1. Consider the following variant of the k-means method, which we call “lazy k-means”: in every iteration, only one point is reassigned to a new cluster. We break ties arbitrarily.

Show that the smoothed running-time of lazy k-means is bounded by a polynomial in n and $1/\sigma$ for $d \geq 3$. Your running-time bound may involve a factor 2^k, but no n^k. However, even the factor 2^k can be avoided.

Hint: Consider epochs and $(\eta, 1)$-coarseness.

2. Fix any number k of clusters and dimension d. Let $T(n, \sigma)$ be the smoothed number of iterations that k-means needs on n points perturbed with standard deviation σ.

Prove that $T(n, \sigma)$ is monotonically decreasing in σ. (In particular, $T(n, \sigma) \leq T(n, 1)$ for $\sigma \geq 1$, which proves a claim from the lecture.)

3. Show that epochs of the k-means method have a length of at most c for some constant c, which is independent of d and k.