
Discrete Mathematics 25 (1979) 51-63. 
@ North-Holland Publishing Company 

A LEFI’ PART THEOREM FOR GRAMMATICAL 
TREES 

A. NIJHOLT 

Vrije Uniuersiteit, Department of Mathematics, P.O. Box 7161, Amsterdam, The Ne&erlands. 

Received 14 September 1977 
Revised 14 August 1978 

A simple left part property for a set of grammatical trees is introduced. The class of left part 
grammars, a subclass of the class of context-free grammars, is defined. It is shown that the set of 
grammatical trees of a context-free grammar satisfieg this left part property if and only if the 
context-free grammar is a left part grammar. %me properties of leftpart grammars are 
considered. 

0. Introduction 

We consider a global property of the derivation (or parse) trees of context-free 
grammars. This property of the derivation trees of context-free grammars can be 
considered as a restricted version of the left part property for the trees of strict 
deterministic grammars [3,4,5,6]. In this paper it is shown that this left part 
property is satisfied by the set of grammatical trees of a left pati grummur, a type 
of context-free grammar which we introduce here. 

The class of left part grammars is B_ small extension of the class of simgb chuin 
grammars [ 101. 

If a context-free grammar is unambiguous then each terminal string generated 
by this grammar has a unique derivation tree. Informally, our left part property 
requires that every prefix of such a terminal string ha0 a unique “partial” tree. 
This notion of “partial” tree will be specified. 

The aim of this paper is to present this left part property and the class of 
grammars for which the set of grammatical trees satisfies this property. Except for 
some informal remarks, in this short paper we will not be concerned with a 
parsing method for left part grammars, However, the reader who is familiar with 
simple chain grammars will have no difficulty in finding a very simple parsing 
method for the left part grammars. 

To present the left part property and to describe grammatical trees we use the 
notations and definitions from [SJ. For convenience we repeat, as far as necessary, 
some of these notions here. For more details the reader is referred to [5,7]. 

Among others, an intuitive assumption on “translations” of prefixes of sen- 
tences which is discussed in [9] motivated us to introduce this left Fart property. 
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The organization of this paper is as follows. The remainder of this section is 
devoted to establish some definitions and notational conventions on trees, 
context-free grammars and grammatical trees. In Section 2 we present %the left 
part property and we introduce the left part grammars. Moreover, some proper- 
ties concerning relationships with other classes of grammars and with classes of 
languages are presented. In Section 3 we show that a context-free grammar is a 
left part grammar if and only if its set of grammatical tr:ees satisfies the left 
property. 

To introduce the concepts of the theory of trees which we need here we will 
frequen@ ~kr to the tree T given in Fig. 1. This introduction goes along similar 
lines ac in [5). 

Fifl. 1. Tree T ant Jts labeling. 

Tree T has nodes (x0. x1, . . . , xlo) and it has a rest (x0). The relation of 
immediate descendancy is denoted by [ (for example xs is an immediate clescen- 
dmt of x2, x2 [x5). The transitive closure of r is denoted by [’ and the reflexive 
h 3: ;:w.&itle &sure by [*, If x [*y then there is a path from x to y, which is the 
sequence of all nodtis, including x and y, between x and y. For example, 
x0, x~, x5, xl0 is the path in T from x0 to x IQo A kaf is a node x in T for which 
there is no y in T such that x [y ; in Fig. 1 the leaves are x4, xs, x9, xlo, x7, x8, 
given here in title left-right order, which is in general,, for a tree T with m leaves, 
denoted by yt, y,, . . . , y,,,. We introduce the binary relation 1 as follows x [y iff: 

(9 x and y are not on the same path and 
(ii) for some leaves y,, y L+ 1 in the left-right order we have x [* y, and y [* y, +l. 

Thus, for instance, x4 [x2 and, by introducing transitive and reflexive-transitive 
closures of 1 in an obvious way, x4 I* xs. 

Two trees K T’ are structurally isomorphic, T= T’, iff there is a bijection 
g 5 ‘;A T’ such that x [ y iff g(x) [g(y) and x [j, ifi’ g(x) 1 g(y), that is, except for a 
possibk labeling the trees are identical. 
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1.2. Context-free grammars 

Let G = (N, 2, P, S) be a context-free grammar (CFG), where N is the set of 
nonterminals, c is the set of terminals, V = N U )3, P s N x V” is the set of 
productions and S is the start symbol. Elements of N will be denoted by the roman 
capitals A, . . . , S; elements of C by the Roman smalls a, b, c, . . . , ; elements of 
V* by the Greek smalls Q, /3, y, 6, . . . ; elements of X* by the Roman smalls 
u, 21, w, x9 y, 2. 

Instead of writing (A, 01) in P we write A -+ ~1 in P. P is said to be prefix-free if 
A + (Y and A --, cw/3 in P implies p = e(e denotes the empv St&g). 

The relation + z V* x V* is defined as follows. For any a, /3 E V*, a! + (s iff 
Al = arlAar2, p = arl&cvz and A--,& is in P for some A EN and cyl, cy2, &E V*. If 
01~ E 2” or cy2 E X* we write 4y * @ and ar =$ ,p respectively. Transitive and 
reflexive-transitive closures of these relations are defined in the usual way. If 

%+a, . a l + a, then this sequence is said to be a derivation of a, from cyo. 
If cy E V+, then L(a) =(w E Z’+~CY*$ w). The language of G, denoted by L(G), is 

the set L(S). If ~1 E V*, then lal, the length of cy, denotes the number of symbols 
in Al. If Q! E V*, then 9~ denotes a! if lclll< y1 and otherwise a prefix of cy of length 
n. 

FIRST (cu) ={a’~ Zla 3 a4 for some 4 E V*}. Notice that PE N x V+, hence 
there are no productions A-+E, i.e. the CFG’s are assumed to be E-free. 
Moreover, we assume in this paper that the CFG’s are reduced and cycle-free [l]. 

1.3. Grammatical trees 

Let T be a tree. Then every node x of 7’ has a label A(x), for instance in Fig. 1 
x3 has label C. We will be concerned with grammatical trees, therefore h(x) E V, 
where V = N U c for a given CFG G = (N, Z, F9 5). The root-label of tree T is 
denoted by rt (7’) (in Fig. 1 rt (T) = S) and the frontier of tree T is the concatena- 
tion of the labels of the leaves (in the left-right order) oi T, notation: fr (T). In 
Fig. 1 fr (T) = abcdcd, We write T = T’ when T= T’ and T and T’ have the same 
labeling. In this case the corresponding nodes in T and T’ will be treated as 
identical. The productions in P are elementary subtrees (see Fig. 2 for a 
production A -+X1X2 l 9 9 X,,). 

Formally, T is said to be a grammatical tree iff 
(i) for every elementary subtree T’ of T there exists a production in P 

corresponding to T’, and 
(ii) fr (T)E C*‘. 

Fig, 2, An elementary subtree, 



54 A. Nijholt 

The set of grammatical trees for a CFG G is denoted by Jq; J,(A) = 
{T E Jo (rt (T) = -4) and trees in J&S) are the derivation trees of G. The corres- 
pondence between derivations of P znd grammatical trees of G will be clear. 

2. hfQartgraarmars 

Let G = (N, 2, P, S) be a CFG. Informally the left part property says that for 
each A EN and for each prefix u of w = uv E L(A) u uniquely determines the 
“left part” (up to the first symbol of v) of the grammatical tree which corresponds 
to the derivation of w from A. Clearly such a property can only be satisfied (take 
for in,stance o = e and A = S) by grammatical trees for which the CFG is 
cmarnbiguous, that is, each sentence (element of L(S)) has a unique derivation 
tree. The following definition of left part is from Hlarrison and Have1 [S]. 

DehMon 2.1. Let 7’ be a grammatical tree of some grammar G. For any n > 0 
we define ‘“) T, the left n-pati of T (or the left part when n is understood) as 
follows. Let (Xi, . . . , x,,,) be the sequence of all leaves in 7’ (from the left to the 
right). Then ‘n)T = (x E Tlx I* 1” x,,} if n ‘-g m and (“IT = T if n > ro. (“IT is consi- 
dered to be a tree under the same relations [, 1 and the same labeling A as T. 

For instance, in Fig. 1 (3)T is the subtree with the nodes x0, x1, x2, x4, x5, x6 and 
x9. In the following definition we introduce our simple left part property for a set 
of grammatical trees. 

Definition 2.2. Let JS Jo for some CFG G. J is said to satisfy the left part 

property iff for any n > 0 and T, T’ E J if rt (T) = rt (T’) and (n)fr (T) = (“)fr (T’) then 
(n,T == (m,T’ . 

This definition is illustrated in Fig. 3, where two trees T and T’ in a set J c .I,, are 
&en with their labeling. 
In .+rg. 3 we have (2)T = (2)T’. However, since Y3)Tf C3)T’ and (3)fr (T) = (3)fr (T’) we 
may conclude that J does not satisfy the left part property. 

Clearly not for every CFG G we have that Jc3 satisfies the left part property. 
We introduce the left part grammars, a subclass of the context-free grammars 
which is defined in such a way that CFG G is a left part grammar iff JG satisfies 
the left property. The definition of left part Barnmars is an adapted version of the 
definition of simple chain grammars which was first introduced in [lo]. In Section 
1.2 we defined the prefix-free property for a set of productions P. We say a set of 
productions is prefix (1) iff for each pair A + fl, A + fly in P, where y # e, and for 
strings a E p and w E p, if S**,wAar, then FIRST ($nFIRST (ar) = $9. To 
avoid arf empty QI we add, if necessary, the production S’+S I to P, where S’ is a 
new start symbol and J_ is an endmarker, I 4 V, 
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e a e b 

Fig. 3. Two trees, (3)T# (3)T’ 

Defidion 2.3. A CFG G = (N, 2, P, S) is said to be a left part grammar iff P is 
prefix (1) and FIRST(X) n FIRST( Y) = 9 for each pair A + aX4, A +cuY# in P 
with Xf Y. 

The following definition introduces chains, a concept which turns cut to be 
useful in formulating properties of context-free grammars. 

Definition 2.4. Let G = (N, 2, P, S) be a CFG, let X0 E V. The set of chains of X0, 
denoted by CH(X,-J is defined by 

Notice that the definition of CH(X,) is such that each chain in CH(X,) ends with a 
terminal. If X0 E ;I]‘, then X0 is the only chain in CH(XJ. We use the following 
notations and conventions. If v = X,X, . l l X,,, then Z(rr)=X,,, that is I(T) 
denotes the last element of a chain. Hence, for each chain 7r, I(?r) E C. 

Let XE V. X is said to be chain-independent if for each pair q, 9r2 in CH(X), 
7r1 # n2, we have Z(q) # Z(?r,). Clearly, if X is chain-independent, then CH(X) is 
a finite set. Also it follows that each terminal is chain-independent. If each 
element of V is chain-independent then V is said to be chain-independent. Let 
X, YE V, Xf Y. X and Y are said to be mutually chain-independent if for each 
pair 7rl E CH(X) and 7r2~ CH(Y) we have I(7r1) # Z(w2); notation X+ Y. Notice 
that a+ b for each pair a, b in C such that a # b. 

Lemma 2.1. Let G = (N, s, P, S) be a CFG. For each pair A + CUXC#I, A + cuY$ in 
P, where xf Y, we have FIRST(X) f\ FIRST( Y) = g if X+ Y. 

Proof. Trivial. 

Lemnma 2.2. Let G = (N, 2, P, S) be a CFG. If FIRST(X) n FIRST( Y) = p for 
each pair A + CKX~, A + aY@ in P with X# Y then V is chain-independent. 

Proof. Assume that V is not chain-independent. Hence, there exist A E N and 
ql, 7r2~CH(A) such that q # 7r2 and I(q) = l(7r2). Let nl =X0X, s . 9 X,, and 
7T2=Y()Y1** l Y,, where X0 = YO = A and E=, = Y,. Then there exists i 2 0 such 
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that x,,x, ’ l l x, = YJ, . . 9 Yi, there exists a derivation A 3 IX& for some 
V* and there exist productions X, -Xi+ t J/ + l, Xi 3 Y,+&+ 1, for some +$+I, 

I&,E V* and such that X,+, # Y,,,. Since FIRST(X,,,)nFIRST(Y,+,)=IB) ac- 
cording to the “if”-part of the lemma we have I(7rl) # I&). Contradiction. 

From ‘Definition 2.3 and the two lemmas the following corollary is now 
self -evident. 

Corollary 2.1. A CFG G = (IV, JE, P, S) is u left part grummar if 
(i) P is prefix(l), and 

Y for each pair A +txX& A --+ arY@ in P with X# Y. 
iff 

(i) P is prr?fix( I). and . 

(ii) V is chain-mdependent. and 
(iii) X+- Y for each pair a--+aX& A-+aYJ, in P with Xf Y and or # E. 

Remark. If we replace in Definition 2.3 (or in Corollary 2.1) prefix (1) by 
prefix-free then a definition of the simple chain grammars is obtained. The reader 
who is familiar with their parsing method [ 10,2] will notice that this method also 
will work for left part grammars if one symbol of look-ahead is allowed in cases 
that there is doubt whether a reduction has to be made or a symbol has to be 
shifted to the pushdown stack. 

Exmtpfes. CFG G, with only productions P,(S+aAc, S+aAd, 
A -*aA, A -4) is a ‘left part grammar. The same holds for CFG G2 with 
Pz = (S-AC, A -a, A 4 ab). A more complicated example is CFG G3 with 
u,=~S-*EJ,,E-*(T)*(E),E~(?‘), T+F+T, T-+F, F+E, F-W). CFG cr;, 
with P4={S+aSA,S-+aA,A+bbd,A-4. A-w,S’-+S1} is not a left part 
grammar since it is not prefix (1). 

Notice that the class of simple chain grammars is a proper subclass of the left 
part grammars, since G2 is not a simple chain grammar. G2 is not even an LR(Q) 
gB .-.itr;i*aa ;; j. With the aid of the property that eacrPl simple chain grammar is an 
LR(0) grammar (which will be proved somewhere else), one can easily verify that 
the class of left part grammars is a proper subclass1 of the LR( 1) grammars. 

In the remainder of this section we prove some results concerning relationships 
with other classes of grammars and with classes or: languages. 

The class of prefix-free deterministic languages’ has been studied by Harrison 
and Have1 [4,5,6]. The class of prefix-free deterministic languages is a subclass of 
the class of deterministic langua,ges. For each prefix-free deterministic language 
there exist a strict deterministic grammar [4,5,6]. There is a nontrivial hierarchy 
of strict deterministic grammars and their languages according to their degree [4]. 

* A df::* rministic language is 8 language which can be accepted by a deterministic pushdown 
~ut~n?dfQ~ d 11. A h.mguaf&? f, is said ta he prefix-free iff u E f. rind uu E L implies u E e, 
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We will turn our attention to the simplest class in this 
deter&&k g~mmars of deg,ree 1. The following definition 
Theorem 3.1 of [6]. 

hierarchy, the strict 
is a reformulation of I 1 

De&&ion 2.5. CFG 6 = (N, Z, P, S) is a strict deterministic grammar of degree 1 
iff P is prefix-free and, if A -, aX4 and A +(Y w are in P (hence, CY, 4 and 4 in 
V*, X and Y in V), where X# Y, then X and Y are in Cr. 
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Simple deterministic grummars [S] are grammars in Greibach normal form 2 (GNF, 
for short) which have the property that for all u E Z, CE N and cy, p E V*, 

C+ua and C-up in P implies ~1= p. 

It follows immediately that the class of simple deterministic grammars is properly 
included in the class of strict deterministic grammars of degree 1. However, their 
families of languages coincide [6]. 

Directly from Definition 2.3, 2.6 and the remark fdlswing Corollary 2.1 it 
follows that the strict deterministic grammars of degree 1 are (properly) included 
in the class of simple chain grammars, which in its turn is a proper subclass of the 
class of left part grammars. As a last result of this section we show that the left 
part grammars with prefix-free production set (hence, the simple chain grammars) 
generate ekactly the class of simple deterministic languages. This is done by 
presenting a new transformation to GNF which can be used for non-left recursive 
grammars3, and which, when used for a simple chain grammar, yields a simple 
deterministic grammar. In the following definition some preliminaries are intro- 
duced. 

~flnition 2.6. Let G = (N, Z, P, S) be a CFG. Define 

[N]={[Aar]IAeN,arEV* and A-+c# in Pfor some @V*) 

and homomorphism e : IN]“‘+ [N]* by letting ~([Acu]) is 

(i) e if A + o is in P, 
(ii) [A&J if A +c+$3 is in P, where fi + E. 

Now we are sufficiently prepared to present the algorithm. 

Algorithm 2.1. Let G = (N, L;‘, P, S) be an E-free and non-left-recursive CFG 
which satisfies the conditions that P is prefix-free and it has no useless symbols. G 
is transformed to a CFG G’= (N’, 2: P’, [S]) in GNF such that L(G’)= L(C). 

Method. Set P’ = 43. N’ will contain all symbols of [N] which appear in the 

productions introduced below. 

2 A CFG G = (fV, Z, P, S) is said to be in Greibach normal form iff PE N X TV*, i.e., each 
production has the form A -+aa (AEN,uEX and ar~V*). 

*’ A CR3 is said to be mn-left-recursive if there is no A E PJ such that A $ Aa, for SOme a E V”- 
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(i) For each SX, l l - X, E CH(S), let [S]-*X&([X~_lx,][X,_,X,,,3 l l l 

[SX,]) be in P’. 
(ii) For each A +aX& in P, where a # E and X,X, l l l X, E CHCX,), let 

[Aa]-+&~([;l(n_lXn] l l l [XoXl][AaXo]) be in P’. 
(iii) Remove a11 useless symbols. 

The following two claims are used in the proof of correctness of algorithm. 

CIaii 2.1. Let A *ax,4 be in P, a + E or A = S and let X,X, 9 l l X,, E CH(X,), 

where n ~0. Then, for each Xi, i ~0, if Xi 3 I y4, where y E Z*, then [Aa]+ 

y&II X,-r Xl l l l lI~~Jb1). 

?roof. Suppose m = 0, then y = Xi E C. Then, since A +aX& in P and 

X0 l l l Xi_ IXi E CH(XJ we have by construction that 

[Aa]+ yt([X+JJ l l l [AaXO]), a# E or A = S. 

Now let m > 0 and assume the claim holds for all WI’< m (induction hypothesis). 
Then, if X,-,&Y,* l l Yq is the first production which is used, we have the 
following derivation: 

where 

Yj 3 yj, l~jsq, y@* and m,<m. 

From the induction hypothesis it follows that 

and also 

From (*) and (* *) we obtain 

which was to be proved. 

C!!! 2.2. Let [Aa] w, then A 3aw. 

(*c) 

(**) 

4 We dr -ite ‘Z?$ for ( $1”. i.e., $zomposed with itself n - 1 times. Similar notation is usd far+ 1 

md+, - 



A left part theorem for grammatical trees 59 

Proof. The proof is by induction on m. If m = 1 then, since G’ is in GNF, we have 
w E z, hence [A&J-+ w is in P’. Then, by construction, there exists a production 
A -*crX, in P such that X0X1 l l l X, E CH(X,), n 30, X, = w and [A&J* w is 
obtained from 

[Acr]-+ w[([X,+ w] 9 l l [XOX1][AaXO]) = [Acr]+ w. 

Hence, there exists a derivation A =$ tuX, 3 QLW 

Now let m > 1. The first step of the derivation is done with a production of the 
form 

Lw+~wL-,x,l’ ’ l t-XoX1l[A~Xol), 
where X, = a, &XI - l * X, is in CH(X,) and w = ux for some x EC*. Then, 

[Acu]+ Q~([X~_~XJ l l l [X,XJIAeXO])~ax,x,_, l . . x1x0 = ux, 

such that 

(i) if S(CX-IXi]) # e, 

(ii) if 5CAaXo1) # e, 

Since m,<m,O~i~n, 

Xi-1 3 xixi9 

and 

A 3 aXox,. 

then [Xi-,Xi]3 Xi, otherwise Xi = E, 1 s i s n, and 

then [AcuX~]~~ x0, otherwise x0 = E. 

we obtain 

lsiQ2, (*) 

(**) 

From (*) and (* *) it follows that A &ax,,,_,. l l l x1x0, hence A&w, which 

was to be proved. 

Theorem 2.1. Algorithm 2.1, when applied to a simple chain grammar G’, yields a 
simpZe deterministic grammar G’ such that L(G’) = L(G). 

Proof. That L(G’) C_ L(G) is an immediate consequence of Claim 2.2, where 
(Y = E and A = S. Next we show L(G) S; L(G’). From Claim 2.1 it follows that if 
A+arC& and C~X, then 



Notice that the claim ho’5ds for (IL = e and A = S. If w E L(G), then there exists a 

derivation S ‘$ W. ‘rf w E Z, then [S]+ w in P’, hence, w E L(G’). Otherwise, let 
S-*ZJZ~ l - l & be the first production which is used in this derivation. Then 
w = z,t;l* ’ * z,, E Z*, where Zl $ z,, 1 G i s n. It follows that 

and 

From ( *) and ( * *) it follows that 

[s]+t,q ” ’ 2” = w, 

hcncc. L(<JIE L(G’) and we condude L(G’) = L(G j. We show that G” is a simple 
dctcrminiwtic grammar, Firstly, it is clear that G’ is in GNF. Now assume that 
there exist Q E. 2, CE N’ and a, p E (N’U 2’)” such that C-+ ua and ++cr~ are in 
P’ and a # & Consider case (i) of the algorithm, hence, C = ES]. By construction, 
there exist sir q&H(S) with 1(q) = I(n,) = a, and since a# p, v1 # f12 which 
contradicts the properties of a simple chain grammar. Further, consider case (ii) of 
the algorithm, hence, C is of the form [Aa], ct # E. Similar observations as in the 
preceding case lead to a contradiction with the simple chain grammar properties. 
We may conclude that G’ is indeed a simple deterministic grammar. 

/Me. AS remarked above, Algorithm 2.1 can be used to transform any non-left- 
recursive grammar to a CFG in GNF. Such a non-left-recursive grammar should 
he, at tcast for the form in which we present the algorithm here, prefix-free, but 
for arbitrary non-left-recursive grammars this can be assumed without loss of 
~LW~~~ZK~. For example, if there exist productions A --+a and A -w@ then one 
can replace these productions by A ---, a, A --+ Hmsf4 and k& + cy. 

From Theorem 2.1 it follows that the class of simple deterministic languages is 
incfudcd in the class of left part languages. This inclusion is proper. A trivial 
example is the language (a, ~b) which has left part grammar S-+ alab, and, since 
the language is not prefix-J-* l d-e, it has no simple deterministic grammar. More 
intcrcsting, however, is the CFG G with productioins 

S-*aSAlaA, A + ht#(C. 

()jy&G+ *;, G is a left part grammar. However, thl: language generated by G is 
not a kq,:; deterministic language, since f.(G) cannot be generated by an c-free 
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LL(l)-grammar (see Aho and Ullman [ 11). Since each simple deterministic 
grammar is an E-free LL( l)-grammar, the proper inclusion follows5. 

3. The left part property 

It will be clear from Definition 2.3 that, strictly speaking, we do not really need 
the concept of a chain to describe left part grammars. However, thinking in terms 
of chains will sometimes be helpful. Moreover, it is sometimes handsome to use 
this and t&e related concepts in proofs on left part grammars. From Definition 2.2 
and Definition 2.3 we can now achieve the main result of this paper. 

Theorenn 3.1 (Left Part Theorem). Let G = (N, T, P, S) be a CFG. The set JG of 
all grammatical trees of G saiisfies the left part property ifj G is a left part grammar. 

?roof. Let G be a left part grammar. To prove: .I, satisfies the left part property. 
Assume & does not satisfy the left part property. Hence there exist n > 0 and 
trees T1 and T2 in JG with rt (TJ = rt (7’*), (“)fr (T,) = (“)fr (T,) and (n)T,, f (“)‘I’*. 
Suppose yt = 1, then (ljT1 # ?I’* and “‘fr (T,) = “‘fr (‘I’& hence, since rt (T,) = 
rt (‘I’*) we must conclude that V is not chain-independent. Contradiction. Suppose 
vz ) 1. For Tl and T2 we can choose yt such that (“-‘)T, =(n-1)T2 and (“)Tl #(“)T2. 

Let Tl be labeled by A1 and T2 by A*. The restriction of A1 to (n-r)T1 which is 
equal to the restriction of A2 to (n-11T2 is denoted by A. We use the same 
convention for the relations rl, I1 on T1 and r2, l2 on T2. Let the leaves of (“‘Tl 
have a left-right order x1, x2, . . . , x,. Since (“)fr (Tl) = (n)fr (Tz) we have the same 
order and labels for the leaves of (“)T2. Since (“-l)T1 = (n-llTz, the path in T1 from 
the root of T1 to x,,_~ is the same (including the labeling) as the path in T2 from 
the root of T2 to x,+ Let this path be p = (yO, y,, . . , , y,), where y, is the root, 

Ym=&-1 and y, [yl [ l l l [y,,,. Since (“‘T1 # (“IT2 there exist nodes yi and yj on p 
(O<i,jcm) such that 

(a) yi [T Xn in T1 and not yi + 1 [T x,, in T,, 

(b) Yj [z rC, in T2 and not yj+l rzx, in T2. 

First we show that i = j. Suppose i > j (the case i < j is symmetric). See also Fig. 4. 
Since T1 and T2 are grammatical trees and since we have no ~-productions there 
exist A(yi)+PA(yi+l) and A(yi)+pA(yi+,)4 in P, for some 4 E V’ and fi E V*. 

Notice that 4# F since ~Jx,,)E FIRST(+). Tree Tl corresponds with a 
derivation rt (T,)%,WA(yi)al +,WpA(yi+l)&, ~I’n-lJfr(T1)+l +Ifr (T,), for 
some w EC* and a1 E V*. 

’ Moreover, the place of the left part languages in the hierarchy of LL(k)-languages becomes 
interesting. However, a propel treatment requires a rather technical discussion on the role of 
E -productions, and therefore we b omit more detailed comparisons. 
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x1 X 
n-l 

X x1 X 
n-l 

X 
n n 

Fig. 4. Trees T; and T2. 

Tree ‘& corresponds with a derivation 

for some w t: C* and ar+ V! 
Since A,&) = Az(lr,! ze have that FIRST&) nFIRST(@ # $3. Since the CFG is 

reduced and since r@. {T1 b = rt (T2) it immediately follows that if P contains 
A(y&+3A(y;+,) and A(yi)-*ph(yi+l)4 then P is not prefix (1). Therefore we must 
conclude that i = j. 

We proceed with i. There are corresponding nodes, tl in T, and z2 in T2, which 
will again be treated as identical, hence we omit the indexes, such that yi [I z, 
Y, LG Yi+l LA yi+l LZZ and 2 Kx, and 2 Ex~ “‘)Tl is obtained by adding in an 
obvious way the path from yi to x,, to (“-“‘T1 l (“IT2 is obtained in an ana1ogou.s 
way. Hence there are paths yi r1 z [, l l 9 [, x,, and yi r2z r2 l l l r2 x,,. Since 

(n-l,T =(Pl-l) 
1 & and (“‘7’~ # (“)Tz these labeled paths are different. Since T1 and T2 

are grammatical trees there exist productions 

for some 6, & and & in V? If A,(z) = AZ(z) then V is not chain-independent. If 
A,(z) # AZ(z), then the necessary condition that A,(z) f AZ(z) is not satisfied. We 
nust conclude that also the case n > 1 leads to a contradiction. This concludes the 
’ F-pat of the proof. 

“only-if”. Let G be a CFG such that Ja satisfies the kft part property. 
Assume that G is not a left part grammar, them, according tg Corollary 2.1. there 
are three possibilities. 

(i) V is not chain-independent. Then there is A E M and ml, w2 E CH(A), 
n, # ?r, such that I( n,) = l(w*). Then we can construct trees! T1 and T2 in JG with 
rt (T,) =rt iT2) = A and where the first leaf of each of the trees has label I(q). 
Let the path (and the labeling) from the root of T1 to the first leaf of Tl be 
according to nl and the path (and the labeling) from the root of Tz to the first 
leaf of Tz be according to 7r2, then ‘“fr (Tl) = ‘*)fr (T2) and (IIT1 # (l)T2. Contradic- 
tic Il. 

an6 
“i) Suppose there exist productions A + UYX& and A - arY4 in P, X-# Y, cy # E 
X and Y are not mutually chain-independent. l_et w E ~(a), where fwl= rt - 1. 



A left part .theorem for grammatical trees 63 

Let 7rl E CH(X), 7r2 E CH( Y) and I(q) = 1(77,). Obviously there exist trees T1 and 
T2 in JG with rt (TJ =rt (T2) = A, (“-‘)fr (TJ =(“-l)fr (T2) = w and (n-1)T1 = 
(n-1)T2. By adding paths corresponding to the chains 7rl and rr2 to (“-‘)Ti and to 
(n-1)T2 respectively we obtain a situation such that (“)fr (TJ = (“)fr (T2) and 
(“IT1 # (“)T2. Contradiction. 

(iii) Suppose P is not prefix (1). Then there exist productions A + p and 
A-+37, Y#E and there is UE T, WET* and CYE V* such that Ss wAcy and 
a E FIRST(y) n FIRST@. Also in this case we can construct trees Tl and T2 in 
JG,rt(T1)=rt(T2)=S. Let w,~L(p) and let lwwll be n-l. Then we can con- 
struct Tl and T2 such that (n)fr (TJ = (“)fr (Tz) = wwla and where (n”T1 # (“)T2, 
since (n)Tl is obtained from (n-1)‘,6; by adding the (rightmost) path from the node 
corresponding to % to the nth leaf of T,, and (“IT2 is obtained by adding to 
(n-l)T1( = (n-1)T2) the path from the node corresponding to A to the nth leaf of 
T2. Since (n) T1 #(“IT2 we have again a contradiction with the left part property. 
This concludes the “only if”-part of the proof. 

With this theorem we conclude this section and this paper. 
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