FIXED-POINT DESIGN

- Central issue: how to perform a desired computation with as few bits per operand as possible
- Some material based on:
- Thanks to Jeroen de Zoeten, for some material reused from his M.Sc. graduation presentation (2004).

TOPICS

- Fixed-point data types
- SystemC
- Peak-value estimation
- Word-length optimization

FIXED-POINT DATA TYPES

- A specific interpretation of a logic vector
 - Binary point
 - Integer and fractional part: iwl and fwl (integer and fractional word length)
 - Signed or unsigned

EXAMPLES OF FIXED-POINT NUMBERS

- Example pattern: 1101
 - With $iwl = 2$ and unsigned $\rightarrow 13/4$
 - With $iwl = 2$ and signed $\rightarrow -3/4$
 - With $iwl = 6$ and unsigned $\rightarrow 52$
 - With $iwl = 6$ and signed $\rightarrow -12$
 - With $iwl = -1$ and unsigned $\rightarrow 13/32$
 - With $iwl = -1$ and signed $\rightarrow -3/32$
IMPLEMENTATION OF DSP
FIXED-POINT DESIGN
March 8, 2019

FIXED-POINT ADDITION/SUBTRACTION

- Integer adder can be used after:
 - Alignment of binary point
 - Sign extension

<table>
<thead>
<tr>
<th>A: Signed 2,4</th>
<th>B: Signed 4,2</th>
<th>Y: Signed 3,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,4)</td>
<td>(4,2)</td>
<td>(5,4)</td>
</tr>
<tr>
<td>S S S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>+</td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>

A: Signed 2,4
B: Signed 4,2
Y: A + B

FIXED-POINT MULTIPLICATION

- Integer multiplier can directly be used.
- One only needs to figure out the location of the binary point.

<table>
<thead>
<tr>
<th>A: Signed 2,4</th>
<th>B: Signed 4,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,4)</td>
<td>(4,2)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Signed 5,6 or Signed 6,6?

QUANTIZATION: TRUNCATION

- If the target provides less accuracy than the value to assign:
 - Truncation → no hardware
 - What happens to the signal in EE terms?

<table>
<thead>
<tr>
<th>(5,4)</th>
<th>0 1 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5,1)</td>
<td>S</td>
</tr>
</tbody>
</table>

QUANTIZATION: ROUNDING

- If the target provides less accuracy than the value to assign:
 - Rounding (various modes) → extra hardware

<table>
<thead>
<tr>
<th>(5,4)</th>
<th>1 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,1)</td>
<td>S</td>
</tr>
</tbody>
</table>
OVERFLOW: WRAP AROUND

- If the value to assign is outside the range of target:
 - *Wrap around* → no hardware

OVERFLOW: SATURATION

- If the value to assign is outside the range of target:
 - *Saturation* (various modes) → extra hardware

SystemC

- Open source standard for system-level modeling, based on C++ class libraries and a simulation kernel.

- Provides modeling from system level down to (mainly) register-transfer level (RTL).

- For more details, see the Accellera web site (non-profit organization for system-level design):

 http://www.accellera.org/
SystemC FIXED-POINT CODE EXAMPLE

```
sc_fixed<6, 2> a;
sc_fixed<6, 4> b;
sc_fixed<3, 2, SC_RND, SC_SAT> c;

c = a + b;
```

- Implementation:
 - Calculate sum at full precision
 - Perform quantization processing
 - Perform overflow processing

THE FIXED-POINT DESIGN PROBLEM (1)

- Mathematical descriptions of DSP algorithms often assume infinite precision in the signal representation.
- The closest approximation of infinite precision in computers is the *floating-point* number representation.
- Floating-point hardware is expensive and is avoided if possible.
- Implementations therefore use fixed-point hardware.

- Problem: *which fixed-point formats should be used to obtain the cheapest implementation of the original algorithm?*

THE FIXED-POINT DESIGN PROBLEM (2)

- One should look at:
 - The dynamic range: avoid *overflow* and therefore know *peak values*.
 - The accuracy: *quantization* levels.

BOUGANIS FIXED-POINT FORMAT

- Considers signed numbers only; *sign bit is not counted in size.*
PEAK-VALUE ESTIMATION

- Related to the fact that signal magnitude may grow due to addition or multiplication
- In a stable system, the signal cannot grow indefinitely
- Question is: what is the maximal value encountered for each signal in the system?
- Issue is not directly related to accuracy, the number of bits used for each signal.

PEAK-VALUE ESTIMATION METHODS

- **Analytic:**
 - examine transfer functions
- **Data-range propagation:**
 - Interval analysis
 - Compute result interval from input intervals
 - Tends to overestimate requirements
- **Simulation-driven analysis:**
 - Monitor values produced during a representative simulation and record extremes
 - Use a safety factor > 1

ANALYTIC PEAK-VALUE ESTIMATION

- Consider an FIR filter:
 \[y[n] = \sum_{k=0}^{N} h[k] \cdot x[n - k] \]
- Then, an upper bound for the output value is found by:
 \[y_{\text{peak}} = x_{\text{peak}} \sum_{k=0}^{N} |h[k]| \]
- For recursive filters, a similar approach can be followed, starting from a state-space representation.

INTERVAL ANALYSIS (1)

- Represent each value \(x \) as an interval: \(\tilde{x} = [x^-, x^+] \)
- For each arithmetic operation, one can calculate the result interval from the operand intervals. For example:
 \[\tilde{x} + \tilde{y} = [x^- + y^-, x^+ + y^+] \]
 \[\tilde{x} \tilde{y} = [\min(x^- y^-, x^- y^+, x^+ y^-, x^+ y^+), \max(x^- y^-, x^- y^+, x^+ y^-, x^+ y^+)] \]
INTERVAL ANALYSIS (2)

Beware: this is no FIR filter, but a phantasy design.

WORD-LENGTH PROPAGATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Propagation rules</th>
</tr>
</thead>
</table>
| GAIN | For input \((n_a, p_a)\) and coefficient \((n_b, p_b)\):
\[
p_j = p_a + p_b
\]
\[
n_j = n_a + n_b
\]| |
| ADD | For inputs \((n_a, p_a)\) and \((n_b, p_b)\):
\[
p_j = \max(p_a, p_b) + 1
\]
\[
n_j = \max(n_a, n_b + p_a - p_b) - \min(0, p_a - p_b) + 1
\] (for \(n_a > p_a - p_b\) or \(n_b > p_b - p_a\)) |
| DELAY or FORK | For input \((n_a, p_a)\):
\[
p_j = p_a
\]
\[
n_j = n_a
\| |

QUANTIZATION: NOISE MODELING (1)

- Suppose signal with fixed-point format \((n, 0)\) is multiplied with another signal with fixed-point format \((n, 0)\) and the result is truncated to \(n\) bits.

- Error ranges from 0 to \(2^{-2n} - 2^{-n} \approx -2^{-n}\)

- Uniform distribution of error: \(p(e) = 2^n, e \in [-2^{-n}, 0]\)

- Consider multiplication; is the error really uniformly distributed?

NOISE MODELING (2)

- Average error is: \(-2^{-(n+1)}\)

- Variance:
\[
\sigma^2 = \int_{-2^{-n}}^{0} 2^n [e + 2^{-(n+1)}]^2 \, de = \frac{1}{12} 2^{-2n}
\]
NOISE PROPAGATION

- In linear time-invariant (LTI) systems, one can analytically calculate the effect of quantization in input or intermediate nodes to noise on the output.
- In case of non-linear systems, one could linearize the system by means of Taylor expansion (a similar approach as a small-signal model used in electronics).
- Noise propagation methods have the advantage of reduced computational complexity with respect to a simulations-only approach.

FIXED-POINT OPTIMIZATION PROBLEM

- Define a performance measure. Examples:
 - SNR at the output of a filter
 - Bit-error rate in a communication system
- Define a cost measure, such as the area of the circuit.
- Goal is to satisfy a performance requirement at minimal cost by optimally choosing a fixed-point format for each signal in the system.
- The most practical approach is to start with a floating-point model and gradually replace the data types by fixed-point types while monitoring performance by simulations.

SCHEDULING, ETC.

- Sharing of resources across multiple clock cycles puts additional constraints on the fixed-point format of signals.

NON-MONOTONIC BEHAVIOR

- One would expect that larger word lengths always improve the performance measure.
- It is possible, however, to construct systems where performance is non-monotonic, see:
- Such systems have forks that use different fixed-point formats at each end and reconverge.