1. We prove the following stronger statement: Let \(d_j(v) \) denote the distance in \(G_{f_j} \) from \(s \) to \(v \). Then \(d_0(v) \leq d_1(v) \leq d_2(v) \leq \ldots \) for all nodes \(v \).

We show that \(d_{j-1}(v) \leq d_j(v) \) by double induction, first on \(k \) and then on the depth \(k \) of \(v \) in the shortest path tree of \(G_{f_j} \). For \(k = 0 \), we have \(v = s \), and we have \(d_j(s) = 0 \) for all \(j \). Hence, the statement holds.

Now assume that the statement is true for all nodes of depth at most \(k - 1 \). Let \(v \) be a node of depth \(k \), and let \(u \) be its parent in the shortest path tree of \(G_{f_j} \). Let \(e = (u,v) \).

Note that \(e \) can be a forward or a backward edge.

We have \(d_j(v) = d_j(u) + c_e \). If \(e \) is available in \(G_{f_{j-1}} \), then \(d_{j-1}(v) \leq d_{j-1}(u) + c_e \). If \(e \) is not available in \(G_{f_{j-1}} \), then SSP must have augmented along \(e - 1 \) to obtain \(f_j \). Hence, \(d_{j-1}(u) = d_{j-1}(v) + c_{e-1} = d_{j-1}(v) - c_e \). In both cases, we have \(d_{j-1}(v) \leq d_{j-1}(u) + c_e \).

Now we apply the induction hypothesis for \(u \), which yields \(d_{j-1}(v) \leq d_{j-1}(u) + c_e \leq d_j(u) + c_e = d_j(v) \).

2. If \(G_f \) contains a directed cycle \(C \) with \(c(C) < 0 \), then we can augment along \(C \) and obtain a cheaper flow.

Now assume that \(f \) is not an optimal flow. Let \(f^* \) be an optimal \(b \)-flow. We have to show that \(G_f \) contains a cycle of negative costs.

We consider a circulation \(g \) with \(g(e) = f^*(e) - f(e) \). We call \(g \) a circulation and not a flow since the budget constraints are not satisfied. Instead, we have in-flow equal to out-flow at all nodes. We have \(c(f^*) = c(g) + c(f) \) by construction. Hence, \(c(g) < 0 \) since we have assumed that \(f \) is not optimal.

We decompose \(g \) into simple cycles \(g_1, \ldots, g_k \) for some \(k \). This means that \(g_i \) is a circulation along one simple cycle. By construction, \(c(g) = \sum_{i=1}^{k} c(g_i) \). Thus, there exists an \(i \) with \(c(g_i) < 0 \). This circulation corresponds to a cycle that is present in \(G_f \) and has negative costs.

3. For all \(u \in V \), let \(\pi(u) = -d(u) \), where \(d(u) \) is the length of a shortest \(s-u \) path in \(G_f \).

Consider any edge \(e = (u,v) \). By the triangle inequality, we have \(d(v) \leq d(u) + c(e) \). This implies \(c'(e) \geq 0 \) by the choice of \(\pi \).