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The author is very grateful to the discussants for sharing their viewpoints on the article. The
discussant contributions highlight the gaps in the theoretical understanding and outline many
possible directions for future research in this area. The rejoinder is structured according to
topics. We refer to [GMMM], [K], [KL] and [S] for the discussant contributions by Ghorbani
et al., Kutyniok, Kohler & Langer and Shamir, respectively.

1. Overparametrization and implicit regularization. One of the general claims about
deep learning is that, even for extreme overfitting, the method still generalizes well. There
are numerous experiments showing that running the training error to zero and, therefore, in-
terpolating all data points results in state-of-the-art generalization performance. The rationale
behind this is that among all solutions interpolating the data points, of which most result in
bad generalization behavior, stochastic gradient descent (SGD) picks a minimum norm inter-
polant. This is also known as implicit regularization. While this is well known for stochastic
gradient descent applied to linear regression, for deep networks some progress has been made
recently in finding the norm minimized by (S)GD; see [10, 23].

It is now reasonable to wonder whether the notion of network sparsity could be removed in
the article if implicit regularization would have been taken into account. [GMMM] write that
“Model complexity is not controlled by an explicit penalty or procedure, but by the dynamics
of stochastic gradient descent (SGD) itself.” [S] mentions implicit regularization to show that
statistical guarantees should involve specific learning methods.

We conjecture that for additive error models, such as the nonparametric regression model
considered in the article, implicit regularization in the overfitted regime is insufficient to
achieve even consistency. To support our conjecture, we provide the following two-step ar-
gument. In the first step we argue that for one-dimensional input and shallow networks with
fixed parameters in the first layer, SGD will converge to a variant of the natural cubic spline
interpolant. In the second step we show that this reconstruction leads to an inconsistent esti-
mator if additive noise is present.

A shallow ReLU network with one input and one output node can be written as x �→∑m
j=1 aj (bjx − cj )+. We now study an even more simplified setup where bj is always one.

For small δ > 0, (x − cj )+ ≈ ∫ cj+δ
cj (x −u)+ du/δ. This motivates to study smoothed shallow

ReLU networks of the form

x �→ fa(x) =
m∑

j=1

aj√
tj − tj−1

∫ tj

tj−1

(x − u)+ du

with parameter vector a = (a1, . . . , am) and fixed t0 < t1 < · · · < tm. For convenience, we
have rescaled the parameters aj so that the normalization factor becomes 1/

√
tj − tj−1. We

consider the overparametrized regime m ≥ n assuming that, for any i, there lies at least one
tj in the interval [X(i−1),X(i)) with X(i) the ith order statistic of the sample X1, . . . ,Xn

and X(0) = −∞. Under overparametrization this is a rather weak assumption and ensures
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existence of a shallow ReLU network f ∗
a perfectly interpolating the data in the sense that

f ∗
a (Xi) = Yi for all i.

For initialization at zero and properly chosen learning rate, SGD with respect to the least
squares loss converges to the minimum norm interpolant with parameter vector

a∗ = arg min
a∈Rm

{‖a‖2 : fa(Xi) = Yi,∀i
}

(this result is due to [24] for overdetermined linear systems but can be extended to the
underdetermined case; see, also, the generalizations in [8, 10, 16]). Because of f ′′

a (x) =
aj/

√
tj − tj−1 for all x ∈ (tj−1, tj ), we find ‖a‖2 = ‖f ′′

a ‖L2[t0,tm]. It is known that the natural
cubic spline interpolant L is the interpolant with the smallest L2-norm on the second deriva-
tive. Moreover, we have that ‖f ′′‖2

L2 = ‖L′′‖2
L2 + ‖L′′ − f ′′‖2

L2 for all twice differentiable
interpolating functions f ; see equation (2.9) in [9]. Since fa∗ and L are both interpolants,
this implies that the SGD limit fa∗ will be close to the natural cubic spline interpolant.

In the nonparametric regression model with additive errors, the distance between the true
function values and the response variables Yi is of the order of the noise level (which is
assumed to be fixed). The natural cubic spline interpolates the Yi ’s. If, in a neighborhood, the
Yi ’s lie all on one side of the regression function, the average distance between the natural
cubic spline interpolant and the true regression function will be lower bounded by a constant.
Since this happens on a subset with Lebesgue measure bounded from below, the natural
cubic spline interpolant is inconsistent for estimating the regression function. As the SGD
limit approximates the natural cubic spline interpolant, this indicates that stochastic gradient
descent should lead to inconsistent estimators.

We believe that this also holds true for deep networks. In this case it is expected that
SGD still converges to a spline interpolant but not necessarily to the natural cubic spline
interpolant; see, also, [21] for a related argument.

While it has been observed that there are nonparametric estimators that can interpolate and
also achieve fast convergence rates in the nonparametric regression model ([3]), the argument
above indicates that implicit regularization in the overfitted regime will not do that. To obtain
rate optimal estimators, more regularization has to be imposed forcing the network to do
smoothing.

2. Network sparsity. The article identifies sparsity of the network weights as a com-
plexity measure to achieve optimal convergence rates under a hierarchical composition as-
sumption. As sparsity is a nonstandard assumption, there are several comments on it in the
reports. [GMMM] show that the empirical distribution of the weights in the first fully con-
nected layer of the VGG-19 network is nearly Gaussian. [KL] mention a recent result proving
optimal estimation rates for very deep networks with fully connected layers.

After the original version of this article was drafted, a large body of applied work emerged
dealing either with compression through sparsifying dense networks or proposing methods
that directly train a sparse neural network. Below we briefly summarize some of these ap-
proaches.

One method to achieve sparsity in neural networks is by pruning a fully connected network
after training. A simple approach would be to replace small network weights by zero, but
more sophisticated approaches based on the second derivative have been proposed as well;
see [11, 12, 15]. [5] proposes an iterative pruning procedure; see also [7]. These approaches
allow us to reduce the number of parameters in fully connected layers by about 90% without
loss of efficiency.

Although Theorem 1 is formulated in terms of network sparsity, the proof explicitly con-
structs a network topology, that is, the graph structure defined by the nonzero connections
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between successive layers, for which the minimax estimation rate is attained (up to log-
factors). Instead of searching over all s-sparse networks, it is therefore, in principle, possible
to start with this network topology and only learn the nonzero weights. By fixing one sparse
network topology, a lot of the flexibility of networks to adapt to the underlying structure in
the data might be lost. An intermediate constraint would be to impose an individual sparsity
parameter for each weight matrix or to bound the indegree and outdegree for each individual
unit in the network. In the applied literature choosing a sparse network topology beforehand
has been proposed recently in [19, 20]. The latter article makes an interesting connection be-
tween sparsely connected neural networks and decision trees. Related to an initial choice of a
sparse network topology is the evolutionary algorithm inspired by biological neural networks
proposed in [17]. It starts with sparse weight matrices. In every iteration the smallest weights
are removed, and new random connections are added so that the network topology changes
but the overall network sparsity is kept constant. The method proposed in [1] is also inspired
by the sparsity observed in biological networks. It starts with a sparse network topology and
increases the sparsity by only keeping the units in each hidden layer that channel most of the
signal to the next layer.

The recent work [6] on weight agnostic neural networks takes this one step further. No
training is done, and the weights are fixed to the initialized values at all times. Only the
network topology is learned by an iterative procedure. In each step of the iteration, we have a
set of candidate models. For each of those models a score is computed. “Around” the models
with the highest scores a new set of randomly generated candidate models is generated.

Theorem 1 in [KL] considers neural networks with fixed width and depth increasing poly-
nomially in the sample size. It is shown that for such extremely deep networks, the empirical
risk minimizer over fully-connected layers achieves the optimal estimation rate, and no spar-
sity is needed. Such architectures are, however, in many aspects quite different compared
to the neural networks considered in practice. In [25], it has been observed that, for such
extremely deep networks, one needs discontinuous weight assignments to achieve the best
possible approximation rate. This is a strange phenomenon which could hint at some issues
with the stability during learning of the network weights.

3. Classification and nonparametric regression. While the article deals with data from
the nonparametric regression model, the overwhelming part of the literature on deep learning
is on classification. Nonparametric regression and estimation of the conditional class proba-
bilities in classification is similar, if a fraction of the data is mislabeled which prevents the
conditional class probabilities to be close to zero or one. For the commonly considered clas-
sification tasks in deep learning, this is, however, not the case as most of the data are correctly
labeled. As the randomness due to mislabeling is negligible in those cases, the only remaining
randomness is in the distribution of the design/inputs and reconstruction becomes rather an
interpolation than a denoising problem. If the different classes are also well separated from
each other, much faster convergence rates can be achieved. This explains why the sample
complexity in the nonparametric regression model is much higher than what is observed in
deep learning for object recognition tasks; see also Report [S].

Concerning the statistical properties there are some differences. For image classification
problems, deep learning is, for instance, not robust to Gaussian perturbations; see [13]. In the
nonparametric regression model, Gaussian perturbations just increase the noise level. Since
the noise level appears in the estimation risk bounds through the constants, the estimation
rates for the class of estimators considered in the article will not change under additive noise
perturbations.

We would like to stress again that the structure of the data is essential for the behavior
of deep learning and the properties of the reconstructions. One of the challenges for future
research will be to study estimation in models beyond nonparametric regression.
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4. Algorithms. [GMMM] and [S] question whether one can disentangle the algorithm
from the statistical analysis. We would like to stress that Theorem 1 is not about one fixed es-
timator. It provides bounds for any estimator which, given data, returns a sparsely connected
neural network. The method/estimator determines the term �n(f̂n, f0) defined in equation
(5) and Theorem 1 shows that �n(f̂n, f0) tightly controls the estimation risk from above
and below. This is different than the case of data interpolation and training error zero, where
�n(f̂n, f0) is not sufficient anymore to fully characterize the statistical properties; see, also,
Report [S] and [26].

We agree that the difficulty is shifted to a precise estimate of the term �n(f̂n, f0), and we
hope to study this term in more detail in future work. This term might heavily depend on the
learning rate, the initialization and the energy landscape. Regarding a question in [K], the
expectation in the definition of �n(f̂n, f0) (equation (5) in the article) can be taken over all
the randomness, including additional randomization in the algorithm.

While it would be desirable to have precise theoretical bounds for the performance of
the most popular deep learning methods such as Adam, we believe that some amount of
idealization and simplification is unavoidable. In statistical theory this seems to be widely
accepted. For instance, most of the theory on the LASSO deals with regularization parameters
derived from large deviations bounds although the standard software implementations choose
the regularization parameter by 10-fold cross-validation.

5. High-dimensional input. [GMMM] mentions that, for the current proof strategy and
the case of additive models, the dependence of the dimension on the constants is dd . As men-
tioned in the article, the results focus on the convergence rates; no attempt has been made to
minimize the constants appearing in the proofs. In fact, by a variation of the original argument
the dependence on the dimension for additive models f (x) = ∑d

i=1 fi(xi) can be shown to be
linear. To see this, we can build for any given N ≥ 1, d separate networks with s  N logN

parameters, computing the functions f1(x1), . . . , fd(xd) up to an approximation error of the
order O(N−β). Using the parallelization rule mentioned on p. 21 of the article, one can then
combine the individual networks into a large neural network computing the sum

∑n
i=1 fi(xi)

up to an approximation error of order O(dN−β) using s  dN logN many network parame-
ters. It then follows from Theorem 2 that the rate is upper bounded by dn−2β/(2β+1) log3 n if
�n(f̂n, f0) is sufficiently small and d is bounded by a power of the sample size.

As another result on high-dimensional input, [S] mentions a theorem proving that basis
expansions have difficulties to approximate functions generated by a single neuron. Either
huge coefficients are needed or the number of basis functions has to be exponential in the
input dimension.

Since the input dimension d in deep learning applications is typically extremely large, a
possible future direction would be to analyze neural networks with high-dimensional d =
dn ↑ ∞ and comparing the rates to other nonparametric procedures.

6. Function classes. With respect to the considered function class, [K] emphasizes that
the function classes should be detached from the method. On the contrary, [S] favors an
alternative approach where the underlying function class consists itself of neural network
functions. We believe that both approaches have advantages and disadvantages.

The imposed class of composition functions in the article appears, of course, naturally
given the composition structure of deep networks. Compositions are fundamental operations
and, as mentioned in the article, many widely studied function classes in nonparametric statis-
tics such as (generalized) additive models occur as special cases of the imposed composition
constraint.

For a recent result in the statistical literature with function class consisting of neural net-
work functions, we refer to [2]. One possibility for future research would be to determine
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the maxisets for neural networks, that is, the largest possible function class for which a pre-
specified estimation rate can be obtained; see [14]. The main advantage of generic function
spaces, such as Hölder classes, is that we can compare the estimation rates achieved by dif-
ferent methods and, therefore, learn something about the strength and weaknesses of these
methods. The article shows, for instance, that wavelet methods have a slower rate of conver-
gence for generalized additive models than sparsely connected deep ReLU networks.

To obtain fast estimation rates, an alternative is to impose structure on the design; see [18,
22].

7. Choice of the activation function. On p. 12 in the article, we highlight several spe-
cific properties of the ReLU activation function such as the possibility to easily learn skip
connections. [KL] mention that results for ReLU networks automatically transfer to other ac-
tivation functions. The argument, however, requires that the network parameters will become
large. In the meantime we better and better understand how SGD leads to norm control on
the parameters. To model this, we think that it is important to control the magnitude of the
weights in the network classes. In the article the network parameters are bounded in abso-
lute value by one. This is a convenient choice, but as our understanding of the norm control
induced by SGD improves, more realistic constraints are imaginable. It is well known that
training does not move the parameters far from the initialized values. To analyze the effect of
different initialization strategies, one possibility would be to study network classes generated
by all parameters in a neighborhood of a (random) initializer.

8. Real data. [GMMM] report the results of a simulation study which seemingly con-
tradict the theory in the article. They study the noise-free case and up to three hidden layers
showing that a certain smooth function cannot be learned. We would like to refer to the sim-
ulation study in [4] which finds that, for regression problems, the performance of deep neural
networks is not far off from the theoretical bounds. This article also examines the finite sam-
ple performance of the multiplication network in Lemma A.2 which forms an essential part in
the proof of Theorem 1. To a certain extent, even such specific constructions can be picked up
by deep learning. This, however, only works for a careful initialization. It might be necessary
to reinitialize the procedure if the algorithm gets stuck in a local minimum with large training
error.

Acknowledgments. The author would like to thank Misha Belkin and Dirk Lorentz for
fruitful discussions on overfitting and SGD.
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