Algorithms Beyond the Worst Case
Lectures 3 & 4: k-Means Method

Bodo Manthey

UNIVERSITY OF TWENTE.

February 23 & March 1, 2016
\textit{k}-Means Clustering

- NP-hard (even for $d = 2$ or $k = 2$)
- $(1 + \varepsilon)$ approximations
- In practice: k-means method
k-Means Clustering

- NP-hard (even for $d = 2$ or $k = 2$)
- $(1 + \varepsilon)$-approximations
- in practice: k-means method
k-Means Clustering

instance
n points $X \subseteq \mathbb{R}^d$

output
clustering C_1, \ldots, C_k

centers c_1, \ldots, c_k

objective minimize
$$\sum_i \sum_{x \in C_i} \|x - c_i\|^2$$

how to choose centers:
$$c_i = \frac{1}{|C_i|} \cdot \sum_{x \in C_i} x$$

- NP-hard (even for $d = 2$ or $k = 2$)
- $(1 + \varepsilon)$ approximations
- in practice: k-means method
Clusters vs. Centers

- centers imply clusters: every point is assigned to the center closest to it (there might some be ambiguity)

- clusters imply centers: centers should be the centers of mass according to the following lemma

Lemma

\[
X \subseteq \mathbb{R}^d: \text{finite set of points,} \\
c = \text{cm}(X) = \frac{1}{|X|} \cdot \sum_{x \in X} x: \text{center of mass of } X, \\
y \in \mathbb{R}^d \text{ arbitrary;} \\
\text{then } \sum_{x \in X} \|x - y\|^2 = \sum_{x \in X} \|x - c\|^2 + |X| \cdot \|c - y\|^2
\]
k-Means Method

input: \(X \subseteq \mathbb{R}^d \)

1. choose \(c_1, \ldots, c_k \in \mathbb{R}^d \)
2. repeat
3. partition \(X \)
4. adjust centers
5. until clustering is stable

output: \(C_1, \ldots, C_k \)

- worst-case lower bound: \(2\Omega(n) \) iterations
- worst-case upper bound: \(n^{3kd} \)
- in practice the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: \(X \subseteq \mathbb{R}^d \)

1. choose \(c_1, \ldots, c_k \in \mathbb{R}^d \)

2. repeat

3. partition \(X \)

4. adjust centers

5. until clustering is stable

output: \(C_1, \ldots, C_k \)

- worst-case lower bound: \(2 \Omega(n) \) iterations
- worst-case upper bound: \(n^{3kd} \)
- in practice the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: $X \subseteq \mathbb{R}^d$

1. choose $c_1, \ldots, c_k \in \mathbb{R}^d$
2. repeat
3. partition X
4. adjust centers
5. until clustering is stable

output: C_1, \ldots, C_k
k-Means Method

input: $X \subseteq \mathbb{R}^d$

1. Choose $c_1, \ldots, c_k \in \mathbb{R}^d$
2. Repeat
3. Partition X
4. Adjust centers
5. Until clustering is stable

output: C_1, \ldots, C_k

- **worst-case lower bound:** $2^\Omega(n)$ iterations
- **worst-case upper bound:** n^3 iterations

In practice, the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

Input: $\mathbf{X} \subseteq \mathbb{R}^d$

1. Choose $c_1, \ldots, c_k \in \mathbb{R}^d$
2. Repeat
3. Partition \mathbf{X}
4. Adjust centers
5. Until clustering is stable

Output: C_1, \ldots, C_k

- Worst-case lower bound: $\Omega(n)$ iterations
- Worst-case upper bound: $n^3 kd$

In practice, the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: \(X \subseteq \mathbb{R}^d \)

1. choose \(c_1, \ldots, c_k \in \mathbb{R}^d \)
2. repeat
3. partition \(X \)
4. adjust centers
5. until clustering is stable

output: \(C_1, \ldots, C_k \)

- worst-case lower bound: \(2 \Omega(n) \) iterations
- worst-case upper bound: \(n^{3d} \)
- in practice, the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: \(X \subseteq \mathbb{R}^d \)

1. choose \(c_1, \ldots, c_k \in \mathbb{R}^d \)
2. repeat
3. partition \(X \)
4. adjust centers
5. until clustering is stable

output: \(C_1, \ldots, C_k \)

- worst-case lower bound: \(2 \Omega(n) \) iterations
- worst-case upper bound: \(n^3 kd \)
- in practice the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: $X \subseteq \mathbb{R}^d$

1. choose $c_1, \ldots, c_k \in \mathbb{R}^d$
2. repeat
3. partition X
4. adjust centers
5. until clustering is stable

output: C_1, \ldots, C_k

- worst-case lower bound: $2\Omega(n)$ iterations
- worst-case upper bound: n^{3kd}
- in practice the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: \(X \subseteq \mathbb{R}^d \)

1. choose \(c_1, \ldots, c_k \in \mathbb{R}^d \)
2. repeat
3. partition \(X \)
4. adjust centers
5. until clustering is stable

output: \(C_1, \ldots, C_k \)

- worst-case lower bound: \(2\Omega(n) \) iterations
- worst-case upper bound: \(n^{3kd} \)

In practice, the number of iterations is generally much less than the number of points (Duda et al.)
k-Means Method

input: $X \subseteq \mathbb{R}^d$

1. choose $c_1, \ldots, c_k \in \mathbb{R}^d$
2. repeat
3. partition X
4. adjust centers
5. until clustering is stable

output: C_1, \ldots, C_k

- worst-case lower bound: $2\Omega(n)$ iterations
- worst-case upper bound: $n^3 kd$
- in practice the number of iterations is generally much less than the number of points (Duda et al.)
k-_means Method

Input: \(X \subseteq \mathbb{R}^d \)

1. choose \(c_1, \ldots, c_k \in \mathbb{R}^d \)
2. repeat
3. partition \(X \)
4. adjust centers
5. until clustering is stable

Output: \(C_1, \ldots, C_k \)

- worst-case lower bound: \(2^{\Omega(n)} \) iterations
- worst-case upper bound: \(n^{3kd} \)
- in practice the number of iterations is generally much less than the number of points

(Duda et al.)
we use the objective function as potential (as for 2-opt and TSP)

Lemma

Let c_i, c_j be two cluster centers, let x be a point closer to c_j than to c_i, let ϵ be the distance of x to the hyperplane H bisecting c_i and c_j, and let $\delta = \|c_i - c_j\|$. Then reassigning x from C_i to C_j decreases the potential by $2\delta \epsilon$.

Lemma

Readjusting the cluster center of C_i from some point z to the center of mass of C_i decreases the potential by $|C_i| \cdot \|z - \text{cm}(C_i)\|^2 \geq \|z - \text{cm}(C_i)\|^2$.

Lemma

With a probability of at least $1 - n^{-3kd}$, the potential is bounded by $O(nd^2k \log n)$ after the first iteration of k-means.
Potential function argument – ideas

- **initial potential:** $O(nd^2k \log n)$
- **many points change clusters:**
 decrease by reassigning
- **few points change clusters:**
 center moves
- **problem:** $n^{O(kd)}$ possible clusterings after perturbation
- **even worse:** k^n possible clusterings before perturbation

reassigning points: $-2\epsilon \delta$

moving centers: $-|C| \cdot \epsilon^2$
Partitioning of iterations

dense iterations
- one cluster loses or gains at least \(2kd\) points

sparse iterations
- each cluster exchanges \(\leq 2kd\) points
- after 4 (or: \(2^k\)) iterations: 3rd configuration

Theorem (Arthur, Vassilvitskii)

smoothed \#iterations of \(k\)-means: \(\text{poly}(n^k, 1/\sigma)\)
Discussion – smoothed analysis of k-means

- bound can be improved to (roughly) $O\left(\frac{n^{34}}{\sigma^6}\right)$
 (read: “polynomial in n and $1/\sigma$”)

- improvements seem difficult

- good smoothed approximation ratio is unlikely (see exercises):
 - k-means method shows poor approximation ratio in practice
 - k-means method only works well because it can be restarted with different initializations very often
 - good smoothed approximation ratio would be a case against smoothed analysis