic case using processing times pij :=E[Pij].

The only difference lies is the scheduling of jobs per machine, which works by restricting jobs
to start no earlier than in the “nominal” schedule with deterministic processing times pij =E[Pij].
Specifically, the jobs assigned to any machine i are scheduled exactly in the same order as in the
nominal schedule, with the `th job to start on machine i starting at time

Si,` = max{si,`, Si,`−1 +Pi,`−1} .

Here, si,` denotes the deterministic starting time of the `th job in the nominal schedule where pij =
E[Pij] for all jobs j and machines i. Here, note that the identity of the `th job to be scheduled on
machine i is the same in both cases. Also note that for the greedy algorithm for the stochastic case,
the assignment of jobs to machines is deterministic, and not dependent on the realized processing
times of jobs. The following two remarks are probably helpful.

Remark 1. One may wonder if and how the algorithm can actually be executed online? This
simply works by concurrently building the greedy WSPT schedule with deterministic processing
times pij :=E[Pij]. Consider any job j that was released at time rj. For the assignment of job j to
its correct machine i=m(j), indeed only information is needed that is available at time rj. Also
observe that it may be the case that neither the value si,j is necessarily known at time rj, nor
which of the jobs are the predecessors of job j on machine i. But this is not necessary, as job j
is simply blocked for processing as long as the same job has not started being processed in the
corresponding deterministic schedule.

Remark 2. Observe that we may introduce forced idleness before the processing of any job j.
That is, even if the machine i=m(j) is idle, we might not process any of the available jobs, and this
delay depends on the nominal schedule for the underlying deterministic instance with pij =E[Pij].
One may wonder why this forced idleness is actually necessary? Apart from the analysis that is to
come, the reason to do that can most easily be seen by considering the following example: There
are n2 “bad” jobs of weight ε� 1 released at time 0 with i.i.d. processing requirements Pbad = 0
with probability 1 − 1/n2 and Pbad = n with probability 1/n2, and one “good” job released at
time 1 with weight 1 and deterministic processing time of 1. With the proposed algorithm that
never starts a job before its starting time in the nominal schedule, we can schedule at most n bad
jobs before the good job is released, because E[Pbad] = 1/n. That yields E[Cgood] = O(1 ). However
without the this forced idle time, a greedy algorithm would keep scheduling bad jobs until there
are none (if all are of size 0), or a rare long bad job is encountered. That yields E[Cgood] = Ω(n),
which is problematic.

The analysis of the greedy algorithm for the stochastic setting is based on a comparison with
the nominal schedule, as expressed in the following lemma.
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Lemma 8. The expected starting time of a job j on machine i in the stochastic case is bounded
in terms of its starting time in the underlying nominal schedule2 by E[Si,j]≤ h(∆)si,j, where

h(∆) =

{
1 +

√
∆
2
, ∆≤ 1,

1 + ∆
∆+1

, ∆≥ 1 .

Observe that h( · ) is a concave, increasing function of ∆, that h(∆)≤ 2 for all ∆≥ 0, and h(0) = 1.
Specifically, Lemma 8 implies the weaker bound E[Si,j]≤ 2si,j.

Proof. For simplicity of notation, let us say that the jobs k= 1, . . . j are the jobs that have been
assigned to machine i, in this order. By definition of the algorithm for the stochastic setting, and
by the fact that both the assignment to machines and the sequencing per machine is identical to
the nominal schedule, the following equality holds per realization of the processing times.

Si,j = max{si,j, Si,j−1 +Pi,j−1}
= max{si,j, si,j−1 +Pi,j−1, si,j−2 +Pi,j−2 +Pi,j−1, . . . , Pi,1 + · · ·+Pi,j−1}
=: Fi,j(Pi,1, Pi,2, · · · , Pi,j−1)

Noting that the function Fi,j is non-decreasing, Lipschitz continuous with coefficient 1 in each of
its coordinates, and Fi,j(E[Pi,1], · · · ,E[Pi,j−1]) = si,j, we have:

Fi,j(Pi,1, · · · , Pi,j−1) = Fi,j(E[Pi,1], · · · ,E[Pi,j−1]) + (Fi,j(Pi,1, · · · , Pi,j−1)−Fi,j(E[Pi,1], · · · ,E[Pi,j−1]))

≤ si,j +

j−1∑
k=1

(Pi,k−E[Pi,k])
+ .

Lemma 10, which is proved in the appendix, yields E[(Pi,k −E[Pi,k])
+]≤ (h(∆)− 1)E[Pi,k]. Hence

taking expectations, we get

E[Si,j]≤ si,j +

j−1∑
k=1

E[Pi,k](h(∆)− 1)

≤ h(∆)si,j .

The last inequality holds since for the nominal schedule, the jth job can not begin before time∑j−1

k=1 E[Pik], which means that si,j ≥
∑j−1

k=1 E[Pik]. �

We conclude with the main theorem of this section.

Theorem 4. The greedy algorithm has a performance guarantee of (7.216 + 3.608∆)h(∆)
for online scheduling of stochastic jobs with release times on unrelated machines to min-
imize the expectation of the total weighted completion times E[

∑
j wjCj]. That is, ALG ≤

(7.216 + 3.608∆)h(∆)OPT.

Proof. Let us denote by CP
j the completion time of job j in the nominal schedule as computed

by the greedy algorithm as described in Section 6.1, where pij = E[Pij]. Let us denote by ALGP =∑
j wjC

P
j the objective value achieved by that nominal schedule. Also, let us denote by ALG =∑

j wjE[CS
j ] the expected performance of the greedy algorithm for the stochastic case as described

in this section.

2 We write Si,j to indicate that job j was assigned to machine i, only for notational convenience. As the assignment
of jobs to machines is deterministic, observe that Sj = Si,j .
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It follows from Lemma 8 that the expected completion time of any job j under the greedy
algorithm for the stochastic case fulfils E[Cj]≤ h(∆)CP

j , and therefore

ALG≤ h(∆)ALGP .

What we have shown in Lemma 7 is that there exists a solution to the dual LP relaxation (Dr) with
value ≥ALGP/(7 + 11/51)>ALGP/7.216. Therefore by LP duality we get that ALGP ≤ 7.216zPr ,
with zPr being the optimal solution value for the LP relaxation (Pr). That yields

ALG≤ h(∆)ALGP ≤ h(∆)7.216zPr ≤ h(∆)7.216(1 +
∆

2
)zSr ≤ (7.216 + 3.608∆)h(∆)OPT .

Here, the third inequality follows by (13). �

7. Conclusions The performance guarantees for the greedy algorithm obtained in this paper
are in the order O(∆), which is the same order of magnitude as earlier results that have been
obtained for offline problems on unrelated machines [39], and of the same order of magnitude as
earlier bounds for the online identical machines setting [28]. Getting results independent of ∆ is
an interesting open problem.

We also believe that the presented competitive analyses for the online deterministic problems
are interesting in their own right, even if better competitive ratios can be obtained. We think so
because the proposed greedy algorithm is (arguably) simple and intuitive, and hence practical.
Finding a (matching) lower bound for the case with release times would be interesting.

Another direction for future work is the derivation of genuine lower bounds on the approximabil-
ity of the optimal expected performance of efficiently computable policies for stochastic scheduling
problems, even in the offline setting. This would allow to separate the computational complexity
of stochastic problems from the corresponding deterministic special cases.
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Appendix A: Auxiliary Lemmas

Lemma 9. We focus on a single machine and job. Let P denote the random variable for the
processing time with support Z>0. Let xt denote the probability that the job starts processing on the
machine at time t (t= 0,1, . . .). For a given set of {xt} variables, let ys denote the probability that
the job is being processed on the machine during time slot s. Then, the expected completion time
of the job is given by

C =
∑
s∈Z≥0

(
ys

E[P ]

(
s+ 1

2

)
+

1−CV[P ]2

2
ys

)
.
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Proof. It follows from the fact that policies are non-anticipatory that in terms of {xt} variables,
the expected completion time is

C =
∞∑
t=0

xt(t+E[P ]) .

Further, from (1),

ys =
s∑
t=0

xt ·P[P > s− t],

which also gives
∞∑
s=0

ys =E[P ]
∞∑
t=0

xt .

Consider the summation

∞∑
s=0

ys

(
s+

1

2

)
=
∞∑
s=0

(
s+

1

2

) s∑
t=0

xt ·P[P > s− t]

=
∞∑
t=0

xt

∞∑
s=t

(
s+

1

2

)
P[P > s− t]

=
∞∑
t=0

xt

(
t
∞∑
r=0

P[P > r] +
∞∑
r=0

(
r+

1

2

)
P[P > r]

)
=
∞∑
t=0

xt

(
t ·E[P ] +

1

2
E[P 2]

)
=E[P ]

∞∑
t=0

xt · t+
1

2
E[P 2]

∞∑
t=0

xt

=E[P ]

(
∞∑
t=0

xt · t+
1 +CV[P ]2

2

∞∑
s=0

ys

)
or,

∞∑
t=0

xt · t=
∞∑
s=0

(
ys

E[P ]

(
s+

1

2

)
− 1 +CV[P ]2

2
ys

)
.

Adding
∑∞

t=0 xtE[P ] =
∑∞

s=0 ys to the above, gives

C =
∞∑
t=0

xt(t+E[P ]) =
∞∑
s=0

(
ys

E[P ]

(
s+

1

2

)
+

1−CV[P ]2

2
ys

)
.

�

Lemma 10. Let X be a non-negative random variable with mean µ and squared coefficient of
variation ∆. Then,

E[(X −µ)+]≤

{
µ
√

∆
2

∆≤ 1,

µ ∆
∆+1

∆≥ 1.
(20)

Proof. We consider the problem of finding the measure on R+ for X that maximizes E[(X−µ)+].
Assuming X has a density, this can be written as an infinite dimensional linear program. Using
duality, we provide these bounds by exhibiting feasible solutions to its dual. It is instructive to
follow this path, and later we argue that the bound holds for any distribution of X. We note
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that the bounds are in fact tight which can be easily proved by analyzing the distributions in the
duality-based proof, but we omit this step here.

We begin with the primal problem of finding the extremal measure on R+ as an infinite dimen-
sional LP, assuming the extremal measure has density f(·)).

max
f(·)

∫ ∞
0

(x−µ)+f(x)dx

s.t.

∫ ∞
0

f(x) = 1∫ ∞
0

x · f(x)dx= µ∫ ∞
0

x2 · f(x)dx= µ2(1 + ∆).

The dual problem to the above is:

min
α,β,γ

α+µβ+µ2(1 + ∆)γ

s.t. α+βx+ γx2 ≥ (x−µ)+ for all x≥ 0.

Case ∆≥ 1. We begin by making a guess about the extremal distribution f(·). Namely, that it is
a parametric distribution with as limiting case two atoms, one of which is at 0. Under this assump-
tion, one observes that P[X = 0] = ∆

∆+1
and P[X = µ(∆ + 1)] = 1

∆+1
yields the desired conditions

that E[X] = µ, E[X2] = µ2(∆ + 1) and E[(X − µ)+] = µ ∆
∆+1

. For the given guess, complementary
slackness implies:

α+β · 0 + γ · 0 = 0 (21)
α+β ·µ(∆ + 1) + γ ·µ2(∆ + 1)2 = µ∆. (22)

The first of the above gives α= 0, and the second gives the dual objective value of µ ∆
∆+1

. It now
remains to verify dual feasibility. Dual feasibility is met if the gradient of the quadratic function
α+ βx+ γx2 at x= 0 is non-negative, and it is tangent to (x− µ)+ at x= µ(∆ + 1). The latter
implies,

β+ 2γµ(∆ + 1) = 1 (23)

which together with (22) gives, β = ∆−1
∆+1

and γ = 1
µ(∆+1)2

. The non-negativity of gradient at x= 0

is true if and only if β ≥ 0. Therefore if ∆≥ 1, then α= 0, β = ∆−1
∆+1

, γ = 1
µ(∆+1)2

is a feasible dual

solution with objective value µ ∆
∆+1

.
To turn this idea into a formal proof, we claim that for any x≥ 0 and ∆≥ 1, we have

(x−µ)+ ≤ ∆− 1

∆ + 1
x+

1

µ(∆ + 1)2
x2 .

This follows from (x−µ(∆+1))2 ≥ 0 by adding 2x= (∆+1)x+(∆−1)x to both sides. Then basic
algebra yields that (x− µ) ≤ (∆− 1)x/(∆ + 1) + x2/(µ(∆ + 1)2), where we assume w.l.o.g. that
µ> 0. Therefore, for any random variable X ≥ 0 with E[X]> 0 we have

E[(X −µ)+]≤ ∆− 1

∆ + 1
E[X] +

1

µ(∆ + 1)2
E[X2].

Substituting E[X] = µ,E[X2] = µ2(1 + ∆), we get

E[(X −µ)+]≤ µ ∆

∆ + 1
,
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which proves the second case of (20).
Case: ∆≤ 1. The constraints of the dual suggest that we should look for a quadratic function

α+βx+γx2 which is tangent to (x−µ)+ at two points, one of which must be in the interval [0, µ].
Therefore, α+βx+ γx2 = γ(x− ν1)2 for some 0≤ ν1 ≤ µ. Let this quadratic be tangent to (x−µ)
at ν2 ≥ µ. The tangency conditions give

γ(ν2− ν1)2 = ν2−µ (24)
2γ(ν2− ν1) = 1 (25)

which together imply γ = 1
4(µ−ν1)

. Thus, the dual minimization problem becomes the following
single parameter optimization problem over ν1:

min
ν1

ν2
1

4(µ− ν1)︸ ︷︷ ︸
=:α(ν1)

+µ

(
− ν1

2(µ− ν1)

)
︸ ︷︷ ︸

=:β(ν1)

+µ2(∆ + 1)
1

4(µ− ν1)︸ ︷︷ ︸
=:γ(ν1)

=min
ν1

µ2∆

4(µ− ν1))
+
µ− ν1

4

=
µ
√

∆

2
.

The minimizer is ν∗1 = µ(1−
√

∆) which is indeed in the interval [0, µ] for ∆≤ 1 as desired for dual
feasibility.

As before, we can turn this into a formal proof by showing that for any x≥ 0, and 0≤∆≤ 1,

(x−µ)+ ≤ 1

4(µ− ν)
(x− ν)2 ,

where we have defined ν = µ(1−
√

∆). Then for any random variable X ≥ 0 with E[X]> 0,

E[(X −µ)+]≤E
[

1

4(µ− ν)
(X − ν)2

]
.

After substituting E[X] = µ,E[X2] = µ2(1 + ∆) this gives

E[(X −µ)+]≤ µ
√

∆

2
.

This completes the proof for the first case of (20).
Remark: It was pointed out to us by one of the referees that the bound for the case ∆ ≤ 1

follows even simpler by observing E[(X −µ)+] = 1
2
E[|X −µ|2]≤ 1

2

√
E[(X −µ)2] = µ

√
∆

2
. Here, the

first equality follows because X − µ has mean zero, and the inequality is by Jensen’s inequality.
The linear programming argument however is constructive in the sense that it also gives tight
examples. �
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