Discrete Mathematics 25 (1979) 51-63.
© North-Holland Publishing Company

A LEFT PART THEOREM FOR GRAMMATICAL
TREES

A. NIJHOLT
Vrije Universiteit, Department of Mathematics, P.O. Box 7161, Amsterdam, The Netherlands.

Received 14 September 1977
Revised 14 August 1978

A simple left part property for a set of grammatical trees is introduced. The class of left part
grammars, a subclass of the class of context-free grammars, is defined. It is shown that the set of
grammatical trees of a context-free grammar satisfies this left part property if and only if the
context-iree grammar is a left part grammar. Some properties of leftpart grammars are
considered.

0. Introduction

We consider a global property of the derivation (or parse) trees of context-free
grammars. This property of the derivation trees of context-free grammars can be
considered as a restricted version of the left part property for the trees of strict
deterministic grammars [3,4,5,6]. In this paper it is shown that this left part
property is satisfied by the set of grammatical trees of a left part grammar, a type
of context-free grammar which we introduce here.

The class of left part grammars is a :mall extension of the class of sirmple chain
grammars [10].

If a context-free grammar is unambiguous then each terminal string generated
by this grammar has a unique derivation tree. Informally, our left part property
requires that every prefix of such a terminal string has a unique “partial” tree.
This notion of ‘“partial” tree will be specified.

The aim of this paper is to present this left part property and the class of
grammars for which the set of grammatical trees satisfies this property. Except for
some informal remarks, in this short paper we will not be concerned with a
parsing method for left part grammars. However, the reader who is familiar with
simple chain grammars will have no difficulty in finding a very simple parsing
method for the left part grammars.

To present the left part property and to describe grammatical trees we use the
notations and definitions from [5]. For convenience we repeat, as far as necessary,
some of these notions here. For more details the reader is referred to [5, 7].

Among others, an intuitive assumption on “translations” of prefixes of sen-
tences which is discussed in [9] motivated us to introduce this left part property.

51

52 A. Nijholt

The organization of this paper is as follows. The remainder of this section is
devoted to establish some definitions and notational conventions on trees,
context-free grammars and grammatical trees. In Section 2 we present the left
part property and we introduce the left part grammars. Moreover, some proper-
ties concerning relationships with other classes of grammars and with classes of
languages are presented. In Section 3 we show that a context-free grammar is a
left part grammar if and only if its set of grammatical trees satisfies the left
property.

1. Preliminaries
1.1. Trees

To introduce the concepts of the theory of trees which we need here we will
frequenily zcier to the tree T given in Fig. 1. This introduction goes along similar
lines as in [5].

Xe
N
x4 o) T\”'a A
X *s "6\"7 g a
Xy X410

Fig. 1. Tree T anc jts labeling.

Tree T has nodes (x4, x,,...,%;) and it has a root (x,). The relation of
immediate descendancy is denoted by [(for example x; is an immediate cescen-
dzat of x,, x,[xs). The transitive closure of [is denoted by [* and the reflexive
< Swnsive closure by [*. If x[*y then there is a path from x to y, which is the
sequence of all nodes, including x and y, between x and y. For example,
Xas X2, X4y X1 is the path in T from x, to x,,. A leaf is a node x in T for which
there is no y in T such that x[y; in Fig. 1 the leaves are x,, Xs, Xg, X10, X7, Xg,
given here in the left-right order, which is in general, for a tree T with m leaves,
denoted by y,, y,, . .., Y. We introduce the binary relation | as follows x |y iff:

(i) x and y are not on the same path and

(ii) for some leaves y, y,,, in the left-right order we have x [*y, and y [*y,...
Thus, for instance, x, | x, and, by introducing transitive and reflexive-transitive
closurcs of | in an obvious way, x, |* x.

Twe trees T, T' are structurally isomorphic, T=T', iff there is a bijection
g:T'— T’ such that x [y iff g(x)[g(y) and x ! y iff g(x) | g(y), that is, except for a
possible labeling the trees are identical.

A left part thearem for grammatical trees 53

1.2. Context-free grammars

Let G=(N, Y, P, S) be a context-free grammar (CFG), where N is the set of
nonterminals, 3 is the set of terminals, V=NUZI, PcNXxV" is the set of
productions and S is the start symbol. Elements of N will be denoted by the roman
capitals A,...,S; elements of 3 by the Roman smalls a, b, ¢, ..., ; elements of
V* by the Greek smalls @, 8,7, 8,...; elements of 3* by the Roman smalls
uov,wxy,z

Instead of writing (A, a) in P we write A—a in P. P is said to be prefix-free if
A—a and A—ap in P implies B = e(e denotes the empty string).

The relation = < V*x V* is defined as follows. For any o, Be V¥, a=> g iff
a=a,Aa,, B=a,B;a; and A— 3, is in P for some Ae N and a,, a,, B, V*. If
a,;€3™ or a,e3* we write a8 and a=>,B respectively. Transitive and
reflexive-transitive closures of these relations are defined in the usual way. If
a,>a, '+ >a, then this sequence is said to be a derivation of a, from a.

If a € V", then L(a)={we 3"|a= w}. The language of G, denoted by L(G), is
the set L(S). If a € V*, then |a|, the length of a, denotes the number of symbols
in a. If a € V¥, then " a denotes a if |a| <n and otherwise a prefix of a of length
n.
FIRST (a)={a’c Z|a= ad for some ¢ e V*}. Notice that P< Nx V*, hence
there are no productions A—eg, i.e. the CFG's are assumed to be e-free.
Moreover, we assume in this paper that the CFG’s are reduced and cycle-free [1].

1.3. Grammatical trees

Let T be a tree. Then every node x of T has a label A(x), for instance in Fig. 1
x5 has label C. We will be concerned with grammatical trees, therefore A(x)e V,
where V=NU2Z for a given CFG G =(N, 3, P, S). The root-label of tree T is
denoted by rt (T) (in Fig. 1 rt(T) =) and the frontier of tree T is the concatena-
tion of the labels of the leaves (in the left-right order) of T, notation: fr(T). In
Fig. 1 fr (T)=abcdcd. We write T=T when T=T and T and 7' have the same
labeling. In this case the corresponding nodes in T and T’ will be treated as
identical. The productions in P are elementary subtrees (see Fig. 2 for a
production A= X, X, -+ X,).

Formally, T is said to be a grammatical tree iff

(i) for every elementary subtree T' of T there exists a production in P
corresponding to T', and

(i) fr(Te I*.

Fig. 2. An elementary subtree.

54 A. Nijholt

The set of grammatical trees for a CFG G is denoted by Jg;Jg(A)=
{TeJs|rt(T)= A} and trees in J;(S) are the derivation trees of G. The corres-
pondence between derivations of < >nd grammatical trees of G will be clear.

2. Left part grammars

Let G=(N, X, P, S) be a CFG. Informally the left part property says that for
each AeN and for each prefix u of w=uveL(A) u uniquely determines the
“left part” (up to the first symbol of v) of the grammatical tree which corresponds
to the derivation of w from A. Clearly such a property can only be satisfied (take
for instance v=¢ and A =8§) by grammatical trees for which the CFG is
unambiguous, that is, each sentence (element of L(S)) has a unique derivation
tree. The following definition of left part is from Harrison and Havel [5].

Definition 2.1. Let T be a grammatical tree of some grammar G. For any n=0
we define T, the left n-part of T (or the left part when n is understood) as
follows. Let (x,,..., x,,) be the sequence of all leaves in T (from the left to the
right). Then W T={xe T|x |*[*x,} if n<m and PT=T if n>m. T is consi-
dered to be a tree under the same relations [, | and the same labeling A as T.

For instance, in Fig. 1 ®T is the subtree with the nodes x,, x;, X2, X4, Xs, X¢ and
xo. In the following definition we introduce our simple left part property for a set
of grammatical trees.

Definition 2.2. Let Jc J; for some CFG G. J is said to satisfy the left part
property iff for any n>0and T, T e J if rt (T) =t (T") and “fr (T) ="fr (T') then
()T == (W

This definition is illustrated in Fig. 3, where two trees T and T in a set J< J; are
given with their labeling.

In Fg. 5 we have ®T=2T'. However, since ®T# T’ and ®fr (T) = ®fr (T") we
may conclude that J does not satisfy the left part property.

Clearly not for every CFG G we have that J; satisfies the left part property.
We introduce the left part grammars, a subclass of the context-free grammars
which is defined in such a way that CFG G is a left part grammar iff J; satisfies
the left property. The definition of left pari grammars is an adapted version of the
definition of simple chain grammars which was first introduced in [10]. In Section
1.2 we defined the prefix-free property for a set of productions P. We say a set of
productions is prefix (1) iff for each pair A— B, A— By in P, where y# ¢, and for
strings a.€ V* and we T*, if $=,wAa, then FIRST (y)NFIRST (a)=@. To
avoid a:: empty a we add, if necessary, the production $’'— S L to P, where S’ is a
new start symbol and L is an endmarker, L ¢ V.

A left part theorem for grammatical trees 55

Fig. 3. Two trees, T#®T'

Definition 2.3. A CFG G=(N, 3, P, S) is said to be a left part grammar iff P is
prefix (1) and FIRST(X) NFIRST(Y) =@ for each pair A—»aX¢p, A—aYy in P
with X#Y.

The following definition introduces chains, a concept which turns cut to be
useful in formulating properties of context-free grammars.

Definition 2.4. Let G =(N, 3, P, S) be a CFG, let X, € V. The set of chains of X,
denoted by CH(X,) is defined by

CH(X,) ={XoX, ' - * X, e N*3|X, > X, =>, - - D Xoho, € V¥, 1<i=<n}

Notice that the definition of CH(X,) is such that each chain in CH(X,) ends with a
terminal. If X,€ 3, then X, is the only chain in CH(X,). We use the following
notations and conventions. If 7=X,X;--X,, then I(m)=X,, that is l(w)
denotes the last element of a chain. Hence, for each chain o, (7)€ 3.

Let X e V. X is said to be chain-independent if for each pair m,, 7, in CH(X),
T, # m,, we have l(m,) # I(mr,). Clearly, if X is chain-independent, then CH(X) is
a finite set. Also it follows that each terminal is chain-independent. If each
element of V is chain-independent then V is said to be chain-independent. Let
X,YeV,X#Y. X and Y are said to be mutually chain-independent if for each
pair 7, € CH(X) and m,€ CH(Y) we have l(m,)# l(w,); notation X#Y. Notice
that a#b for each pair a, b in 3 such that a# b.

Lemma 2.1. Let G=(N, 3, P, S) be a CFG. For each pair A—aX¢p, A—aYy in
P, where X# Y, we have FIRST(X)NFIRST(Y)=0 iff X#Y.

Proof. Trivial.

Lemma 2.2. Let G=(N,3,P,S) be a CFG. If FIRST(X)NFIRST(Y)=0 for
each pair A—aX¢, A—>aYy in P with X# Y then V is chain-independent.

Proof. Assume that V is not chain-independent. Hence, there exist A€ N and
1, ﬂzECH(A) SUCh that m %) and l(‘ﬂ'l) = 1(772). Let m= XOXI P Xn and
m=Y,Y; Y, where Xo=Y,=A and X, =Y,.. Then there exists i =0 such

56 A. Nijholt

that X, X, - X,=Y,Y, - Y, there exists a derivation AD Xy, for some
¥ie V* and there exist productions X, — X, 4.1, Xi— Y14, for some ¢4,
o)., € V* and such that X,,,#Y,.,. Since FIRST(X,,,)NFIRST(Y,,,)=9 ac-
cording to the “if’-part of the lemma we have l(m,) # l(1r,). Contradiction.

From Definition 2.3 and the two lemmas the following corollary is now
self-evident.

Corollary 2.1. A CFG G =(N, X, P, S) is a left part grammar iff
(i) P is prefix(1), and
(ii) X# Y for each pair A= aXdp, A—>aYy in P with X# Y.
iff
(i) P is prefix(1), and
(i) V is chain-independens. and
(iii) X# Y for each pair a—aXdp, A—aYyin P with X# Y and a#e.

Remark. If we replace in Definition 2.3 (or in Corollary 2.1) prefix (1) by
prefix-free then a definition of the simple chain grammars is obtained. The reader
who is familiar with their parsing method [10, 2] will notice that this method also
will work for left part grammars if one symbol of look-ahead is allowed in cases
that there is doubt whether a reduction has to be made or a symbol has to be
shifted to the pushdown stack.

Examples. CFG G, with only productions P,{S—aAc, S—>aAd,
A—aA, A—b} is a left part grammar. The same holds for CFG G, with
P,={S§—Ac, A—a, A—>ab}. A more complicated example is CFG G, with
Py={S—EL,E~»(T)*(E), E~(T), T5F+T, T->F, F>E, F»a}. CFG G,
with P,={S—aSA,S-»aA, A—bbd, A—b, A—>¢,S'=>S L} is not a left part
grammar since it is not prefix (1),

Notice that the class of simple chain grammars is a proper subclass of the left
part grammars, since (G, is not a simplie chain grammar, G, is not even an LR(0)
B Jimiiees (3] With the aid of the property that each simple chain grammar is an
LR(0) grammar (which will be proved somewhere ¢lse), one can easily verify that
the class of left part grammars is a proper subclass of the LR(1) grammars.

In the remainder of this section we prove some results concerning relationships
with other classes of grammars and with classes or languages.

The class of prefix-free deterministic languages' has been studied by Harrison
and Havel [4, 5, 6]. The class of prefix-free deterministic languages is a subclass of
the class of deterministic languages. For each prefix-free deterministic language
there exist a strict deterministic grammar [4, 5, 6]. There is a nontrivial hierarchy
of strict deterministic grammars and their languages according to their degree [4].

'A deiosministic language is a language which can be accepted by a deterministic pushdown
automator. 1] A language L is said to be prefix-free iff ue L and uve L implies vee,

A left part theorem for grammatical trees 57

We will turn our attention to the simplest class in this hierarchy, the strict
deterministic grammars of degree 1. The following definition is a reformulation of
Theorem 3.1 of [6].

Deflnritlon 2.5. CFG G =(N, £, P, S) is a strict deterministic grammar of degree 1
ift P is prefix-free and, if A—>aX¢ and A—« Y are in P (hence, «, ¢ and ¢ in
V*, X and Y in V), where X# Y, then X and Y are in 3.

Simple deterministic grammars [8)] are grammars in Greibach normal form ? (GNF,
for short) which have the property that for all ae 3, CeN and a, B V¥,

C-—aa and C—ap in P implies a = B.

It follows immediately that the class of simple deterministic grammars is properly
included in the class of strict deterministic grammars of degree 1. However, their
families of languages coincide [6].

Directly from Definition 2.3, 2.6 and the remark icilowing Corollary 2.1 it
follows that the strict deterministic grammars of degree 1 are (properly) included
in the class of simple chain grammars, which in its turn is a proper subclass of the
class of left part grammars. As a last result of this section we show that the left
part grammars with prefix-free production set (hence, the simple chain grammars)
generate exactly the class of simple deterministic languages. This is done by
presenting a new transformation to GNF which can be used for non-left recursive
grammars®, and which, when used for a simple chain grammar, yields a simple
deterministic grammar. In the following definition some preliminaries are intro-
duced.

Definition 2.6. Let G=(N, X, P, S) be a CFG. Define
[N]={[Aa]| AeN,ac V* and A-+ap in P for some B e V*}
and homomorphism &:[NJ*—[N]* by letting £([Aa]) is

(i) € if A»a is in P,
(ii) [Aa] if A= ap is in P, where B#&.

Now we are sufficiently prepared to present the algorithm.

Algorithm 2.1, Let G=(N, 3, P,S) be an e-free and non-left-recursive CFG
which satisfies the conditions that P is prefix-free and it has no useless symbols. G
is transformed to a CFG G'=(N', 3, P',[S]) in GNF such that L(G') = L(G).

Method. Set P'=@. N’ will contain all symbols of [N] which appear in the
productions introduced below.

2A CFG G=(N,3,P,S) is said to be in Greibach normal form iff P& Nx3V* ie., each
production has the form A-»aa (AeN,aeX and ae V*).

4 A CFG is said to be non-left-recursive if there is no A € N such that A 5 Aa, for some a € V*.

58 A. Nijholt

(i) For each SX,---X,eCH(S), let [S]—>X.£(X, -1 X, I Xo—2Xu-1]"""
[SX;]) bein P'.
(i) For each A—>aXy¢p in P, where a#¢ and XX, --- X, e CH(X)), let
[Aal= X ([X, -1 X,] - - [XoX [AaX,)) be in P'.
(iii) Remove aii useless symbols.

The following two claims are used in the proof of correctness of algorithm.

Claim 2.1. Let A—>aXyd be in P, a# e or A=S and let XoX, - - - X, € CH(X,),
where n=0. Then, for each X,i=0, if X,=>y*, where ye3*, then [Aa]>
YE[X1 X.]- - - [AaX)).

Proof. Suppose m=0, then y=X,e€3. Then, since A—aX,$p in P and
X - - X._; X, € CH(X,) we have by construction that

[Aal—ye([X1 X]- - - [AaX,]), a#eor A=S.

Now let m >0 and assume the claim holds for all m’<m (induction hypothesis).
Then, if X,—Y,Y,---Y, is the first production which is used, we have the
following derivation:

XY\ Y2 Y, Dyy yg=y
where
Yi’=">'yi, Isjsgq, y,e3* and m<m.
From the induction hypothesis it follows that
[Aa]> y, (XY X1 X - - (XX, AaXo)) (*)
~and also
[X.Y: - Y I3 yg(XY: - Yo YD 1<j=q. (% %)
Fron (*) and (**) we obtain
[Aa]> y&([X1 X:] - - - [XoXi]iAeXo)),
which was to be proved.

Claim 2.2, Let [Aa]g} w, then A> aw.

4 We vite®™ for (2)", i.e.,, Dcomposed with itself n—~1 times. Similar notation is used for=,
md=, -

A left part theorem for grammatical trees 59

Proof. The proof is by induction on m. If m =1 then, since G’ is in GNF, we have
we X, hence [Aa]—w is in P'. Then, by construction, there exists a production
A—aX, in P such that XX, - -+ X, e CH(X,), n=0, X, =w and [Aa]—>w is
obtained from

[Aa]-wi(X,_w] - - - [Xo X [AaX,]) =[Aa]->w.

Hence, there exists a derivation A = aX,> aw

Now let m> 1. The first step of the derivation is done with a production of the
form

[Aa]—aé([(X,.-1X.]- - - [Xo X [AaX,]),

where X, =a, X.X; - X, is in CH(X,) and w = ax for some x € 3*. Then,
[Aal> aé(X, -1 X,]- - - [XOXI][AQXO])éaxnxn—I * ot X1 Xp = ax,

such that
() if £(X._1X;] # e, then [XHXi]éxi, otherwise x; =¢, 1<i<n, and

(i) if £é[AaX,)) # €, then [AaXo]g X, Otherwise x,=¢.

Since m; <m, 0<i=<n, we obtain

X 1 >Xx, 1<isn, (*)
and

A%aXoxo. (%)
From (*) and (**) it follows that A 2 aax,x,_, - * * X;Xo, hence A =>aw, which

was to be proved.

Theorem 2.1. Algorithm 2.1, when applied to a simple chain grammar G', yields a
simple deterministic grammar G' such that L(G')=L(G).

Proof. That L(G')< L(G) is an immediate consequence of Claim 2.2, where
a=¢ and A =S. Next we show L(G)<: L(G'). From Claim 2.1 it follows that if
A—aC¢ and C> x, then

[Aa]l> x£([AaC)).

60 A. Nijholt

Notice that the claim helds for a =¢ and A = 8. If we L(G), then there exists a
derivation $2 w. if we 3, then [S]—w in P, hence, we L(G'). Otherwise, let
§—2,2,--+Z, be the first production which is used in this derivation. Then
w=2,2,°2,€3* where Z >z, 1<i<n, It follows that

[515 z,[SZ,], (%)
and

[SZ,Z;"'Z]él,,,f([SZ.Zg'"ZIZ;H]), I=i=sn (**)

From (*) and (*) it follows that

(S22, 2z, =w,

hence, L(G) < L(G') and we conclude L(G') = L(G). We show that G’ is a simple
deterministic grammar, Firstly, it is clear that G’ is in GNF. Now assume that
there exist ae 3, Ce N’ and a, B e (N'U X)* such that C— aa and T—ap are in
P’ and a # B. Consider case (i) of the algorithm, hence, C =[S]. By construction,
there exist m;, m,€ CH(S) with I(m,) = l(7r,) = a, and since a# B, m; # m, which
contradicts the properties of a simpie chain grammar. Further, consider case (ii) of
the algorithm, hence, C is of the form [Aa]), a # €. Similar observations &s in the
preceding case lead to a contradiction with the simple chain grammar properties.
We may conclude that G' is indeed a simple deterministic grammar.

Note. As remarked above, Algorithm 2.1 can be used to transform any non-left-
recursive grammar to a CFG in GNF. Such a non-left-recursive grammar should
be, at lcast for the form in which we present the algorithm here, prefix-free, but
for arbitrary non-left-recursive grammars this can be assumed without loss of
gev.craiy. For example, if there exist productions A—a and A->af then one
can replace these productions by A—a, A—H,8 and H,—a.

From Theorem 2.1 it follows that the class of simple deterministic languages is
included in the class of left part languages. This inclusion is proper. A trivial
cxample is the language {a, ab} which has left part grammar S— a|ab, and, since
the language is not prefix-fize, it has no simple deterministic grammar. More
interesting, however, is the CFG G with productions

S—aSAlaA, A-—-bd|b|c.

Obvious v, G is a left part grammar. However, th> language generated by G is
not a sinigic deterministic language, since L(G) cannot be generated by an ¢ -free

A left part theorem for grammatical trees 61

LL(1)-grammar (see Aho and Uliman [1]). Since each simple deterministic
grammar is an e-free LL(1)-grammar, the proper inclusion follows®,

3. The left part property

It will be clear from Definition 2.3 that, strictly speaking, we do not really need
the concept of a chain to describe left part grammars. However, thinking in terms
of chains will sometimes be helpful. Moreover, it is sometimes handsome to use
this and the related concepts in proofs on left part grammars. From Definition 2.2
and Definition 2.3 we can now achieve the main result of this paper.

Theorem 3.1 (Left Part Theorem). Let G=(N, T, P, S) be a CFG. The set J; of
all grammatical trees of G suiisfies the left part property iff G is a left part grammar.

Proof. Let G be a left part grammar. To prove: Jg satisfies the left part property.
Assume Jg does not satisfy the left part property. Hence there exist n >0 and
trees T, and T, in Jg with rt (T,) =1t (T,), “fr (T,) ="fr (T,) and ™' T, # " T,.
Suppose n=1, then VT, # VT, and Vfr (T,)=""fr (T,) hence, since rt(T,)=
rt (T,) we must conclude that V is not chain-independent. Contradiction. Suppose
n>1. For T, and T, we can choose n such that ®""T, ="""T, and ™ T, # ™ T,.
Let T, be labeled by A, and T, by A,. The restriction of A, to "~VT, which is
equal to the restriction of A, to “~"T, is denoted by A. We use the same
convention for the relations [, |; on T, and [, |, on T,. Let the leaves of T,
have a left-right order x;, X,, . . ., X,. Since “fr (T,) =fr (T,) we have the same
order and labels for the leaves of ™ T5. Since ™ VT, =""VT,, the path in T, from
the root of T, to x,_, is the same (including the labeling) as the path in T, from
the root of T, to x,_;. Let this path be p=(yo, Y1, - . » ¥m)> Where y, is the root,
Y = Xa—r and Yo [yi [* * [Y. Since ™ T, # ™ T, there exist nodes y; and y; on p
(0=<i, j <m) such that

(@ yi [Tx, in T, and not y,,, [Tx, in T},
(b) y;[3x, in T, and not y,,, [%x, in T>.

First we show that i = j. Suppose i > (the case i <j is symmetric). See also Fig. 4.
Since T, and T, are grammatical trees and since we have no -productions there
exist A(y,)— BA(y;.,) and A(y,)—>BA(yi,,)¢ in P, for some ¢ € V* and Be V*.

Notice that ¢#¢ since A,(x,)eFIRST(¢). Tree T, corresponds with a
derivation 1t (T,) 5 wA(y,)a; > WBA(y;+1)da, 5.0 (T da, S fr (Ty), for
some we 3* and a, € V*.

S Moreover, the place of the left part languages in the hierarchy of LL(k)-languages becomes
interesting. However, 4 proper treatment requires a rather technical discussion on the role of
e-productions, and therefore we omit more detailed comparisons.

62 A. Nijholt

Fig. 4. Trees T, and T.

Tree T, corresponds with a derivation
rt(T,) > WA (y) e, > WBA (Yir1)az D "Vt (Tay, D fr (To),

for some we 3* and a,e V*.

Since A,(x,) = A,(x.* we have that FIRST(a,) NFIRST(¢) # @. Since the CFG is
reduced and since ri{T,)=rt(T,) it immediately follows that if P contains
A(y;)— BA(y,.1) and A(y;)~— BA(Y;41)¢ then P is not prefix (1). Therefore we must
conclude that i =j.

We proceed with i. There are corresponding nodes, z, in T, and z, in T,, which
will again be treated as identical, hence we omit the indexes, such that y, [, z,
Vil22, Vie1 12, Vi1 22z and 2 [¥x, and z [¥x,. T, is obtained by adding in an
obvious way the path from y; to x, to ®~PT, - ™T, is obtained in an analogous
way. Hence there are paths y, [,z[,---[,x. and y;[,z[5---[>x, Since
(n=1"T, ==VT, and ™ T, # T, these labeled paths are different. Since T, and T,
are grammatical trees there exist productions

A(Y)=BA(Yi DA (2)Y, and A(y;)— BA(Yi+1)A2(2)Y,,

for some B, ¢, and ¢, in V*. If A,(z)=A,(z) then V is not chain-independent. If
M (2) # Ay(2), then the necessary condition that A,(z)# A,(2) is not satisfied. We
m.ust conclude that also the case n>1 leads to a contradiction. This concludes the
i -part of the proof.

“only-if’. Let G be a CFG such that J; satisfies the icit part property.
Assume that G is not a left part grammar, then, according to Corollary 2.1. there
are thiree possibilities.

(i) V is not chain-independent. Then there is AeN and m,, m,e CH(A),
T, # m, such that I(sr,) = l(m,). Then we can construct trees T, and T, in J5 with
rt(T;)=rt(T,)= A and where the first leaf of each of the trees has label ().
Let the path (and the labeling) from the root of T, to the first leaf of T, be
according to ; and the path (and the labeling) from the root of T, to the first
leaf of T, be according to r,, then Vfr (T,) =‘Vfr (T,) and VT, # ' T,. Contradic-
tic ..

.’i) Suppose there exist productions A—-aXp and A—aY¢in P, X#Y, a#¢

ani X and Y are not mutually chain-independent. Let w € L(a), where lw|=n—1.

A left part theorem for grammatical trees 63

Let 7, e CH(X), 7, € CH(Y) and l(,) = l(m,). Obviously there exist trees T, and
T, in Jg with rt(T)=rt(T)=A, " Vi (T)=""Yr(T,)=w and " VT, =
==DT,. By adding paths corresponding to the chains 7, and m, to “~PT, and to
=DT, respectively we obtain a situation such that ™fr (T,)="™fr(T,) and
WT, #™T,. Contradiction.

(iii) Suppose P is not prefix (1). Then there exist productions A— B and
A—By, y#¢ and there is ae T, we T* and a e V* such that S wAa and
a e FIRST(y) NFIRST(a). Also in this case we can construct trees T, and T, in
Jo, 1t (T))=rt(T,)=S. Let w, e L(B) and let {ww,| be n—1. Then we can con-
struct T, and T, such that “fr (T,)="fr (T,) = ww,e¢ and where ™'T, #™T,,
since ™T; is obtained from " V7T, by adding the (rightmost) path from the node
corresponding to Pa to the nth leaf of T,, and “T, is obtained by adding to
(=DT (=""DT,) the path from the node corresponding to A to the nth leaf of
T,. Since T, # T, we have again a contradiction with the left part property.
This concludes the “‘only if’-part of the proof.

With this theorem we conclude this section and this paper.

Acknowledgments

The author gratefully acknowledges some suggestions and corrections of a
referee.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Transiation and Compiling. Vol. 1 and 2
(Prentice-Hall, Englewood Cliffs, NJ, 1972 and 1973).

[2] F.L. DeRemer, Simple LR(k) grammars, Comm. ACM 14 (1971) 453-460.

[3] M. Geller, M.A. Harrison and 1.M. Havel, Normal forms of deterministic grammars, Discr. Math.
16 (1976) 313-322.

[4] M.A. Harrison and .M. Havel, Strict deterministic grammars, J. Comput. System Sci. 7 (1973)
237-277.

[5]1 M.A. Harrison an 1.M. Havel, On the parsing of deterministic languages, J. Assoc. Comput.
Mach. 21 (1974) 525-548.

[6] M.A. Harrison and I.M. Havel, Real-time strict deterministic languages, SIAM J. Comput. 1
(1972) 333-349.

[7] D.E. Knuth, The Art of Computer Programming, Vol. 1 (Addison-Wesle ., Reading, MA, 1968).

[8] A.J. Korenjack and J.E. Hopcroft, Simple deterministic languages, in: IEEE Conference Record
of the Seventh Annual Symposium on Switching and Automata Theory (1966), 34-46.

[9] J. Kral, Bottom up versus top down syntax analysis revised, Research report U VT 10-11/74,
Inst. of Computation Technique, Technical University of Prague (1974).

{10] A. Nijholt, Simple chain grammars, in Proceedings 4th Int. Coll. on Autornata. Languages and

Programming (1977) 352-364.

