1. Examine the program \(\max p \cdot x, x \in \{0, 1\}^n \), where \(p_1, \ldots, p_n \in \mathbb{R} \) are random variables with density upper bounded by \(\phi > 0 \). Let \(x^* \) and \(x^{**} \) denote the best and second best solutions to the above program. Show that \(\forall \varepsilon > 0, \ P[p^t x^* - p^t x^{**} \leq \varepsilon] \leq 2\varepsilon \phi n \).

2. Let \(G = (V, E) \) be an undirected graph on \(|V| = n \) vertices and non-negative edge costs \(c : E \to \mathbb{R}_{\geq 0} \) and non-negative edge lengths \(l : E \to \mathbb{R}_{\geq 0} \). Given vertices \(s, t \in V \) and a budget \(b \geq 0 \), the Constrained Shortest Path problem (CSP) is to find a minimum edge length path (i.e. \(\sum_{e \in P} l(e) \) is minimized for the path \(P \)) from \(s \) to \(t \) of cost at most \(b \).
 a) Show that when the costs and lengths are restricted to be non-negative integers, the CSP problem can be solved in time polynomial in \(n \) and \(b \).
 b) Use the above result to show that the CSP problem has polynomial smoothed complexity.