
Discrete Mathematics 25 (1979) 51-63.
@ North-Holland Publishing Company

A LEFI’ PART THEOREM FOR GRAMMATICAL
TREES

A. NIJHOLT

Vrije Uniuersiteit, Department of Mathematics, P.O. Box 7161, Amsterdam, The Ne&erlands.

Received 14 September 1977
Revised 14 August 1978

A simple left part property for a set of grammatical trees is introduced. The class of left part
grammars, a subclass of the class of context-free grammars, is defined. It is shown that the set of
grammatical trees of a context-free grammar satisfieg this left part property if and only if the
context-free grammar is a left part grammar. %me properties of leftpart grammars are
considered.

0. Introduction

We consider a global property of the derivation (or parse) trees of context-free
grammars. This property of the derivation trees of context-free grammars can be
considered as a restricted version of the left part property for the trees of strict
deterministic grammars [3,4,5,6]. In this paper it is shown that this left part
property is satisfied by the set of grammatical trees of a left pati grummur, a type
of context-free grammar which we introduce here.

The class of left part grammars is B_ small extension of the class of simgb chuin
grammars [101.

If a context-free grammar is unambiguous then each terminal string generated
by this grammar has a unique derivation tree. Informally, our left part property
requires that every prefix of such a terminal string ha0 a unique “partial” tree.
This notion of “partial” tree will be specified.

The aim of this paper is to present this left part property and the class of
grammars for which the set of grammatical trees satisfies this property. Except for
some informal remarks, in this short paper we will not be concerned with a
parsing method for left part grammars, However, the reader who is familiar with
simple chain grammars will have no difficulty in finding a very simple parsing
method for the left part grammars.

To present the left part property and to describe grammatical trees we use the
notations and definitions from [SJ. For convenience we repeat, as far as necessary,
some of these notions here. For more details the reader is referred to [5,7].

Among others, an intuitive assumption on “translations” of prefixes of sen-
tences which is discussed in [9] motivated us to introduce this left Fart property.

51

The organization of this paper is as follows. The remainder of this section is
devoted to establish some definitions and notational conventions on trees,
context-free grammars and grammatical trees. In Section 2 we present %the left
part property and we introduce the left part grammars. Moreover, some proper-
ties concerning relationships with other classes of grammars and with classes of
languages are presented. In Section 3 we show that a context-free grammar is a
left part grammar if and only if its set of grammatical tr:ees satisfies the left
property.

To introduce the concepts of the theory of trees which we need here we will
frequen@ ~kr to the tree T given in Fig. 1. This introduction goes along similar
lines ac in [5).

Fifl. 1. Tree T ant Jts labeling.

Tree T has nodes (x0. x1, . . . , xlo) and it has a rest (x0). The relation of
immediate descendancy is denoted by [(for example xs is an immediate clescen-
dmt of x2, x2 [x5). The transitive closure of r is denoted by [’ and the reflexive
h 3: ;:w.&itle &sure by [*, If x [*y then there is a path from x to y, which is the
sequence of all nodtis, including x and y, between x and y. For example,
x0, x~, x5, xl0 is the path in T from x0 to x IQo A kaf is a node x in T for which
there is no y in T such that x [y ; in Fig. 1 the leaves are x4, xs, x9, xlo, x7, x8,
given here in title left-right order, which is in general,, for a tree T with m leaves,
denoted by yt, y,, . . . , y,,,. We introduce the binary relation 1 as follows x [y iff:

(9 x and y are not on the same path and
(ii) for some leaves y,, y L+ 1 in the left-right order we have x [* y, and y [* y, +l.

Thus, for instance, x4 [x2 and, by introducing transitive and reflexive-transitive
closures of 1 in an obvious way, x4 I* xs.

Two trees K T’ are structurally isomorphic, T= T’, iff there is a bijection
g 5 ‘;A T’ such that x [y iff g(x) [g(y) and x [j, ifi’ g(x) 1 g(y), that is, except for a
possibk labeling the trees are identical.

A left part theorem for grammatical trees 53

1.2. Context-free grammars

Let G = (N, 2, P, S) be a context-free grammar (CFG), where N is the set of
nonterminals, c is the set of terminals, V = N U)3, P s N x V” is the set of
productions and S is the start symbol. Elements of N will be denoted by the roman
capitals A, . . . , S; elements of C by the Roman smalls a, b, c, . . . , ; elements of
V* by the Greek smalls Q, /3, y, 6, . . . ; elements of X* by the Roman smalls
u, 21, w, x9 y, 2.

Instead of writing (A, 01) in P we write A -+ ~1 in P. P is said to be prefix-free if
A + (Y and A --, cw/3 in P implies p = e(e denotes the empv St&g).

The relation + z V* x V* is defined as follows. For any a, /3 E V*, a! + (s iff
Al = arlAar2, p = arl&cvz and A--,& is in P for some A EN and cyl, cy2, &E V*. If
01~ E 2” or cy2 E X* we write 4y * @ and ar =$,p respectively. Transitive and
reflexive-transitive closures of these relations are defined in the usual way. If

%+a, . a l + a, then this sequence is said to be a derivation of a, from cyo.
If cy E V+, then L(a) =(w E Z’+~CY*$ w). The language of G, denoted by L(G), is

the set L(S). If ~1 E V*, then lal, the length of cy, denotes the number of symbols
in Al. If Q! E V*, then 9~ denotes a! if lclll< y1 and otherwise a prefix of cy of length
n.

FIRST (cu) ={a’~ Zla 3 a4 for some 4 E V*}. Notice that PE N x V+, hence
there are no productions A-+E, i.e. the CFG’s are assumed to be E-free.
Moreover, we assume in this paper that the CFG’s are reduced and cycle-free [l].

1.3. Grammatical trees

Let T be a tree. Then every node x of 7’ has a label A(x), for instance in Fig. 1
x3 has label C. We will be concerned with grammatical trees, therefore h(x) E V,
where V = N U c for a given CFG G = (N, Z, F9 5). The root-label of tree T is
denoted by rt (7’) (in Fig. 1 rt (T) = S) and the frontier of tree T is the concatena-
tion of the labels of the leaves (in the left-right order) oi T, notation: fr (T). In
Fig. 1 fr (T) = abcdcd, We write T = T’ when T= T’ and T and T’ have the same
labeling. In this case the corresponding nodes in T and T’ will be treated as
identical. The productions in P are elementary subtrees (see Fig. 2 for a
production A -+X1X2 l 9 9 X,,).

Formally, T is said to be a grammatical tree iff
(i) for every elementary subtree T’ of T there exists a production in P

corresponding to T’, and
(ii) fr (T)E C*‘.

Fig, 2, An elementary subtree,

54 A. Nijholt

The set of grammatical trees for a CFG G is denoted by Jq; J,(A) =
{T E Jo (rt (T) = -4) and trees in J&S) are the derivation trees of G. The corres-
pondence between derivations of P znd grammatical trees of G will be clear.

2. hfQartgraarmars

Let G = (N, 2, P, S) be a CFG. Informally the left part property says that for
each A EN and for each prefix u of w = uv E L(A) u uniquely determines the
“left part” (up to the first symbol of v) of the grammatical tree which corresponds
to the derivation of w from A. Clearly such a property can only be satisfied (take
for in,stance o = e and A = S) by grammatical trees for which the CFG is
cmarnbiguous, that is, each sentence (element of L(S)) has a unique derivation
tree. The following definition of left part is from Hlarrison and Have1 [S].

DehMon 2.1. Let 7’ be a grammatical tree of some grammar G. For any n > 0
we define ‘“) T, the left n-pati of T (or the left part when n is understood) as
follows. Let (Xi, . . . , x,,,) be the sequence of all leaves in 7’ (from the left to the
right). Then ‘n)T = (x E Tlx I* 1” x,,} if n ‘-g m and (“IT = T if n > ro. (“IT is consi-
dered to be a tree under the same relations [, 1 and the same labeling A as T.

For instance, in Fig. 1 (3)T is the subtree with the nodes x0, x1, x2, x4, x5, x6 and
x9. In the following definition we introduce our simple left part property for a set
of grammatical trees.

Definition 2.2. Let JS Jo for some CFG G. J is said to satisfy the left part

property iff for any n > 0 and T, T’ E J if rt (T) = rt (T’) and (n)fr (T) = (“)fr (T’) then
(n,T == (m,T’ .

This definition is illustrated in Fig. 3, where two trees T and T’ in a set J c .I,, are
&en with their labeling.
In .+rg. 3 we have (2)T = (2)T’. However, since Y3)Tf C3)T’ and (3)fr (T) = (3)fr (T’) we
may conclude that J does not satisfy the left part property.

Clearly not for every CFG G we have that Jc3 satisfies the left part property.
We introduce the left part grammars, a subclass of the context-free grammars
which is defined in such a way that CFG G is a left part grammar iff JG satisfies
the left property. The definition of left part Barnmars is an adapted version of the
definition of simple chain grammars which was first introduced in [lo]. In Section
1.2 we defined the prefix-free property for a set of productions P. We say a set of
productions is prefix (1) iff for each pair A + fl, A + fly in P, where y # e, and for
strings a E p and w E p, if S**,wAar, then FIRST ($nFIRST (ar) = $9. To
avoid arf empty QI we add, if necessary, the production S’+S I to P, where S’ is a
new start symbol and J_ is an endmarker, I 4 V,

A Zeft part theorem for grammatical trees

e a e b

Fig. 3. Two trees, (3)T# (3)T’

Defidion 2.3. A CFG G = (N, 2, P, S) is said to be a left part grammar iff P is
prefix (1) and FIRST(X) n FIRST(Y) = 9 for each pair A + aX4, A +cuY# in P
with Xf Y.

The following definition introduces chains, a concept which turns cut to be
useful in formulating properties of context-free grammars.

Definition 2.4. Let G = (N, 2, P, S) be a CFG, let X0 E V. The set of chains of X0,
denoted by CH(X,-J is defined by

Notice that the definition of CH(X,) is such that each chain in CH(X,) ends with a
terminal. If X0 E ;I]‘, then X0 is the only chain in CH(XJ. We use the following
notations and conventions. If v = X,X, . l l X,,, then Z(rr)=X,,, that is I(T)
denotes the last element of a chain. Hence, for each chain 7r, I(?r) E C.

Let XE V. X is said to be chain-independent if for each pair q, 9r2 in CH(X),
7r1 # n2, we have Z(q) # Z(?r,). Clearly, if X is chain-independent, then CH(X) is
a finite set. Also it follows that each terminal is chain-independent. If each
element of V is chain-independent then V is said to be chain-independent. Let
X, YE V, Xf Y. X and Y are said to be mutually chain-independent if for each
pair 7rl E CH(X) and 7r2~ CH(Y) we have I(7r1) # Z(w2); notation X+ Y. Notice
that a+ b for each pair a, b in C such that a # b.

Lemma 2.1. Let G = (N, s, P, S) be a CFG. For each pair A + CUXC#I, A + cuY$ in
P, where xf Y, we have FIRST(X) f\ FIRST(Y) = g if X+ Y.

Proof. Trivial.

Lemnma 2.2. Let G = (N, 2, P, S) be a CFG. If FIRST(X) n FIRST(Y) = p for
each pair A + CKX~, A + aY@ in P with X# Y then V is chain-independent.

Proof. Assume that V is not chain-independent. Hence, there exist A E N and
ql, 7r2~CH(A) such that q # 7r2 and I(q) = l(7r2). Let nl =X0X, s . 9 X,, and
7T2=Y()Y1** l Y,, where X0 = YO = A and E=, = Y,. Then there exists i 2 0 such

56 A. Nijhoit

that x,,x, ’ l l x, = YJ, . . 9 Yi, there exists a derivation A 3 IX& for some
V* and there exist productions X, -Xi+ t J/ + l, Xi 3 Y,+&+ 1, for some +$+I,

I&,E V* and such that X,+, # Y,,,. Since FIRST(X,,,)nFIRST(Y,+,)=IB) ac-
cording to the “if”-part of the lemma we have I(7rl) # I&). Contradiction.

From ‘Definition 2.3 and the two lemmas the following corollary is now
self -evident.

Corollary 2.1. A CFG G = (IV, JE, P, S) is u left part grummar if
(i) P is prefix(l), and

Y for each pair A +txX& A --+ arY@ in P with X# Y.
iff

(i) P is prr?fix(I). and .

(ii) V is chain-mdependent. and
(iii) X+- Y for each pair a--+aX& A-+aYJ, in P with Xf Y and or # E.

Remark. If we replace in Definition 2.3 (or in Corollary 2.1) prefix (1) by
prefix-free then a definition of the simple chain grammars is obtained. The reader
who is familiar with their parsing method [10,2] will notice that this method also
will work for left part grammars if one symbol of look-ahead is allowed in cases
that there is doubt whether a reduction has to be made or a symbol has to be
shifted to the pushdown stack.

Exmtpfes. CFG G, with only productions P,(S+aAc, S+aAd,
A -*aA, A -4) is a ‘left part grammar. The same holds for CFG G2 with
Pz = (S-AC, A -a, A 4 ab). A more complicated example is CFG G3 with
u,=~S-*EJ,,E-*(T)*(E),E~(?‘), T+F+T, T-+F, F+E, F-W). CFG cr;,
with P4={S+aSA,S-+aA,A+bbd,A-4. A-w,S’-+S1} is not a left part
grammar since it is not prefix (1).

Notice that the class of simple chain grammars is a proper subclass of the left
part grammars, since G2 is not a simple chain grammar. G2 is not even an LR(Q)
gB .-.itr;i*aa ;; j. With the aid of the property that eacrPl simple chain grammar is an
LR(0) grammar (which will be proved somewhere else), one can easily verify that
the class of left part grammars is a proper subclass1 of the LR(1) grammars.

In the remainder of this section we prove some results concerning relationships
with other classes of grammars and with classes or: languages.

The class of prefix-free deterministic languages’ has been studied by Harrison
and Have1 [4,5,6]. The class of prefix-free deterministic languages is a subclass of
the class of deterministic langua,ges. For each prefix-free deterministic language
there exist a strict deterministic grammar [4,5,6]. There is a nontrivial hierarchy
of strict deterministic grammars and their languages according to their degree [4].

* A df::* rministic language is 8 language which can be accepted by a deterministic pushdown
~ut~n?dfQ~ d 11. A h.mguaf&? f, is said ta he prefix-free iff u E f. rind uu E L implies u E e,

A kfr part theorem for grammatical trees

We will turn our attention to the simplest class in this
deter&&k g~mmars of deg,ree 1. The following definition
Theorem 3.1 of [6].

hierarchy, the strict
is a reformulation of I 1

De&&ion 2.5. CFG 6 = (N, Z, P, S) is a strict deterministic grammar of degree 1
iff P is prefix-free and, if A -, aX4 and A +(Y w are in P (hence, CY, 4 and 4 in
V*, X and Y in V), where X# Y, then X and Y are in Cr.

57

Simple deterministic grummars [S] are grammars in Greibach normal form 2 (GNF,
for short) which have the property that for all u E Z, CE N and cy, p E V*,

C+ua and C-up in P implies ~1= p.

It follows immediately that the class of simple deterministic grammars is properly
included in the class of strict deterministic grammars of degree 1. However, their
families of languages coincide [6].

Directly from Definition 2.3, 2.6 and the remark fdlswing Corollary 2.1 it
follows that the strict deterministic grammars of degree 1 are (properly) included
in the class of simple chain grammars, which in its turn is a proper subclass of the
class of left part grammars. As a last result of this section we show that the left
part grammars with prefix-free production set (hence, the simple chain grammars)
generate ekactly the class of simple deterministic languages. This is done by
presenting a new transformation to GNF which can be used for non-left recursive
grammars3, and which, when used for a simple chain grammar, yields a simple
deterministic grammar. In the following definition some preliminaries are intro-
duced.

~flnition 2.6. Let G = (N, Z, P, S) be a CFG. Define

[N]={[Aar]IAeN,arEV* and A-+c# in Pfor some @V*)

and homomorphism e : IN]“‘+ [N]* by letting ~([Acu]) is

(i) e if A + o is in P,
(ii) [A&J if A +c+$3 is in P, where fi + E.

Now we are sufficiently prepared to present the algorithm.

Algorithm 2.1. Let G = (N, L;‘, P, S) be an E-free and non-left-recursive CFG
which satisfies the conditions that P is prefix-free and it has no useless symbols. G
is transformed to a CFG G’= (N’, 2: P’, [S]) in GNF such that L(G’)= L(C).

Method. Set P’ = 43. N’ will contain all symbols of [N] which appear in the

productions introduced below.

2 A CFG G = (fV, Z, P, S) is said to be in Greibach normal form iff PE N X TV*, i.e., each
production has the form A -+aa (AEN,uEX and ar~V*).

*’ A CR3 is said to be mn-left-recursive if there is no A E PJ such that A $ Aa, for SOme a E V”-

58 A. Nijhol?

(i) For each SX, l l - X, E CH(S), let [S]-*X&([X~_lx,][X,_,X,,,3 l l l

[SX,]) be in P’.
(ii) For each A +aX& in P, where a # E and X,X, l l l X, E CHCX,), let

[Aa]-+&~([;l(n_lXn] l l l [XoXl][AaXo]) be in P’.
(iii) Remove a11 useless symbols.

The following two claims are used in the proof of correctness of algorithm.

CIaii 2.1. Let A *ax,4 be in P, a + E or A = S and let X,X, 9 l l X,, E CH(X,),

where n ~0. Then, for each Xi, i ~0, if Xi 3 I y4, where y E Z*, then [Aa]+

y&II X,-r Xl l l l lI~~Jb1).

?roof. Suppose m = 0, then y = Xi E C. Then, since A +aX& in P and

X0 l l l Xi_ IXi E CH(XJ we have by construction that

[Aa]+ yt([X+JJ l l l [AaXO]), a# E or A = S.

Now let m > 0 and assume the claim holds for all WI’< m (induction hypothesis).
Then, if X,-,&Y,* l l Yq is the first production which is used, we have the
following derivation:

where

Yj 3 yj, l~jsq, y@* and m,<m.

From the induction hypothesis it follows that

and also

From (*) and (* *) we obtain

which was to be proved.

C!!! 2.2. Let [Aa] w, then A 3aw.

(*c)

(**)

4 We dr -ite ‘Z?$ for ($1”. i.e., $zomposed with itself n - 1 times. Similar notation is usd far+ 1

md+, -

A left part theorem for grammatical trees 59

Proof. The proof is by induction on m. If m = 1 then, since G’ is in GNF, we have
w E z, hence [A&J-+ w is in P’. Then, by construction, there exists a production
A -*crX, in P such that X0X1 l l l X, E CH(X,), n 30, X, = w and [A&J* w is
obtained from

[Acr]-+ w[([X,+ w] 9 l l [XOX1][AaXO]) = [Acr]+ w.

Hence, there exists a derivation A =$ tuX, 3 QLW

Now let m > 1. The first step of the derivation is done with a production of the
form

Lw+~wL-,x,l’ ’ l t-XoX1l[A~Xol),
where X, = a, &XI - l * X, is in CH(X,) and w = ux for some x EC*. Then,

[Acu]+ Q~([X~_~XJ l l l [X,XJIAeXO])~ax,x,_, l . . x1x0 = ux,

such that

(i) if S(CX-IXi]) # e,

(ii) if 5CAaXo1) # e,

Since m,<m,O~i~n,

Xi-1 3 xixi9

and

A 3 aXox,.

then [Xi-,Xi]3 Xi, otherwise Xi = E, 1 s i s n, and

then [AcuX~]~~ x0, otherwise x0 = E.

we obtain

lsiQ2, (*)

(**)

From (*) and (* *) it follows that A &ax,,,_,. l l l x1x0, hence A&w, which

was to be proved.

Theorem 2.1. Algorithm 2.1, when applied to a simple chain grammar G’, yields a
simpZe deterministic grammar G’ such that L(G’) = L(G).

Proof. That L(G’) C_ L(G) is an immediate consequence of Claim 2.2, where
(Y = E and A = S. Next we show L(G) S; L(G’). From Claim 2.1 it follows that if
A+arC& and C~X, then

Notice that the claim ho’5ds for (IL = e and A = S. If w E L(G), then there exists a

derivation S ‘$ W. ‘rf w E Z, then [S]+ w in P’, hence, w E L(G’). Otherwise, let
S-*ZJZ~ l - l & be the first production which is used in this derivation. Then
w = z,t;l* ’ * z,, E Z*, where Zl $ z,, 1 G i s n. It follows that

and

From (*) and (* *) it follows that

[s]+t,q ” ’ 2” = w,

hcncc. L(<JIE L(G’) and we condude L(G’) = L(G j. We show that G” is a simple
dctcrminiwtic grammar, Firstly, it is clear that G’ is in GNF. Now assume that
there exist Q E. 2, CE N’ and a, p E (N’U 2’)” such that C-+ ua and ++cr~ are in
P’ and a # & Consider case (i) of the algorithm, hence, C = ES]. By construction,
there exist sir q&H(S) with 1(q) = I(n,) = a, and since a# p, v1 # f12 which
contradicts the properties of a simple chain grammar. Further, consider case (ii) of
the algorithm, hence, C is of the form [Aa], ct # E. Similar observations as in the
preceding case lead to a contradiction with the simple chain grammar properties.
We may conclude that G’ is indeed a simple deterministic grammar.

/Me. AS remarked above, Algorithm 2.1 can be used to transform any non-left-
recursive grammar to a CFG in GNF. Such a non-left-recursive grammar should
he, at tcast for the form in which we present the algorithm here, prefix-free, but
for arbitrary non-left-recursive grammars this can be assumed without loss of
~LW~~~ZK~. For example, if there exist productions A --+a and A -w@ then one
can replace these productions by A ---, a, A --+ Hmsf4 and k& + cy.

From Theorem 2.1 it follows that the class of simple deterministic languages is
incfudcd in the class of left part languages. This inclusion is proper. A trivial
example is the language (a, ~b) which has left part grammar S-+ alab, and, since
the language is not prefix-J-* l d-e, it has no simple deterministic grammar. More
intcrcsting, however, is the CFG G with productioins

S-*aSAlaA, A + ht#(C.

()jy&G+ *;, G is a left part grammar. However, thl: language generated by G is
not a kq,:; deterministic language, since f.(G) cannot be generated by an c-free

A left part theorem for grammatical trees 61

LL(l)-grammar (see Aho and Ullman [11). Since each simple deterministic
grammar is an E-free LL(l)-grammar, the proper inclusion follows5.

3. The left part property

It will be clear from Definition 2.3 that, strictly speaking, we do not really need
the concept of a chain to describe left part grammars. However, thinking in terms
of chains will sometimes be helpful. Moreover, it is sometimes handsome to use
this and t&e related concepts in proofs on left part grammars. From Definition 2.2
and Definition 2.3 we can now achieve the main result of this paper.

Theorenn 3.1 (Left Part Theorem). Let G = (N, T, P, S) be a CFG. The set JG of
all grammatical trees of G saiisfies the left part property ifj G is a left part grammar.

?roof. Let G be a left part grammar. To prove: .I, satisfies the left part property.
Assume & does not satisfy the left part property. Hence there exist n > 0 and
trees T1 and T2 in JG with rt (TJ = rt (7’*), (“)fr (T,) = (“)fr (T,) and (n)T,, f (“)‘I’*.
Suppose yt = 1, then (ljT1 # ?I’* and “‘fr (T,) = “‘fr (‘I’& hence, since rt (T,) =
rt (‘I’*) we must conclude that V is not chain-independent. Contradiction. Suppose
vz) 1. For Tl and T2 we can choose yt such that (“-‘)T, =(n-1)T2 and (“)Tl #(“)T2.

Let Tl be labeled by A1 and T2 by A*. The restriction of A1 to (n-r)T1 which is
equal to the restriction of A2 to (n-11T2 is denoted by A. We use the same
convention for the relations rl, I1 on T1 and r2, l2 on T2. Let the leaves of (“‘Tl
have a left-right order x1, x2, . . . , x,. Since (“)fr (Tl) = (n)fr (Tz) we have the same
order and labels for the leaves of (“)T2. Since (“-l)T1 = (n-llTz, the path in T1 from
the root of T1 to x,,_~ is the same (including the labeling) as the path in T2 from
the root of T2 to x,+ Let this path be p = (yO, y,, . . , , y,), where y, is the root,

Ym=&-1 and y, [yl [l l l [y,,,. Since (“‘T1 # (“IT2 there exist nodes yi and yj on p
(O<i,jcm) such that

(a) yi [T Xn in T1 and not yi + 1 [T x,, in T,,

(b) Yj [z rC, in T2 and not yj+l rzx, in T2.

First we show that i = j. Suppose i > j (the case i < j is symmetric). See also Fig. 4.
Since T1 and T2 are grammatical trees and since we have no ~-productions there
exist A(yi)+PA(yi+l) and A(yi)+pA(yi+,)4 in P, for some 4 E V’ and fi E V*.

Notice that 4# F since ~Jx,,)E FIRST(+). Tree Tl corresponds with a
derivation rt (T,)%,WA(yi)al +,WpA(yi+l)&, ~I’n-lJfr(T1)+l +Ifr (T,), for
some w EC* and a1 E V*.

’ Moreover, the place of the left part languages in the hierarchy of LL(k)-languages becomes
interesting. However, a propel treatment requires a rather technical discussion on the role of
E -productions, and therefore we b omit more detailed comparisons.

A. Nijlwlt

x1 X
n-l

X x1 X
n-l

X
n n

Fig. 4. Trees T; and T2.

Tree ‘& corresponds with a derivation

for some w t: C* and ar+ V!
Since A,&) = Az(lr,! ze have that FIRST&) nFIRST(@ # $3. Since the CFG is

reduced and since r@. {T1 b = rt (T2) it immediately follows that if P contains
A(y&+3A(y;+,) and A(yi)-*ph(yi+l)4 then P is not prefix (1). Therefore we must
conclude that i = j.

We proceed with i. There are corresponding nodes, tl in T, and z2 in T2, which
will again be treated as identical, hence we omit the indexes, such that yi [I z,
Y, LG Yi+l LA yi+l LZZ and 2 Kx, and 2 Ex~ “‘)Tl is obtained by adding in an
obvious way the path from yi to x,, to (“-“‘T1 l (“IT2 is obtained in an ana1ogou.s
way. Hence there are paths yi r1 z [, l l 9 [, x,, and yi r2z r2 l l l r2 x,,. Since

(n-l,T =(Pl-l)
1 & and (“‘7’~ # (“)Tz these labeled paths are different. Since T1 and T2

are grammatical trees there exist productions

for some 6, & and & in V? If A,(z) = AZ(z) then V is not chain-independent. If
A,(z) # AZ(z), then the necessary condition that A,(z) f AZ(z) is not satisfied. We
nust conclude that also the case n > 1 leads to a contradiction. This concludes the
’ F-pat of the proof.

“only-if”. Let G be a CFG such that Ja satisfies the kft part property.
Assume that G is not a left part grammar, them, according tg Corollary 2.1. there
are three possibilities.

(i) V is not chain-independent. Then there is A E M and ml, w2 E CH(A),
n, # ?r, such that I(n,) = l(w*). Then we can construct trees! T1 and T2 in JG with
rt (T,) =rt iT2) = A and where the first leaf of each of the trees has label I(q).
Let the path (and the labeling) from the root of T1 to the first leaf of Tl be
according to nl and the path (and the labeling) from the root of Tz to the first
leaf of Tz be according to 7r2, then ‘“fr (Tl) = ‘*)fr (T2) and (IIT1 # (l)T2. Contradic-
tic Il.

an6
“i) Suppose there exist productions A + UYX& and A - arY4 in P, X-# Y, cy # E
X and Y are not mutually chain-independent. l_et w E ~(a), where fwl= rt - 1.

A left part .theorem for grammatical trees 63

Let 7rl E CH(X), 7r2 E CH(Y) and I(q) = 1(77,). Obviously there exist trees T1 and
T2 in JG with rt (TJ =rt (T2) = A, (“-‘)fr (TJ =(“-l)fr (T2) = w and (n-1)T1 =
(n-1)T2. By adding paths corresponding to the chains 7rl and rr2 to (“-‘)Ti and to
(n-1)T2 respectively we obtain a situation such that (“)fr (TJ = (“)fr (T2) and
(“IT1 # (“)T2. Contradiction.

(iii) Suppose P is not prefix (1). Then there exist productions A + p and
A-+37, Y#E and there is UE T, WET* and CYE V* such that Ss wAcy and
a E FIRST(y) n FIRST@. Also in this case we can construct trees Tl and T2 in
JG,rt(T1)=rt(T2)=S. Let w,~L(p) and let lwwll be n-l. Then we can con-
struct Tl and T2 such that (n)fr (TJ = (“)fr (Tz) = wwla and where (n”T1 # (“)T2,
since (n)Tl is obtained from (n-1)‘,6; by adding the (rightmost) path from the node
corresponding to % to the nth leaf of T,, and (“IT2 is obtained by adding to
(n-l)T1(= (n-1)T2) the path from the node corresponding to A to the nth leaf of
T2. Since (n) T1 #(“IT2 we have again a contradiction with the left part property.
This concludes the “only if”-part of the proof.

With this theorem we conclude this section and this paper.

Acknowledgments

The author gratefully acknowledges some suggestions and corrections of a
referee.

References

Ill

PI
131

141

PI

bl

r71
[Cl

[91

Cl01

A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation and Compiling. Vol. 1 and 2
(Prentice-Hall, Englewood Cliffs, NJ, 1972 and 1973).
F.L. DeRemer, Simple LR(k) grammars, Comm. ACM 14 (1971) 453-460.
M. Geller, M.A. Harrison and I.M. Havel, Normal forms of deterministic grammars, Discr. M&h.
16 (1976) 313-322.
M.A. Harrison and I.M. Havel, Strict deterministic grammars, J. Comput. System Sci. 7 (1973)
237-277.
M.A. Harrison and I.M. Havel, On the parsing of deterministic languages, J. Assoc. Comput.
Mach. 21 (1974) 525-548.
M.A. Harrison and I.M. Havel, Real-time strict deterministic languages, SIAM J. Comput. 1
(1972) 333-349.
D.E. Knuth, The Art of Computer Programming, Vol. 1 (Addison-Wesk 3, Reading, MA, 1968).
A.J. Korenjack and J.E. Hopcroft, Simple deterministic languages, in: IEEE Conference Record
of the Seventh Annual Symposium on Switching and Automata Theory (1966), 34-46.
J. Kral, Bottom up versus top down syntax analysis revised, Research report U VT lO-11/74,
Inst. of Computation Technique, Technical University of Prague (1974).
A. Nijholt, Simple chain grammars, in Proceedings 4th Int. Coil. on Automata. Languages and
Programming (1977) 352-364.

