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The k-means method is one of the most widely used clustering algorithms, drawing its popularity from its

speed in practice. Recently, however, it was shown to have exponential worst-case running time. In order to

close the gap between practical performance and theoretical analysis, the k-means method has been studied
in the model of smoothed analysis. But even the smoothed analyses so far are unsatisfactory as the bounds

are still super-polynomial in the number n of data points.
In this paper, we settle the smoothed running time of the k-means method. We show that the smoothed

number of iterations is bounded by a polynomial in n and 1/σ, where σ is the standard deviation of the

Gaussian perturbations. This means that if an arbitrary input data set is randomly perturbed, then the
k-means method will run in expected polynomial time on that input set.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory
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1. INTRODUCTION
Clustering is a fundamental problem in computer science with applications ranging
from biology to information retrieval and data compression. In a clustering problem,
a set of objects, usually represented as points in a high-dimensional space Rd, is to be
partitioned such that objects in the same group share similar properties. The k-means
method is a traditional clustering algorithm, originally conceived by Lloyd [1982]. It
begins with an arbitrary clustering based on k centers in Rd, and then repeatedly
makes local improvements until the clustering stabilizes. The algorithm is greedy and
as such, it offers virtually no accuracy guarantees. However, it is both very simple and
very fast, which makes it appealing in practice. Indeed, one recent survey of data min-
ing techniques states that the k-means method “is by far the most popular clustering
algorithm used in scientific and industrial applications” [Berkhin 2002].

However, theoretical analysis has long been at stark contrast with what is observed
in practice. In particular, it was recently shown that the worst-case running time of the
k-means method is 2Ω(n) even on two-dimensional instances [Vattani pear]. Conversely,
the only upper bounds known for the general case are kn and nO(kd). Both upper bounds
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are based entirely on the trivial fact that the k-means method never encounters the
same clustering twice [Inaba et al. 2000]. In contrast, Duda et al. state that the number
of iterations until the clustering stabilizes is often linear or even sublinear in n on
practical data sets [Duda et al. 2000, Section 10.4.3]. The only known polynomial upper
bound, however, applies only in one dimension and only for certain inputs [Har-Peled
and Sadri 2005].

So what does one do when worst-case analysis is at odds with what is observed in
practice? We turn to the smoothed analysis of Spielman and Teng [2004], which consid-
ers the running time after first randomly perturbing the input. Intuitively, this models
how fragile worst-case instances are and if they could reasonably arise in practice. In
addition to the original work on the simplex algorithm, smoothed analysis has been
applied successfully in other contexts, e.g., for the ICP algorithm [Arthur and Vassil-
vitskii 2009], online algorithms [Becchetti et al. 2006], the knapsack problem [Beier
and Vöcking 2004], and the 2-opt heuristic for the TSP [Englert et al. 2007].

The k-means method is in fact a perfect candidate for smoothed analysis: it is ex-
tremely widely used, it runs very fast in practice, and yet the worst-case running time
is exponential. Performing this analysis has proven very challenging however. It has
been initiated by Arthur and Vassilvitskii who showed that the smoothed running
time of the k-means method is polynomially bounded in nk and 1/σ, where σ is the
standard deviation of the Gaussian perturbations [Arthur and Vassilvitskii 2009]. The
term nk has been improved to min(n

√
k, kkd · n) by Manthey and Röglin [2009a]. Un-

fortunately, this bound remains super-polynomial even for relatively small values of
k, e.g., k = log n. In this paper we settle the smoothed running time of the k-means
method: We prove that it is polynomial in n and 1/σ. The exponents in the polyno-
mial are unfortunately too large to match the practical observations, but this is in line
with other works in smoothed analysis, including Spielman and Teng’s original analy-
sis of the simplex method [Spielman and Teng 2004]. The arguments presented here,
which reduce the smoothed upper bound from exponential to polynomial, are intricate
enough without trying to optimize constants, even in the exponent. However, we hope
and believe that our work can be used as a basis for proving tighter results in the
future.

Note that we only analyze the running time in this paper. We do not analyze the
quality of the local optimum found by the k-means method or whether it is a global
optimum. In fact, it is not the case that the k-means method usually finds the global
optimum in practice. But it usually seems to be fast. Thus, our analysis of the running
time matches the observed performance of the k-means method.

1.1. k-Means Method
An input for the k-means method is a set X ⊆ Rd of n data points. The algorithm
outputs k centers c1, . . . , ck ∈ Rd and a partition of X into k clusters C1, . . . , Ck. The
k-means method proceeds as follows:

(1) Select cluster centers c1, . . . , ck ∈ Rd arbitrarily.
(2) Assign every x ∈ X to the cluster Ci whose cluster center ci is closest to it, i.e.,
‖x− ci‖ ≤ ‖x− cj‖ for all j 6= i.

(3) Set ci = 1
|Ci|
∑
x∈Ci x.

(4) If clusters or centers have changed, goto 2. Otherwise, terminate.

In the following, an iteration of k-means refers to one execution of step 2 followed
by step 3. A slight technical subtlety in the implementation of the algorithm is the
possible event that a cluster loses all its points in Step 2. There exist some strategies

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Smoothed Analysis of the k-Means Method A:3

to deal with this case [Har-Peled and Sadri 2005]. For simplicity, we use the strategy
of removing clusters that serve no points and continuing with the remaining clusters.

If we define c(x) to be the center of the cluster that data point x is assigned to,
then one can check that each step of the algorithm decreases the following potential
function:

Ψ =
∑
x∈X
‖x− c(x)‖2 . (1)

The essential observation for this is the following: If we already have cluster centers
c1, . . . , ck ∈ Rd representing clusters, then every data point should be assigned to the
cluster whose center is nearest to it to minimize Ψ. On the other hand, given clus-
ters C1, . . . , Ck, the centers c1, . . . , ck should be chosen as the centers of mass of their
respective clusters in order to minimize the potential, which follows from Lemma 2.3.

In the following, we will speak of k-means rather than of the k-means method for
short. The worst-case running time of k-means is bounded from above by (k2n)kd ≤
n3kd, which follows from Inaba et al. [2000] and Warren [1968]. (The bound of O(nkd)
frequently stated in the literature holds only for constant values for k and d, but in
this paper k and d are allowed to depend on n.) This upper bound is based solely on
the observation that no clustering occurs twice during an execution of k-means since
the potential decreases in every iteration. On the other hand, the worst-case number
of iterations has been proved to be exp(

√
n) for d ∈ Ω(

√
n) [Arthur and Vassilvitskii

2006]. This has been improved recently to exp(n) for d ≥ 2 [Vattani pear].

1.2. Related Work
The problem of finding optimal k-means clusterings is NP-hard even in the restricted
cases where d = 2 [Mahajan et al. 2009] or k = 2 [Aloise et al. 2009], where a clustering
is optimal if it minimizes the potential function (1). On the other hand, the problem al-
lows for polynomial-time approximation schemes [Bădoiu et al. 2002; Matoušek 2000;
Kumar et al. 2004] with various dependencies of the running time on n, k, d, and the
approximation ratio 1 + ε. The running times of these approximation schemes depend
exponentially on k. Recent research on this subject also includes the work by Gaddam
et al. [2007] and Wagstaff et al. [2001]. However, the most widely used algorithm for
k-means clustering is still the k-means method due to its simplicity and speed.

Despite its simplicity, the k-means method itself and variants thereof are still the
subject of research [Kanungo et al. 2002; Arthur and Vassilvitskii 2007; Ostrovsky
et al. 2006]. Let us mention in particular the work by Har-Peled and Sadri [2005] who
have shown that a certain variant of the k-means method runs in polynomial time on
certain instances. In their variant, a data point is said to be (1 + ε)-misclassified if the
distance to its current cluster center is larger by a factor of more than (1 + ε) than the
distance to its closest center. Their lazy k-means method only reassigns points that are
(1 + ε)-misclassified. In particular, for ε = 0, lazy k-means and k-means coincide. They
show that the number of steps of the lazy k-means method is polynomially bounded in
the number of data points, 1/ε, and the spread of the point set (the spread of a point
set is the ratio between its diameter and the distance between its closest pair).

In an attempt to reconcile theory and practice, Arthur and Vassilvitskii [2009] per-
formed the first smoothed analysis of the k-means method: If the data points are per-
turbed by Gaussian perturbations of standard deviation σ, then the smoothed number
of iterations is polynomial in nk, d, the diameter of the point set, and 1/σ. However,
this bound is still super-polynomial in the number n of data points. They conjectured
that k-means has indeed polynomial smoothed running time, i.e., that the smoothed
number of iterations is bounded by some polynomial in n and 1/σ.
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Since then, there has been only partial success in proving the conjecture. Man-
they and Röglin [2009a] improved the smoothed running time bound by devising two
bounds: The first is polynomial in n

√
k and 1/σ. The second is kkd · poly(n, 1/σ), where

the degree of the polynomial is independent of k and d. Additionally, they proved a
polynomial bound for the smoothed running time of k-means on one-dimensional in-
stances.

1.3. Our Contribution
We prove that the k-means method has polynomial smoothed running time. This finally
proves Arthur and Vassilvitskii’s conjecture [Arthur and Vassilvitskii 2009].

THEOREM 1.1. Fix an arbitrary set X ′ ⊆ [0, 1]d of n points and assume that each
point in X ′ is independently perturbed by a normal distribution with mean 0 and stan-
dard deviation σ, yielding a new set X of points. Then the expected running time of
k-means on X is bounded by a polynomial in n and 1/σ.

We did not optimize the exponents in the polynomial as the arguments presented
here, which reduce the smoothed upper bound from exponential to polynomial, are
already intricate enough and would not yield exponents matching the experimental
observations even when optimized. We hope that similar to the smoothed analysis of
the simplex algorithm, where the first polynomial bound [Spielman and Teng 2004]
stimulated further research culminating in Vershynin’s improved bound [Vershynin
2009], our result here will also be the first step towards a small polynomial bound for
the smoothed running time of k-means. As a reference, let us mention that the upper
bound on the expected number of iterations following from our proof is

O

(
n34 log4(n)k34d8

σ6

)
.

The idea is to prove, first, that the potential after one iteration is bounded by
some polynomial and, second, that the potential decreases by some inverse polynomial
amount in every iteration (or, more precisely, in every sequence of a few consecutive
iterations). To do this, we prove upper bounds on the probability that the minimal im-
provement is small. The main challenge is the huge number of up to (k2n)kd possible
clusterings. Each of these clusterings yields a potential iteration of k-means, and a
simple union bound over all of them is too weak to yield a polynomial bound.

To prove the bound of poly(n
√
k, 1/σ) [Manthey and Röglin 2009a], a union bound

was taken over the (k2n)kd clusterings. This is already a technical challenge as the set
of possible Voronoi-based clusterings is fixed only after the points are fixed. To show
a polynomial bound, we reduce the number of cases in the union bound by introduc-
ing the notion of transition blueprints. Basically, every iteration of k-means can be
described by a transition blueprint. The blueprint describes the iteration only roughly,
so that several iterations are described by the same blueprint. Intuitively, iterations
with the same transition blueprint are correlated in the sense that either all of them
make a small improvement or none of them do. This dramatically reduces the number
of cases that have to be considered in the union bound. On the other hand, the descrip-
tion conveyed by a blueprint is still precise enough to allow us to bound the probability
that any iteration described by it makes a small improvement.

We distinguish between several types of iterations, based on which clusters exchange
how many points. Sections 4.1 to 4.5 deal with some special cases of iterations that
need separate analyses. After that, we analyze the general case (Section 4.6). The dif-
ficulty in this analysis is to show that every transition blueprint contains “enough ran-
domness”. We need to show that this randomness allows for sufficiently tight upper
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bounds on the probability that the improvement obtained from any iteration corre-
sponding to the blueprint is small.

Finally, we put the six sections together to prove that k-means has polynomial
smoothed running time (Section 4.7) for d ≥ 2. For completeness, we include a cou-
ple of technical lemmas and proofs from an earlier smoothed analysis [Manthey and
Röglin 2009a]. This includes a proof that k-means has polynomial smoothed running
time also for d = 1 in Section 5, which completes the proof of Theorem 1.1.

2. PRELIMINARIES
For a finite set X ⊆ Rd, let cm(X) = 1

|X|
∑
x∈X x be the center of mass of the set X. If

H ⊆ Rd is a hyperplane and x ∈ Rd is a single point, then dist(x,H) = min{‖x−y‖ | y ∈
H} denotes the distance of the point x to the hyperplane H. Furthermore, for a ∈ N,
we denote by [a] the set {1, 2, . . . , a}.

For our smoothed analysis, an adversary specifies an instance X ′ ⊆ [0, 1]d of n points.
Then each point x′ ∈ X ′ is perturbed by adding an independent d-dimensional Gaus-
sian random vector with standard deviation σ to x′ to obtain the data point x. These
perturbed points form the input set X . For convenience we assume that σ ≤ 1. This
assumption is without loss of generality: The number of iterations that k-means needs
is invariant under scaling of the point set X . If σ > 1, then we consider X scaled
down by 1/σ, which corresponds to the following model: The adversary chooses points
from the hypercube [0, 1/σ]d ⊆ [0, 1]d, and then we add d-dimensional Gaussian vec-
tors with standard deviation 1 to every data point. The expected running-time that
k-means needs on this instance is bounded from above by the running-time needed
for adversarial points chosen from [0, 1]d and σ = 1, which is poly(n) ≤ poly(n, 1/σ).
Additionally we assume k ≤ n and d ≤ n: First, k ≤ n is satisfied after the first iter-
ation since at most n clusters can contain a point. Second, k-means is known to have
polynomial smoothed complexity for d ∈ Ω(n/ log n) [Arthur and Vassilvitskii 2006].
The restriction of the adversarial points to be in [0, 1]d is necessary as, otherwise, the
adversary can diminish the effect of the perturbation by placing all points far apart
from each other. Another way to cope with this problem is to state the bounds in terms
of the diameter of the adversarial instance [Arthur and Vassilvitskii 2009]. However,
to avoid having another parameter, we have chosen the former model.

Throughout the following, we assume that the perturbed point set X is contained in
some hypercube of side-length D, i.e., X ⊆ [−D/2, D/2]d = D. We choose D such that
the probability of X 6⊆ D is bounded from above by n−3kd. Then, as the worst-case num-
ber of iterations is bounded by n3kd [Inaba et al. 2000], the event X 6⊆ D contributes
only an insignificant additive term of +1 to the expected number of iterations, which
we ignore in the following.

Since Gaussian random vectors are heavily concentrated around their mean and
all means are in [0, 1]d, we can choose D =

√
90kd ln(n) to obtain the desired failure

probability for X 6⊆ D, as shown by the following calculation, in which Z denotes a
one-dimensional Gaussian random variable with mean 0 and standard deviation 1:

Pr
[
X 6⊆ D

]
≤ nd · Pr

[
|Z| ≥ D/2− 1

]
≤ 2nd · Pr

[
Z ≥ D/3

]
≤ 2nd√

2π
· exp(−D2/18) ≤ n2 · exp(−D2/18) ≤ n−3kd ,

where we used the tail bound Pr[Z ≥ z] ≤ exp(−z2/2)

z
√

2π
for Gaussians [Durrett 1991].

For our smoothed analysis, we use essentially three properties of Gaussian random
variables. Let X be a d-dimensional Gaussian random variable with standard devia-
tion σ. First, the probability that X assumes a value in any fixed ball of radius ε is
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at most (ε/σ)d. (This is a very rough estimate, obtained from multiplying the maxi-
mum density of a Gaussian with an upper bound for the volume of a d-dimensional
ball. A sharper bound, however, would not improve the running time bound signifi-
cantly.) Second, let b1, . . . , bd′ ∈ Rd be orthonormal vectors for some d′ ≤ d. Then the
vector (b1 ·X, . . . , bd′ ·X) ∈ Rd′ is a d′-dimensional Gaussian random variable with the
same standard deviation σ. Third, let H be any hyperplane. Then the probability that
a Gaussian random variable assumes a value that is within a distance of at most ε
from H is bounded by ε/σ. This follows also from the first two properties if we choose
d′ = 1 and b1 to be the normal vector of H.

We will often upper-bound various probabilities, and it will be convenient to reduce
the exponents in these bounds. Under certain conditions, this can be done safely re-
gardless of whether the base is smaller or larger than 1.

FACT 2.1. Let p ∈ [0, 1] be a probability, and let A, c, b, e, and e′ be non-negative real
numbers satisfying c ≥ 1 and e ≥ e′. If p ≤ A+c ·be, then it is also true that p ≤ A+c ·be′ .

PROOF. If b is at least 1, then A+ c · be′ ≥ 1 and it is trivially true that p ≤ A+ c · be′ .
Otherwise, be ≤ be′ , and the result follows.

2.1. Potential Drop in an Iteration of k-Means
During an iteration of the k-means method there are two possible events that can
lead to a significant potential drop: either one cluster center moves significantly, or a
data point is reassigned from one cluster to another and this point has a significant
distance from the bisector of the clusters (the bisector is the hyperplane that bisects
the two cluster centers). In the following we quantify the potential drops caused by
these events.

The potential drop caused by reassigning a data point x from one cluster to another
can be expressed in terms of the distance of x from the bisector of the two cluster
centers and the distance between these two centers.

LEMMA 2.2. Assume that, in an iteration of k-means, a point x ∈ X switches from
Ci to Cj . Let ci and cj be the centers of these clusters, and let H be their bisector. Then
reassigning x decreases the potential by 2 · ‖ci − cj‖ · dist(x,H).

PROOF. The potential decreases by ‖ci−x‖2−‖cj −x‖2 = (2x− ci− cj) · (cj − ci). Let
v be the unit vector in the cj − ci direction. Then (2x− ci − cj) · v = 2 dist(x,H) because
v is orthogonal to H. The observation cj − ci = ‖ci − cj‖ · v completes the proof.

The following lemma, which also follows from basic linear algebra, reveals how mov-
ing a cluster center to the center of mass decreases the potential.

LEMMA 2.3 ((KANUNGO ET AL. [2004])). Assume that the center of a cluster C
moves from c to cm(C) during an iteration of k-means, and let |C| denote the number of
points in C when the movement occurs. Then the potential decreases by |C| ·‖c−cm(C)‖2.

2.2. The Distance between Centers
As the distance between two cluster centers plays an important role in Lemma 2.2, we
analyze how close together two simultaneous centers can be during the execution of
k-means. This has already been analyzed implicitly [Manthey and Röglin 2009a, Proof
of Lemma 3.2], but the variant below gives stronger bounds. From now on, when we
refer to a k-means iteration, we will always mean an iteration after the first one. By
restricting ourselves to this case, we ensure that the centers at the beginning of the
iteration are the centers of mass of actual clusters, as opposed to the arbitrary choices
that were used to seed k-means.
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Definition 2.4. Let δε denote the minimum distance between two cluster centers at
the beginning of a k-means iteration in which (1) the potential Ψ drops by at most ε,
and (2) at least one data point switches between the clusters corresponding to these
centers.

LEMMA 2.5. Fix real numbers Y ≥ 1 and e ≥ 2. Then, for any ε ∈ [0, 1],

Pr
[
δε ≤ Y ε1/e

]
≤ ε ·

(
O(1) · n5Y

σ

)e
.

PROOF. We first define two events E1 and E2, and we argue that δε ≤ Y ε1/e can
only occur if one of these events occurs. Then we bound the probability of E1 ∪ E2. Let
t = 3d+ bec. The events are defined as follows:

E1. There exist a subset T ⊆ X with |T | = t + 1 and hyperplanes H ⊆ Rd and
H0 ⊆ Rd such that, for every x ∈ T , dist(x,H) ≤ 3nY ε1/e or dist(x,H0) ≤ 3nY ε1/e.
E2. There exist subsets A ⊆ X and A′ ⊆ X with A 6= A′ and |A ∪ A′| ≤ t such that
‖cm(A)− cm(A′)‖ ≤

√
ε.

Consider an arbitrary k-means iteration I that results in a potential drop of at most
ε, and let I0 denote the previous iteration. Also consider an arbitrary pair of clusters
that exchange at least one data point during I. We define the following:

— Let a0 and b0 denote the centers of the two clusters at the beginning of iteration I0
and let H0 denote the hyperplane bisecting a0 and b0.

— Let A and B denote the set of data points in the two clusters at the beginning of
iteration I. Note that H0 splits A and B.

— Let a and b denote the centers of the two clusters at the beginning of iteration I, and
let H denote the hyperplane bisecting a and b. Note that a = cm(A) and b = cm(B).

— Let A′ and B′ denote the set of data points in the two clusters at the end of iteration
I. Note that H splits A′ and B′.

— Let a′ and b′ denote the centers of the two clusters at the end of iteration I. Note that
a′ = cm(A′) and b′ = cm(B′).

Now suppose we have ‖a− b‖ ≤ Y ε1/e.
First we consider the case |A′ ∪ A| ≥ t + 1. We claim that every point in A must be

within a distance of nY ε1/e of H0. Indeed, if this were not true, then since H0 splits
A and B, and since a = cm(A) and b = cm(B), we would have ‖a − b‖ ≥ dist(a,H0) >
nY ε1/e

|A| ≥ Y ε
1/e, giving a contradiction. Furthermore, as I results in a potential drop of

at most ε, Lemma 2.3 implies that ‖a′ − a‖, ‖b′ − b‖ ≤
√
ε, and therefore,

‖a′ − b′‖ ≤ ‖a′ − a‖+ ‖a− b‖+ ‖b− b′‖ ≤ Y ε1/e + 2
√
ε ≤ 3Y ε1/e.

In particular, we can repeat the above argument to see that every point in A′ must be
within a distance of 3nY ε1/e ofH. This means that there are two hyperplanes such that
every point in A∪A′ is within a distance of 3nY ε1/e of at least one of these hyperplanes.
Hence, this case can only occur if E1 occurs.

Next we consider the case |A′ ∪ A| ≤ t. We must have A′ 6= A since some point
is exchanged between clusters A and B during iteration I. Lemma 2.3 implies that
‖cm(A′)− cm(A)‖ ≤

√
ε must hold for iteration I. Otherwise, I would result in a poten-

tial drop of more than ε. Hence, this case can only occur if E2 occurs.
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It remains to analyze the probability of E1 ∪ E2. Following the arguments by Arthur
and Vassilvitskii [2009, Proposition 5.9], we obtain that the probability of E1 is at most

nt+1 ·
(

12dnY ε1/e

σ

)t+1−2d

= n3d+bec+1 ·
(

12dnY ε1/e

σ

)d+bec+1

≤
(

12dn4Y ε1/e

σ

)d+bec+1

. (2)

This bound can be proven as follows: Arthur and Vassilvitskii [2009, Lemma 5.8] have
shown that we can approximate arbitrary hyperplanes H and H0 by hyperplanes H̃
and H̃0 that pass through d points of X exactly such that any point x ∈ X within a
distance of L of H or H0 has a distance of at most 2dL from H̃ or H̃0, respectively. A
union bound over all choices for these 2d points and the remaining t + 1 − 2d points
yields the term nt+1. Once H̃ and H̃0 are fixed, the probability that a random point is
within distance 2dL of at least one of the hyperplanes is bounded from above by 4dL/σ.
Taking into account that the remaining t + 1 − 2d points are independent Gaussians
yields a final bound of nt+1(4dL/σ)t+1−2d with L = 3nY ε1/e.

Next we analyze the probability of E2. Consider some fixed A and A′, and let x0

be a data point in the symmetric difference of A and A′. Then cm(A′) − cm(A) can be
written as

∑
x∈X cx ·x for constants cx with |cx0

| ≥ 1
n . We consider only the randomness

in the perturbed position of x0 and allow all other points in X to be fixed adversarially.
Then cm(A′)− cm(A) follows a normal distribution with standard deviation at least σ

n ,
and hence ‖cm(A′) − cm(A)‖ ≤

√
ε with a probability of at most (n

√
ε/σ)d. The total

number of possible sets A and A′ is bounded by (4n)t: we choose t candidate points to
be in A ∪ A′ and then for each point, we choose which set(s) it belongs to. Taking a
union bound over all possible choices, we see that E2 can occur with a probability of at
most

(4n)t ·
(
n
√
ε

σ

)d
=

(
43+bec/dn4+bec/d√ε

σ

)d
. (3)

Combining equations (2) and (3), we have

Pr[δε ≤ Y ε1/e] ≤ Pr
[
E1
]

+ Pr
[
E2
]

≤
(

12dn4Y ε1/e

σ

)d+bec+1

+

(
43+bec/dn4+bec/d√ε

σ

)d
.

Note that d+ bec+ 1 ≥ e and d ≥ 2, so we can reduce exponents according to Fact 2.1:

Pr[δε ≤ Y ε1/e] ≤
(

12dn4Y ε1/e

σ

)e
+

(
43+bec/dn4+bec/d√ε

σ

)2

≤ ε ·
(

12dn4Y

σ

)e
+ ε ·

(
46+en8+e

σ2

)
(since d ≥ 2)

≤ ε ·
(

12n5Y

σ

)e
+ ε ·

(
44n5

σ

)e
(since d ≤ n, e ≥ 2 and σ ≤ 1)

≤ ε ·
(
O(1) · n5Y

σ

)e
.
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Smoothed Analysis of the k-Means Method A:9

3. TRANSITION BLUEPRINTS
Our smoothed analysis of k-means is based on the potential function Ψ (see (1)). If
X ⊆ D, then after the first iteration, Ψ will always be bounded from above by a poly-
nomial in n and 1/σ. (The reason for this is simple: After the first iteration, all clus-
ter centers, which are convex combinations of points, are also in D = [−D/2, D/2]d.
Thus, the maximum distance from a point to its closest center is at most D

√
d. Since

D =
√

90kd ln(n), the sum of squared distances is bounded by a polynomial.) Therefore,
k-means terminates quickly if we can lower-bound the drop in Ψ during each iteration.
So what must happen for a k-means iteration to result in a small potential drop? Recall
that any iteration consists of two distinct phases: assigning points to clusters, and then
recomputing center positions. Furthermore, each phase can only decrease the poten-
tial. According to Lemmas 2.2 and 2.3, an iteration can only result in a small potential
drop if none of the centers move significantly and no point is reassigned that has a
significant distance to the corresponding bisector. The previous analyses [Arthur and
Vassilvitskii 2009; Manthey and Röglin 2009a] essentially use a union bound over all
possible iterations to show that it is unlikely that there is an iteration in which none of
these events happens. Thus, with high probability, we get a significant potential drop
in every iteration. As the number of possible iterations can only be bounded by (k2n)kd,
these union bounds are quite wasteful and yield only super-polynomial bounds.

We resolve this problem by introducing the notion of transition blueprints. Such a
blueprint is a description of an iteration of k-means that almost uniquely determines
everything that happens during the iteration. In particular, one blueprint can simul-
taneously cover many similar iterations, which will dramatically reduce the number
of cases that have to be considered in the union bound. We begin with the notion of a
transition graph, which is part of a transition blueprint.

Definition 3.1. Given a k-means iteration, we define its transition graph to be the
labeled, directed multigraph with one vertex for each cluster, and with one edge (Ci, Cj)
with label x for each data point x switching from cluster Ci to cluster Cj .

We define a vertex in a transition graph to be balanced if its in-degree is equal
to its out-degree. Similarly, a cluster is balanced during a k-means iteration if the
corresponding vertex in the transition graph is balanced.

To make the full blueprint, we also require information on approximate positions
of cluster centers. We will see below that for an unbalanced cluster this information
can be deduced from the data points that change to or from this cluster. For balanced
clusters we turn to brute force: We tile the hypercube D with a lattice Lε, where con-
secutive points are are at a distance of

√
nε/d from each other, and choose one point

from Lε for every balanced cluster.

Definition 3.2. An (m, b, ε)-transition blueprint B consists of a weakly connected
transition graph G with m edges and b balanced clusters, and one lattice point in
Lε for each balanced cluster in the graph. A k-means iteration is said to follow B if
G is a connected component of the iteration’s transition graph and if the lattice point
selected for each balanced cluster is within a distance of at most

√
nε of the cluster’s

actual center position.

If X ⊆ D, then by the Pythagorean theorem, every cluster center must be within
distance

√
nε of some point in Lε. Therefore, every k-means iteration follows at least

one transition blueprint.
As m and b grow, the number of valid (m, b, ε)-transition blueprints grows exponen-

tially, but the probability of failure that we will prove in the following section decreases
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equally fast, making the union bound possible. This is what we gain by studying tran-
sition blueprints rather than every possible configuration separately.

For an unbalanced cluster C that gains the points A ⊆ X and loses the points B ⊆ X
during the considered iteration, the approximate center of C is defined as

|B| cm(B)− |A| cm(A)

|B| − |A|
.

If C is balanced, then the approximate center of C is the lattice point specified in the
transition blueprint. The approximate bisector of Ci and Cj is the bisector of the approx-
imate centers of Ci and Cj . Now consider a data point x switching from some cluster Ci
to some other cluster Cj . We say the approximate bisector corresponding to x is the hy-
perplane bisecting the approximate centers of Ci and Cj . Unfortunately, this definition
applies only if Ci and Cj have distinct approximate centers, which is not necessarily the
case (even after the random perturbation and even if both clusters are unbalanced). We
will call a blueprint non-degenerate if the approximate bisector is in fact well defined
for each data point that switches clusters. The intuition is that, if one actual cluster
center is far away from its corresponding approximate center, then during the consid-
ered iteration the cluster center must move significantly, which causes a potential drop
according to Lemma 2.3. Otherwise, the approximate bisectors are close to the actual
bisectors and we can show that it is unlikely that all points that change their assign-
ment are close to their corresponding approximate bisectors. This will yield a potential
drop according to Lemma 2.2.

The following lemma formalizes what we mentioned above: If the center of an un-
balanced cluster is far away from its approximate center, then this causes a potential
drop in the corresponding iteration.

LEMMA 3.3. Consider an iteration of k-means where a cluster C gains a set A of
points and loses a set B of points with |A| 6= |B|. If

∥∥cm(C)− |B| cm(B)−|A| cm(A)
|B|−|A|

∥∥ ≥ √nε,
then the potential decreases by at least ε.

PROOF. Let C′ = (C \ B) ∪ A denote the cluster after the iteration. According to
Lemma 2.3, the potential drops in the considered iteration by at least

|C′| · ‖cm(C′)− cm(C)‖2

= (|C|+ |A| − |B|)
∥∥∥∥ |C| cm(C) + |A| cm(A)− |B| cm(B)

|C|+ |A| − |B|
− cm(C)

∥∥∥∥2

=

∣∣|B| − |A|∣∣2
|C|+ |A| − |B|

∥∥∥∥cm(C)− |B| cm(B)− |A| cm(A)

|B| − |A|

∥∥∥∥2

≥ (
√
nε)2

n
.

Now we show that we get a significant potential drop if a point that changes its
assignment is far from its corresponding approximate bisector. Formally, we will be
studying the following quantity Λ(B).

Definition 3.4. Fix a non-degenerate (m, b, ε)-transition blueprint B. Let Λ(B) de-
note the maximum distance between a data point in the transition graph of B and its
corresponding approximate bisector.

LEMMA 3.5. Fix ε ∈ [0, 1] and a non-degenerate (m, b, ε)-transition blueprint B. If
there exists an iteration that follows B and that results in a potential drop of at most ε,
then

δε · Λ(B) ≤ 6D
√
ndε.
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PROOF. Fix an iteration that follows B and that results in a potential drop of at
most ε. Consider a data point x that switches between clusters Ci and Cj during this it-
eration. Let p and q denote the center positions of these two clusters at the beginning of
the iteration, and let p′ and q′ denote the approximate center positions of the clusters.
Also let H denote the hyperplane bisecting p and q, and let H ′ denote the hyperplane
bisecting p′ and q′.

We begin by bounding the divergence between the hyperplanes H and H ′.

CLAIM 3.6. Let u and v be arbitrary points on H. Then we have dist(v,H ′) −
dist(u,H ′) ≤ 4

√
nε
δε
· ‖v − u‖.

PROOF. Let θ denote the angle between the normal vectors of the hyperplanes H
and H ′. We move the vector

−→
p′q′ to become

−→
pq′′ for some point q′′ = p + q′ − p′, which

ensures ∠qpq′′ = θ. Note that ‖q′′− q‖ ≤ ‖q′′− q′‖+ ‖q′− q‖ = ‖p− p′‖+ ‖q′− q‖ ≤ 2
√
nε

by Lemma 3.3.
Let r be the point where the bisector of the angle ∠qpq′′ hits the segment qq′′. By the

sine law, we have

sin

(
θ

2

)
= sin(∠prq) · ‖r − q‖

‖p− q‖

≤ ‖q
′′ − q‖
‖p− q‖

≤ 2
√
nε

δε
.

Let y and y′ be unit vectors in the direction −→pq and
−→
p′q′, respectively, and let z be an

arbitrary point on H ′. Then,

dist(v,H ′)− dist(u,H ′) = |(v − z) · y′| − |(u− z) · y′|
≤ |(v − u) · y′| (by the triangle inequality)
= |(v − u) · y + (v − u) · (y′ − y)|
= |(v − u) · (y′ − y)| (since u, v ∈ H)
≤ ‖v − u‖ · ‖y′ − y‖.

Now we consider the isosceles triangle formed by the normal vectors y and y′. The
angle between y and y′ is θ. Using the sine law again, we get

‖y′ − y‖ = 2 · sin
(
θ

2

)
≤ 4
√
nε

δε
,

and the claim follows.

We now continue the proof of Lemma 3.5. Let h denote the foot of the perpendicular
from x to H, and let m = p+q

2 . Then,

dist(x,H ′) ≤ ‖x− h‖+ dist(h,H ′)

= dist(x,H) + dist(m,H ′) + dist(h,H ′)− dist(m,H ′)

≤ dist(x,H) + dist(m,H ′) +
4
√
nε

δε
· ‖h−m‖, (4)

where the last inequality follows from Claim 3.6. By Lemma 2.2, we know that the
total potential drop during the iteration is at least 2 · ‖p − q‖ · dist(x,H). However, we
assumed that this drop was at most ε, so we therefore have dist(x,H) ≤ ε

2δε
. Also, by
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Lemma 3.3,

dist(m,H ′) ≤
∥∥∥p′ + q′

2
− p+ q

2

∥∥∥ ≤ 1

2
· ‖p′ − p‖+

1

2
· ‖q′ − q‖ ≤

√
nε.

Furthermore, ‖h−m‖ ≤ ‖m−x‖ ≤ D
√
d since h−m is perpendicular to x−h and m−x

lies in the hypercube [−D,D]d. Plugging these bounds into equation (4), we have

dist(x,H ′) ≤ ε

2δε
+
√
nε+

4D
√
ndε

δε

≤
√
nε+

5D
√
ndε

δε
since ε ≤ 1

≤ 6D
√
ndε

δε
since δε ≤ ‖p− q‖ ≤ D

√
d.

This bound holds for all data points x that switch clusters, so the lemma follows.

4. ANALYSIS OF TRANSITION BLUEPRINTS
In this section, we analyze transition blueprints for d ≥ 2. The special case of d = 1
is deferred to Section 5. The first five cases deal with special types of blueprints that
require separate attention and do not fit into the general framework of case six. The
sixth and most involved case deals with general blueprints. Overall, the transition
blueprints are divided as follows:

Section 4.1. Transition blueprints in which one balanced cluster gains and loses at
least 1 and at most z1d points, for a constant z1.
Section 4.2. Transition blueprints with a node of degree 1, that is, a cluster that
either gains exactly one point or loses exactly one point.
Section 4.3. Non-degenerate transition blueprints with at least three disjoint pairs
of adjacent unbalanced nodes of degree two.
Section 4.4. Transition blueprints with constant maximum degree. This means that
every cluster gains or loses at most a constant number of points.
Section 4.5. Degenerate transition blueprints, that is, blueprints in which the ap-
proximate centers of some pair of clusters that exchange at least one point coincide.
Section 4.6. General transition blueprints that fall under none of the above cate-
gories.

In the following sections, we define and analyze the random variables ∆1, . . . ,∆6.
The random variable ∆i is the smallest decrease of the potential caused by any itera-
tion that follows a transition blueprint dealt with in Section 4.i. The only exception is
∆4, which describes the smallest improvement caused by a sequence of four consecu-
tive iterations dealt with in Section 4.4.

To finally bound the running-time in Section 4.7, let ∆ be the smallest decrease of
the potential Ψ caused by any sequence of four consecutive iterations. Then we can
bound ∆ from below by the minimum of the ∆i.

When analyzing these random variables, we will ignore the case that a cluster can
lose all its points in one iteration. If this happens, then k-means continues with one
cluster less, which can happen only k times. Since the potential Ψ does not increase
even in this case, this gives only an additive term of 4k to our analysis. (The four comes
from the fact that we consider sequences of four consecutive iterations in the definition
of ∆.)

In the lemmas in this section, we do not specify the parametersm and bwhen talking
about transition blueprints. When we say an iteration follows a blueprint with some
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property P , we mean that there are parameters m and b such that the iteration follows
an (m, b, ε)-transition blueprint with property P , where εwill be clear from the context.

4.1. Balanced Clusters of Small Degree
LEMMA 4.1. Fix ε ≥ 0 and a constant z1 ∈ N. Let ∆1 denote the smallest improve-

ment made by any iteration that follows a blueprint with a balanced node of in- and
outdegree at least 1 and at most z1d. Then,

Pr
[
∆1 ≤ ε

]
≤ ε ·

(
n4z1+1

σ2

)
.

PROOF. We denote the balanced cluster of in- and outdegree at most z1d by C. By
Lemma 2.3, if the center of C moves by at least

√
ε/|C|, then the potential drops by at

least ε. Let A and B with |A| = |B| ≤ z1d be the sets of data points corresponding to
the incoming and outgoing edges of C, respectively. If |A| cm(A) and |B| cm(B) differ by
at least

√
nε ≥

√
|C|ε, then the cluster center moves by at least

√
ε/|C| as shown by

the following reasoning: Let c be the center of mass of the points that belong to C at
the beginning of the iteration and remain in C during the iteration. Then the center of
mass of C moves from (|C|−|A|)c+|A| cm(A)

|C| to (|C|−|A|)c+|B| cm(B)
|C| . Since |A| = |B|, these two

locations differ by ∥∥∥ |B| cm(B)− |A| cm(A)

|C|

∥∥∥ ≥√ε/|C| .
We exploit only the randomness of a single point x ∈ A \B. Thus, we let an adversary
fix all points inB∪A\{x} arbitrarily. In order for |A| cm(A) to be

√
nε-close to |B| cm(B),

this point x must fall into a hyperball of radius
√
nε. This happens with a probability

of at most (
√
nε/σ)d.

Now we apply a union bound over all possible choices ofA andB. We can assume that
both A and B contain exactly z1d points. Otherwise, we can pad them by adding the
same points to both A and B. This does not affect the analysis since we only consider
the point x. Hence, the number of choices is bounded by n2z1d, and we get

Pr
[
∆1 ≤ ε

]
≤ Pr

[
∃A,B, |A| = |B| = z1d :

∥∥|A| cm(A)− |B| cm(B)
∥∥ ≤ √nε]

≤ n2z1d

(√
nε

σ

)d
≤

(
n2z1+ 1

2
√
ε

σ

)d
.

Using Fact 2.1 and d ≥ 2 concludes the proof.

4.2. Nodes of Degree One
LEMMA 4.2. Fix ε ∈ [0, 1]. Let ∆2 denote the smallest improvement made by any

iteration that follows a blueprint with a node of degree 1. Then,

Pr
[
∆2 ≤ ε

]
≤ ε ·

(
O(1) · n11

σ2

)
.

PROOF. Assume that a point x switches from cluster C1 to cluster C2, and let c1 and
c2 denote the positions of the cluster centers at the beginning of the iteration. Let ν be
the distance between c1 and c2. Then c2 has a distance of ν/2 from the bisector of c1
and c2, and the point x is on the same side of the bisector as c2.

If C1 has only one edge, then the center of cluster C1 moves during this iteration
by at least ν

2(|C1|−1) , where |C1| denotes the number of points belonging to C1 at the
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beginning of the iteration: the point x has a distance of at least ν/2 from c1, which
yields a movement of∥∥∥∥c1 − c1|C1| − x

|C1| − 1

∥∥∥∥ =

∥∥∥∥ c1 − x|C1| − 1

∥∥∥∥ ≥ ν

2(|C1| − 1)
.

Hence, the potential drops by at least (|C1| − 1)
(

ν
2|C1|−2

)2 ≥ ν2

4|C1| ≥
ν2

4n .
If C2 has only one edge, then let α be the distance of the point x to the bisector of c1

and c2. The potential drop is caused by two effects. First, by reassigning the point, we
get a potential drop of 2αν. Second, ‖x− c2‖ ≥ |ν/2− α|. Thus, C2 moves by at least∥∥∥∥c2 − c2|C2|+ x

|C2|+ 1

∥∥∥∥ ≥ ∥∥∥∥ c2 − x
|C2|+ 1|

∥∥∥∥ ≥ |ν/2− α||C2|+ 1
.

This causes a potential drop of at least (|C2|+1)(ν/2−α)2/(|C2|+1)2 = (ν/2−α)2/(|C2|+
1) ≥ (ν/2− α)2/n. Combining the two estimates, the potential drops by at least

2αν +
(ν/2− α)2

n
≥ (ν/2 + α)2

n
≥ ν2

4n
.

We can assume ν ≥ δε since δε denotes the closest distance between any two simul-
taneous centers in iterations leading to a potential drop of at most ε. To conclude the
proof, we combine the two cases: If either C1 or C2 has only one edge, the potential drop
can only be bounded from above by ε if ε ≥ ν2

4n ≥
δ2ε
4n . Hence, Lemma 2.5 yields

Pr
[
∆2 ≤ ε

]
≤ Pr

[
δ2
ε/(4n) ≤ ε

]
= Pr

[
δε ≤

√
4nε
]
≤ ε ·

(
O(1) · n11

σ2

)
.

4.3. Pairs of Adjacent Nodes of Degree Two
Given a transition blueprint, we now look at pairs of adjacent nodes of degree 2. Since
we have already dealt with the case of balanced clusters of small degree (Section 4.1),
we can assume that the nodes involved are unbalanced. This means that one cluster
of the pair gains two points while the other cluster of the pair loses two points.

LEMMA 4.3. Fix ε ∈ [0, 1]. Let ∆3 denote the smallest improvement made by any
iteration that follows a non-degenerate blueprint with at least three disjoint pairs of
adjacent unbalanced nodes of degree 2. Then,

Pr
[
∆3 ≤ ε

]
≤ ε ·

(
O(1) · n30

σ6

)
.

PROOF. Fix a transition blueprint B containing at least 3 disjoint pairs of adjacent
unbalanced degree-two nodes. We first bound Pr[Λ(B) ≤ λ], that is, the probability that
all points that switch clusters have a distance of at most λ from their corresponding
approximate bisectors. For i = 1, 2, 3, let ai, bi, and ci denote the data points corre-
sponding to the edges in the ith pair of adjacent degree-two nodes, and assume without
loss of generality that bi corresponds to the inner edge (the edge that connects the pair
of degree-two nodes).

Let Ci and C′i be the clusters corresponding to one such pair of nodes. Since Ci and
C′i are unbalanced, we can further assume without loss of generality that Ci loses both
data points ai and bi during the iteration, and C′i gains both data points bi and ci.

Now, Ci has its approximate center at pi = ai+bi
2 and C′i has its approximate center at

qi = bi+ci
2 . Since B is non-degenerate, we know pi 6= qi and hence ai 6= ci. Let Hi denote
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the hyperplane bisecting ai and ci, and let H ′i denote the hyperplane bisecting pi and
qi. Since Hi is the image of H ′i under a dilation with center bi and scale 2, we have

Λ(B) ≥ max
i

(
dist(bi, H

′
i)
)

=
maxi

(
dist(bi, Hi)

)
2

. (5)

All three pairs of adjacent degree-two nodes are disjoint, so we know bi is distinct from
bj for j 6= i and distinct from aj and cj for all j. This implies the position of bi is inde-
pendent of bj for j 6= i, and it is also independent of the position and orientation of Hj

for all j. In particular, the quantities dist(bi, Hi) follow independent one-dimensional
normal distributions with standard deviation σ. Therefore, for any λ ≥ 0, we have

Pr [Λ(B) ≤ λ] ≤ Pr
[
max
i

(
dist(bi, Hi)

)
≤ 2λ

]
≤
(

2λ

σ

)3

.

Let B denote the set of non-degenerate transition blueprints containing at least three
disjoint pairs of unbalanced degree-two nodes. The preceding analysis of Pr[Λ(B) ≤ λ]
depends only on {ai, bi, ci} so we can use a union bound over all choices of {ai, bi, ci} as
follows:

Pr
[
∃B ∈ B : Λ(B) ≤ λ

]
≤ n9 ·

(
2λ

σ

)3

=

(
2n3λ

σ

)3

. (6)

Now, Lemma 3.5 implies that if an iteration follows a blueprint B and results in a
potential drop of at most ε, then δε · Λ(B) ≤ 6D

√
ndε. We must therefore have either

δε ≤ ε1/6 or Λ(B) ≤ 6D
√
nd · ε1/3. We bound the probability that this happens using

Lemma 2.5 and equation (6):

Pr
[
∆3 ≤ ε

]
≤ Pr

[
δε ≤ ε1/6

]
+ Pr

[
∃B ∈ B : Λ(B) ≤ 6D

√
nd · ε1/3

]
≤ ε ·

(
O(1) · n5

σ

)6

+ ε ·

(
12Dn3

√
nd

σ

)3

= ε ·
(
O(1) · n30

σ6

)
,

since D =
√

90kd · ln(n), σ ≤ 1, and d, k ≤ n.

4.4. Blueprints with Constant Degree
Now we analyze iterations that follow blueprints in which every node has constant de-
gree. It might happen that a single iteration does not yield a significant improvement
in this case. But we get a significant improvement after four consecutive iterations of
this kind. The reason for this is that during four iterations one cluster must assume
three different configurations (by configuration we mean the set of points that are
assigned to the cluster). One case in the previous analyses [Arthur and Vassilvitskii
2009; Manthey and Röglin 2009a] is iterations in which every cluster exchanges at
most O(dk) data points with other clusters. The case considered in this section is sim-
ilar, but instead of relying on the somewhat cumbersome notion of key-values used in
the previous analyses, we present a simplified and more intuitive analysis here, which
also sheds more light on the previous analyses.

We define an epoch to be a sequence of consecutive iterations in which no cluster
center assumes more than two different positions (by position we mean the center
of mass of the points assigned to the cluster). Since the centers of mass of any two
distinct subsets of X are different with probability one, an equivalent definition of an
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epoch is that during an epoch, there are at most two different sets C′i, C′′i of points that
any cluster Ci assumes. Arthur and Vassilvitskii [2009] used the obvious upper bound
of 2k for the length of an epoch (the term length refers to the number of iterations in
the sequence). We improve this upper bound to three. By the definition of length of an
epoch, this means that after at most four iterations, either k-means terminates or one
cluster assumes a third configuration.

LEMMA 4.4. The length of any epoch is at most three.

PROOF. Let x be any data point that changes clusters during an epoch, and let
Ci be an arbitrary cluster that contains x at some point. Let C′i and C′′i be the two
configurations of Ci during this epoch, and let c′i and c′′i be the centers corresponding to
C′i and C′′i . Without loss of generality, we assume that x ∈ C′′i and x /∈ C′i.

First, we show that if x stays fixed in some cluster Ca during one iteration but then
changes to a new cluster Cb in the next iteration, then the latter iteration already
belongs to a new epoch. Since x belonged to Ca and not to Cb at first, the former must
have been in configuration C′′a and the latter in configuration C′b. After not switching
clusters once, the only reason that x will want to switch on a subsequent iteration is
that either Ca changes to some other configuration C̃a that contains x or that Cb changes
to some other configuration C̃b that does not contain x. In both cases, after x switches
to Cb, we have three configurations either for Ca or for Cb.

Second, we observe that it is impossible for x to switch from Ca to Cb and, later, from
Ca to a third cluster Cc during an epoch: The former implies ‖x − c′b‖ < ‖x − c′c‖ while
the latter implies ‖x− c′b‖ > ‖x− c′c‖, a contradiction. This already implies that x visits
either only distinct clusters or that at some point, it changes clusters cyclically.

Third, we show that x belongs to at most three different clusters during an epoch.
Assume to the contrary that x belongs to at least four clusters: Ca, Cb, Cc, Cd. By the
above argument, we can assume x switches from Ca to Cb to Cc to Cd. The change from
Ca to Cb yields ‖x− c′b‖ < ‖x− c′d‖. But, for x to switch from Cc to Cd, we need ‖x− c′d‖ <
‖x− c′b‖, a contradiction.

We have now shown that x switches between distinct clusters during every iteration
before stabilizing at either a single cluster or a cycle of clusters, and that during this
time, x can visit at most three different clusters altogether.

Fourth, let us rule out a cycle of length three as well: Suppose x cycles between Ca, Cb,
and Cc. Then, to go from Ca to Cb, we have ‖x−c′b‖ < ‖x−c′c‖. Similarly, ‖x−c′c‖ < ‖x−c′a‖
and ‖x− c′a‖ < ‖x− c′b‖, which is impossible.

We now know that the sequence of clusters to which x belongs is of one of the follow-
ing forms: (1) Ca, Ca, . . ., (2) Ca, Cb, Cb, . . ., (3) Ca, Cb, Cc, Cc, . . ., (4) Ca, Cb, Ca, Cb, . . . (x
changes back and forth between Ca and Cb), or (5) Ca, Cb, Cc, Cb, Cc, . . . (x changes back
and forth between Cb and Cc). The list above tell us that after the fourth iteration of an
epoch, we get the same clustering as after the second iteration. Since no clustering can
repeat during an execution of k-means, this concludes the proof.

For our analysis, we introduce the notion of (η, c)-coarseness. In the following, 4
denotes the symmetric difference of two sets.

Definition 4.5. We say that X is (η, c)-coarse if for every triple C1, C2, C3 of pairwise
distinct subsets of X with |C14C2| ≤ c and |C24C3| ≤ c, either ‖cm(C1)− cm(C2)‖ > η or
‖cm(C2)− cm(C3)‖ > η.

According to Lemma 4.4, in every sequence of four consecutive iterations, one cluster
assumes three different configurations. This yields the following lemma.
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LEMMA 4.6. Assume that X is (η, c)-coarse and consider a sequence of four consec-
utive iterations. If in each of these iterations every cluster exchanges at most c points,
then the potential decreases by at least η2.

PROOF. According to Lemma 4.4, there is one cluster that assumes three different
configurations C1, C2, and C3 in this sequence. Due to the assumption in the lemma,
we have |C14C2| ≤ c and |C24C3| ≤ c. Hence, due to the definition of (η, c)-coarseness,
we have ‖cm(Ci) − cm(Ci+1)‖ > η for one i ∈ {1, 2}. Combining this with Lemma 2.3
concludes the proof.

LEMMA 4.7. For η ≥ 0, the probability that X is not (η, c)-coarse is at most (7n)2c ·
(2ncη/σ)d.

PROOF. Given any sets C1, C2, and C3 with |C14C2| ≤ c and |C24C3| ≤ c, we can write
Ci, for i ∈ {1, 2, 3}, uniquely as the disjoint union of a common ground set A ⊆ X with
a set Bi ⊆ X with B1 ∩B2 ∩B3 = ∅. Furthermore,

B1 ∪B2 ∪B3 = (C1 ∪ C2 ∪ C3) \A = (C14C2) ∪ (C24C3),

so |B1 ∪B2 ∪B3| = |(C14C2) ∪ (C24C3)| ≤ 2c.
We perform a union bound over all choices for the sets B1, B2, and B3. The number of

choices for these sets is bounded from above by 72c
(
n
2c

)
≤ (7n)2c: We choose 2c candidate

points for B1 ∪ B2 ∪ B3, and then for each point, we choose which set(s) it belongs to
(it does not belong to all of them, but we allow that it belongs to none of them because
otherwise we would not cover the case that B1∪B2∪B3 contains fewer than 2c points).
We assume in the following that the sets B1, B2, and B3 are fixed. For i ∈ {1, 2}, we
can write cm(Ci)− cm(Ci+1) as(

|A|
|A|+ |Bi|

− |A|
|A|+ |Bi+1|

)
· cm(A) +

|Bi|
|A|+ |Bi|

· cm(Bi)−
|Bi+1|

|A|+ |Bi+1|
· cm(Bi+1) . (7)

Let us first consider the case that we have |Bi| = |Bi+1| for one i ∈ {1, 2}. Then
cm(Ci)− cm(Ci+1) simplifies to

|Bi|
|A|+ |Bi|

· (cm(Bi)− cm(Bi+1)) =
1

|A|+ |Bi|
·

 ∑
x∈Bi\Bi+1

x−
∑

x∈Bi+1\Bi

x

 .

Since Bi 6= Bi+1, there exists a point x ∈ Bi4Bi+1. Let us assume without loss of
generality that x ∈ Bi \ Bi+1 and that the positions of all points in (Bi ∪ Bi+1) \ {x}
are fixed arbitrarily. Then the event that ‖cm(Ci) − cm(Ci+1)‖ ≤ η is equivalent to the
event that x lies in a fixed hyperball of radius (|A|+ |Bi|)η ≤ nη. Hence, the probability
is bounded from above by (nη/σ)d ≤ (2ncη/σ)d.

Now assume that |B1| 6= |B2| 6= |B3|. For i ∈ {1, 2}, we set

ri =

(
|A|

|A|+ |Bi|
− |A|
|A|+ |Bi+1|

)−1

=
(|A|+ |Bi|) · (|A|+ |Bi+1|)
|A| · (|Bi+1| − |Bi|)

and

Zi =
|Bi+1|

|A|+ |Bi+1|
· cm(Bi+1)− |Bi|

|A|+ |Bi|
· cm(Bi) .

According to (7), the event ‖cm(Ci) − cm(Ci+1)‖ ≤ η is equivalent to the event that
cm(A) falls into the hyperball with radius |ri|η and center riZi. Hence, the event that
both ‖cm(C1)− cm(C2)‖ ≤ η and ‖cm(C2)− cm(C3)‖ ≤ η can only occur if the hyperballs
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B(r1Z1, |r1|η) and B(r2Z2, |r2|η) intersect. This event occurs if and only if the centers
r1Z1 and r2Z2 have a distance of at most (|r1|+ |r2|)η from each other. Hence,

Pr
[
(‖cm(C1)− cm(C2)‖ ≤ η) ∧ (‖cm(C2)− cm(C3)‖ ≤ η)

]
≤ Pr [‖r1Z1 − r2Z2‖ ≤ (|r1|+ |r2|)η] .

After some algebraic manipulations, we can write the vector r1Z1 − r2Z2 as

− |A|+ |B2|
|A| · (|B2| − |B1|)

·
∑
x∈B1

x− |A|+ |B2|
|A| · (|B3| − |B2|)

·
∑
x∈B3

x

+

(
|A|+ |B1|

|A| · (|B2| − |B1|)
+

|A|+ |B3|
|A| · (|B3| − |B2|)

)
·
∑
x∈B2

x .

Since B1 6= B3, there must be an x ∈ B14B3. We can assume that x ∈ B1 \ B3. If
x /∈ B2, we let an adversary choose all positions of the points in B1∪B2∪B3 \{x}. Then
the event ‖r1Z1 − r2Z2‖ ≤ (|r1| + |r2|)η is equivalent to x falling into a fixed hyperball
of radius ∣∣∣∣ |A| · (|B2| − |B1|)

|A|+ |B2|
(|r1|+ |r2|)

∣∣∣∣ η
=

∣∣∣∣(|B2| − |B1|) ·
(∣∣∣∣ |A|+ |B1|
|B2| − |B1|

∣∣∣∣+

∣∣∣∣ |A|+ |B3|
|B3| − |B2|

∣∣∣∣)∣∣∣∣ η ≤ 2ncη .

The probability of this event is thus bounded from above by (2ncη/σ)d.
It remains to consider the case that x ∈ (B1 ∩ B2) \ B3. Also in this case we let

an adversary choose the positions of the points in B1 ∪ B2 ∪ B3 \ {x}. Now the event
‖r1Z1 − r2Z2‖ ≤ (|r1|+ |r2|)η is equivalent to x falling into a fixed hyperball of radius∣∣∣∣ |A| · (|B3| − |B2|)

|A|+ |B2|
(|r1|+ |r2|)

∣∣∣∣ η
=

∣∣∣∣(|B3| − |B2|) ·
(∣∣∣∣ |A|+ |B1|
|B2| − |B1|

∣∣∣∣+

∣∣∣∣ |A|+ |B3|
|B3| − |B2|

∣∣∣∣)∣∣∣∣ η ≤ 2ncη .

Hence, the probability is bounded from above by (2ncη/σ)d also in this case.
This concludes the proof because there are at most (7n)2c choices for B1, B2, and B3

and, for every choice, the probability that both ‖cm(C1) − cm(C2)‖ ≤ η and ‖cm(C2) −
cm(C3)‖ ≤ η is at most (2ncη/σ)d.

Combining Lemmas 4.6 and 4.7 immediately yields the following result.

LEMMA 4.8. Fix ε ≥ 0 and a constant z2 ∈ N. Let ∆4 denote the smallest improve-
ment made by any sequence of four consecutive iterations that follow blueprints whose
nodes all have degree at most z2. Then,

Pr
[
∆4 ≤ ε

]
≤ ε ·

(
O(1) · n2(z2+1)

σ2

)
.

PROOF. Taking η =
√
ε and c = z2, Lemmas 4.6 and 4.7 immediately give

Pr
[
∆4 ≤ ε

]
≤ (7n)2z2 ·

(
2nz2

√
ε

σ

)d
.

Since d ≥ 2, the lemma follows from Fact 2.1 and the fact that z2 is a constant.
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4.5. Degenerate blueprints
LEMMA 4.9. Fix ε ∈ [0, 1]. Let ∆5 denote the smallest improvement made by any

iteration that follows a degenerate blueprint. Then,

Pr
[
∆5 ≤ ε

]
≤ ε ·

(
O(1) · n11

σ2

)
.

PROOF. We first argue that ∆5 ≤ ε implies δε ≤ 2
√
nε. For this, consider an arbi-

trary iteration that follows a degenerate blueprint and that makes an improvement of
at most ε. Let Ci and Cj be two clusters that have the same approximate center c and
that exchange a data point during the iteration, and let ci and cj denote the actual
centers of these clusters at the beginning of the iteration.

If Ci is unbalanced, then by Lemma 3.3 it follows that ‖c−ci‖ ≤
√
nε. If Ci is balanced,

then ‖c−ci‖ ≤
√
nε because the iteration follows the blueprint. Similarly one can argue

that in any case ‖c−cj‖ ≤
√
nε, and hence ‖ci−cj‖ ≤ 2

√
nε. This implies that δε ≤ 2

√
nε.

However, we know from Lemma 2.5 that this occurs with probability at most ε·(O(1)·
n5.5/σ)2.

4.6. Other Blueprints
Now, after having ruled out five special cases, we can analyze the case of a general
blueprint.

LEMMA 4.10. Fix ε ∈ [0, 1]. Let ∆6 be the smallest improvement made by any iter-
ation whose blueprint does not fall into any of the previous five categories with z1 = 8
and z2 = 7. This means that we consider only non-degenerate blueprints whose bal-
anced nodes have in- and out-degree at least 8d + 1, that do not have nodes of degree
one, that have at most two disjoint pairs of adjacent unbalanced node of degree 2, and
that have a node with degree at least 8. Then,

Pr
[
∆6 ≤ ε

]
≤ ε ·

(
O(1) · n33k30d3D3

σ6

)
.

Proving this lemma requires some preparation. Assume that the iteration follows
a blueprint B with m edges and b balanced nodes. We distinguish two cases: either
the center of one unbalanced cluster assumes a position that is

√
nε away from its

approximate position or all centers are at most
√
nε far away from their approximate

positions. In the former case the potential drops by at least ε according to Lemma 3.3.
If this is not the case, the potential drops if one of the points is far away from its
corresponding approximate bisector according to Lemma 3.5.

The fact that the blueprint does not belong to any of the previous categories allows
us to derive the following upper bound on its number of nodes.

LEMMA 4.11. Let B denote an arbitrary transition blueprint with m edges and b
balanced nodes in which every node has degree at least 2 and every balanced node
has degree at least 2dz1 + 2. Furthermore, let there be at most two disjoint pairs of
adjacent nodes of degree two in B, and assume that there is one node with degree at
least z2 + 1 > 2. Then the number of nodes in B is bounded from above by{

5
6m−

z2−4
3 if b = 0,

5
6m−

(2z1d−1)b−2
3 if b ≥ 1.

PROOF. Let A be the set of nodes of degree two, and let B be the set of nodes of
higher degree.

We first bound the number of edges between nodes in A. Towards that end, let GA
denote the subgraph induced by A. We ignore the directions of the edges and treat
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GA as an undirected multigraph. Since every node in GA has degree at most two, GA
decomposes into a collection of paths, cycles, and isolated vertices. In fact, there cannot
be any cycles. If a cycle did exist, then since all vertices in A have degree two, the
cycle would form an entire connected component of the transition graph. However, the
transition graph is weakly connected and has some vertex of degree at least z2 + 1 > 2,
so this is impossible. Therefore, GA can be decomposed into a collection of paths of
length `1, . . . , `t and possibly some number of isolated vertices. Since the transition
graph has at most two pairs of disjoint adjacent degree-two nodes, and since each path
of length `i admits

⌈
`i
2

⌉
such pairs, we must have

t∑
i=1

`i ≤ 2 ·
t∑
i=1

⌈`i
2

⌉
≤ 4 .

Therefore, there are at most 4 edges connecting nodes in A.
Let deg(A) and deg(B) denote the sum of the degrees of the nodes in A and B, re-

spectively. Then deg(A) + deg(B) = 2m and the total degree deg(A) of the vertices in A
is 2|A|. Hence, there are at least 2|A| − 8 edges between A and B. Therefore,

2|A| − 8 ≤ deg(B) = 2m− 2|A|

⇒ |A| ≤ 1

2
m+ 2 . (8)

Let t denote the number of nodes. The nodes in B have degree at least 3, there is one
node in B with degree at least z2 + 1, and balanced nodes have degree at least 2z1d+ 2
(and hence, belong to B). Therefore, if b = 0,

2m ≥ 2|A|+ 3(t− |A| − 1) + z2 + 1

⇐⇒ 2m+ |A| ≥ 3t+ z2 − 2

⇒ 5

2
m ≥ 3t+ z2 − 4 . (due to (8))

If b ≥ 1, then the node of degree at least z2 + 1 might be balanced and we obtain

2m ≥ 2|A|+ (2z1d+ 2)b+ 3(t− |A| − b)
⇐⇒ 2m+ |A| ≥ 3t+ (2z1d− 1)b

⇒ 5

2
m ≥ 3t+ (2z1d− 1)b− 2 . (due to (8))

The lemma follows by solving these inequalities for t.

We can now continue to bound Pr[Λ(B) ≤ λ] for a fixed blueprint B. The previous
lemma implies that a relatively large number of points must switch clusters, and each
such point is positioned independently according to a normal distribution. Unfortu-
nately, the approximate bisectors are not independent of these point locations, which
adds a technical challenge. We resolve this difficulty by changing variables and then
bounding the effect of this change.

LEMMA 4.12. For a fixed transition blueprint B with m edges and b balanced clus-
ters that does not belong to any of the previous five categories and for any λ ≥ 0, we
have

Pr
[
Λ(B) ≤ λ

]
≤


(√

dm2λ
σ

)m
6 +

z2−1
3

if b = 0,(√
dm2λ
σ

)m
6 +

(2z1d+2)b−2
3

if b ≥ 1.
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PROOF. We partition the set of edges in the transition graph into reference edges
and test edges. For this, we ignore the directions of the edges in the transition graph
and compute a spanning tree in the resulting undirected multi-graph. We let an arbi-
trary balanced cluster be the root of this spanning tree. If all clusters are unbalanced,
then an arbitrary cluster is chosen as the root. We mark every edge whose child is an
unbalanced cluster as a reference edge. All other edges are test edges. In this way, ev-
ery unbalanced cluster Ci can be incident to several reference edges. But we will refer
only to the reference edge between Ci’s parent and Ci as the reference edge associated
with Ci. Possibly except for the root, every unbalanced cluster is associated with ex-
actly one reference edge. Observe that in the transition graph, the reference edge of an
unbalanced cluster Ci can either be directed from Ci to its parent or vice versa, as we
ignored the directions of the edges when we computed the spanning tree. From now
on, we will again take into account the directions of the edges.

For every unbalanced cluster i with an associated reference edge, we define the point
qi as

qi =
∑
x∈Ai

x−
∑
x∈Bi

x = |Ai| cm(Ai)− |Bi| cm(Bi) , (9)

where Ai and Bi denote the sets of incoming and outgoing edges of Ci, respectively. The
intuition behind this definition is as follows: as we consider a fixed blueprint B, once qi
is fixed also the approximate center of cluster i is fixed. If there is at least one balanced
cluster, then every unbalanced cluster has an associated reference edge. Hence, once
each qi is fixed, the approximate centers of all unbalanced clusters are also fixed. If all
clusters are unbalanced, let q denote the point defined as in (9) but for the root instead
of cluster i. If qi is fixed for every cluster except for the root, then also the value of q is
implicitly fixed as q+

∑
qi = 0. Hence, once each qi is fixed, the approximate centers of

all unbalanced clusters are also fixed in this case.
Relabeling if necessary, we assume without loss of generality that the clusters with

an associated reference edge are the clusters C1, . . . , Cr and that the corresponding
reference edges correspond to the points p1, . . . , pr. Furthermore, we can assume that
the clusters are topologically sorted: if Ci is a descendant of Cj in the spanning tree,
then i < j.

Let us now assume that an adversary chooses an arbitrary position for qi for every
cluster Ci with i ∈ [r]. Intuitively, we will show that regardless of how the transition
blueprint B is chosen and regardless of how the adversary fixes the positions of the
qi, there is still enough randomness left to conclude that it is unlikely that all points
involved in the iteration are close to their corresponding approximate bisectors. We
can alternatively view this as follows: Our random experiment is to choose the md-
dimensional Gaussian vector p̄ = (p1, . . . , pm), where p1, . . . , pm ∈ Rd are the points that
correspond to the edges in the blueprint. For each i ∈ [r] and j ∈ [d] let b̄ij ∈ {−1, 0, 1}md
be the vector so that the jth component of qi can be written as p̄ · b̄ij . Then allowing the
adversary to fix the positions of the qi is equivalent to letting him fix the value of every
dot product p̄ · b̄ij .

After the positions of the qi are chosen, we know the location of the approximate
center of every unbalanced cluster. Additionally, the blueprint provides an approxi-
mate center for every balanced cluster. Hence, we know the positions of all approxi-
mate bisectors. We would like to estimate the probability that all points pr+1, . . . , pm
have a distance of at most λ from their corresponding approximate bisectors. For this,
we further reduce the randomness and project each point pi with i ∈ {r + 1, . . . ,m}
onto the normal vector of its corresponding approximate bisector. Formally, for each
i ∈ {r + 1, . . . ,m}, let hi denote a normal vector to the approximate bisector corre-
sponding to pi, and let b̄i1 ∈ [−1, 1]md denote the vector such that p̄ · b̄i1 ≡ pi · hi. This
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C1 C2

C3

C4

p1 p2

p3

C5

p4

p5

p6

p7

M =



−Id 0d Id 0d 0d 0d 0d
0d −Id Id 0d 0d 0d 0d
0d 0d Id 0d 0d 0d 0d
−Id Id 0d B4 0d 0d 0d
Id −Id 0d 0d B5 0d 0d
0d 0d −Id 0d 0d B6 0d
0d 0d 0d 0d 0d 0d B7


Fig. 1. Solid and dashed edges indicate reference and test edges, respectively. When computing the span-
ning tree, the directions of the edges are ignored. Hence, reference edges can either be directed from parent
to child or vice versa. In this example, the spanning tree consists of the edges p3, p7, p1, and p2, and its root
is C4. We denote by Id the d×d identity matrix and by 0d the d×d zero matrix. The first three columns of M
correspond to q1, q2, and q3. The rows correspond to the points p1, . . . , p7. Each block matrix Bi corresponds
to an orthonormal basis of Rd.

means that pi is at a distance of at most λ from its approximate bisector if and only if
p̄ · b̄i1 lies in some fixed interval Ii of length 2λ. This event depends only on pi and is
independent of pj for j ∈ {r + 1, . . . ,m} with j 6= i, given that the approximate centers
are fixed. Thus, the vector b̄i1 is a unit vector in the subspace spanned by the vectors
e(i−1)d+1, . . . , eid from the canonical basis. Let Bi = {b̄i1, . . . , b̄id} be an orthonormal
basis of this subspace. Let M denote the (md) × (md) matrix whose columns are the
vectors b̄11, . . . , b̄1d, . . . , b̄m1, . . . , b̄md. Figure 1 illustrates these definitions.

For i ∈ [r] and j ∈ [d], the values of p̄ · b̄ij are fixed by an adversary. Additionally, we
allow the adversary to fix the values of p̄ · b̄ij for i ∈ {r+1, . . . ,m} and j ∈ {2, . . . , d}. All
this together defines an (m− r)-dimensional affine subspace U of Rmd. We stress that
the subspace U is chosen by the adversary and no assumptions about U are made. In
the following, we will condition on the event that p̄ = (p1, . . . , pm) lies in this subspace.
We denote by F the event that p̄ · b̄i1 ∈ Ii for all i ∈ {r + 1, . . . ,m}. Conditioned on the
event that the random vector p̄ lies in the subspace U , p̄ follows an (m−r)-dimensional
Gaussian distribution with standard deviation σ. However, we cannot directly esti-
mate the probability of the event F as the projections of the vectors b̄i1 onto the affine
subspace U might not be orthogonal. To estimate the probability of F , we perform a
change of variables. Let ā1, . . . , ām−r be an arbitrary orthonormal basis of the (m− r)-
dimensional subspace obtained by shifting U so that it contains the origin. Assume
for the moment that we had, for each of these vectors ā`, an interval I ′` such that F
can only occur if p̄ · ā` ∈ I ′` for every `. Then we could bound the probability of F from
above by

∏ |I′`|√
2πσ

as the p̄ · ā` can be treated as independent one-dimensional Gaussian
random variables with standard deviation σ after conditioning on U . In the following,
we construct such intervals I ′`.

It is important that the vectors b̄ij for i ∈ [m] and j ∈ [d] form a basis of Rmd. To
see this, let us first have a closer look at the matrix M ∈ Rmd×md viewed as an m×m
block matrix with blocks of size d × d. From the fact that the reference points are
topologically sorted it follows that the upper left part, which consists of the first dr
rows and columns, is an upper triangular matrix with non-zero diagonal entries.

As the upper right (dr)×d(m− r) sub-matrix of M consists solely of zeros, the deter-
minant of M is the product of the determinant of the upper left (dr)× (dr) sub-matrix
and the determinant of the lower right d(m − r) × d(m − r) sub-matrix. Both of these
determinants can easily be seen to be different from zero. Hence, also the determi-
nant of M is not equal to zero, which in turn implies that the vectors b̄ij are linearly
independent and form a basis of Rmd.
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In particular, we can write every ā` as a linear combination of the vectors b̄ij . Let

ā` =
∑
i,j

c`ij b̄ij

for some coefficients c`ij ∈ R. Since the values of p̄ · b̄ij are fixed for i ∈ [r] and j ∈ [d] as
well as for i ∈ {r + 1, . . . ,m} and j ∈ {2, . . . , d}, we can write

p̄ · ā` = κ` +

m∑
i=r+1

c`i1(p̄ · b̄i1)

for some constant κ` that depends on the fixed values chosen by the adversary. Let
cmax = max{|c`i1| | i > r}. The event F happens only if, for every i > r, the value of p̄ · b̄i1
lies in some fixed interval of length 2λ. Thus, we conclude that F can happen only if
for every ` ∈ [m − r] the value of p̄ · ā` lies in some fixed interval I ′` of length at most
2cmax(m− r)λ. It only remains to bound cmax from above. For ` ∈ [m− r], the vector c`
of the coefficients c`ij is obtained as the solution of the linear system Mc` = ā`. The fact
that the upper right (dr)× d(m− r) sub-matrix of M consists only of zeros implies that
the first dr entries of ā` uniquely determine the first dr entries of the vector c`. As ā` is
a unit vector, the absolute values of all its entries are bounded by 1. Now we observe
that each row of the matrix M contains at most two non-zero entries in the first dr
columns because every edge in the transition blueprint belongs to only two clusters.
This and a short calculation show that the absolute values of the first dr entries of c
are bounded by r: The absolute values of the entries d(r − 1) + 1, . . . , dr coincide with
the absolute values of the corresponding entries in ā` and are thus bounded by 1. Given
this, the rows d(r − 2) + 1, . . . , d(r − 1) imply that the corresponding values in ā` are
bounded by 2 and so on.

Assume that the first dr coefficients of c` are fixed to values whose absolute values
are bounded by r. This leaves us with a system M ′(c`)′ = ā′`, where M ′ is the lower
right

(
(m − r)d

)
×
(
(m − r)d

)
sub-matrix of M , (c`)′ are the remaining (m − r)d en-

tries of c`, and ā′` is a vector obtained from ā` by taking into account the first dr fixed
values of c`. All absolute values of the entries of ā′` are bounded by 2r + 1. As M ′ is
a diagonal block matrix, we can decompose this into m − r systems with d variables
and equations each. As every d × d-block on the diagonal of the matrix M ′ is an or-
thonormal basis of the corresponding d-dimensional subspace, the matrices in the sub-
systems are orthonormal. Furthermore, the right-hand sides have a norm of at most
(2r + 1)

√
d ≤ 3

√
dr. Hence, we can conclude that cmax is bounded from above by 3

√
dr.

Thus, the probability of the event F can be bounded from above by
m∏

i=r+1

|I ′i|√
2πσ

≤

(
6
√
dr(m− r)λ√

2πσ

)m−r
≤

(√
dm2λ

σ

)m−r
,

where we used that r(m − r) ≤ m2/4. Using Fact 2.1, we can replace the exponent
m−r by a lower bound. If all nodes are unbalanced, then r equals the number of nodes
minus one. Otherwise, if b ≥ 1, then r equals the number of nodes minus b. Hence,
Lemma 4.11 yields

Pr
[
Λ(B) ≤ λ

]
≤


(√

dm2λ
σ

)m
6 +

z2−4
3 +1

if b = 0,(√
dm2λ
σ

)m
6 +

(2z1d−1)b−2
3 +b

if b ≥ 1,

which completes the proof.
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With the previous lemma, we can bound the probability that there exists an iteration
whose transition blueprint does not fall into any of the previous categories and that
makes a small improvement.

PROOF OF LEMMA 4.10. Let B denote the set of (m, b, ε)-blueprints that do not fall
into the previous five categories. Here, ε is fixed but there are nk possible choices for
m and b. As in the proof of Lemma 4.3, we will use a union bound to estimate the
probability that there exists a blueprint B ∈ B with Λ(B) ≤ λ. Note that once m and b
are fixed, there are at most (nk2)m possible choices for the edges in a blueprint, and for

every balanced cluster, there are at most
(
D
√
d√

nε

)d
choices for its approximate center.

Since B does not belong to any of the previous five categories, m ≥ max(z2 + 1, b(dz1 +
1)) = max(8, 8bd+ b) because there is one vertex with degree at least z2 + 1, and there
are b vertices with degree at least 2dz1 + 2.

Now we set Y = k5 ·
√
ndD. Lemma 4.12 yields the following bound:

Pr

[
∃B ∈ B : Λ(B) ≤ 6D

√
nd

Y
· ε1/3

]

≤
n∑

m=8

(nk2)m ·
(

6m2dD
√
n

Y σ
· ε1/3

)m
6 +

z2−1
3

+

k∑
b=1

n∑
m=8bd+b

(
D
√
d√

nε

)bd
· (nk2)m ·

(
6m2dD

√
n

Y σ
· ε1/3

)m
6 +

(2z1d+2)b−2
3

. (10)

Each term in the first sum simplifies as follows:

(nk2)m ·
(

6m2dD
√
n

Y σ
· ε1/3

)m
6 +

z2−1
3

≤
(

6n17/2k12dD

Y σ
· ε1/3

)m
6 +

z2−1
3

=

(
6n8k7d1/2D1/2

σ
· ε1/3

)m
6 +

z2−1
3

.

Furthermore, m6 + z2−1
3 ≥ 8

6 + 6
3 > 3, so we can use Fact 2.1 to decrease the exponent

here, which gives us(
6n8k7d1/2D1/2

σ
· ε1/3

)3

= ε ·
(
O(1) · n24k21d3/2D3/2

σ3

)
.

Similarly, each term in the second sum simplifies as follows:(
D
√
d√

nε

)bd
· (nk2)m ·

(
6m2dD

√
n

Y σ
· ε1/3

)m
6 +

(2z1d+2)b−2
3

≤

(
D
√
d√

nε

)bd
·
(

6n8k7d1/2D1/2

σ
· ε1/3

)m
6 +

(2z1d+2)b−2
3

.

Furthermore,

m

6
+

(2z1d+ 2)b− 2

3
≥ 8bd+ b

6
+

16bd+ 2b− 2

3
≥ 20bd

3
.
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Therefore, we can further bound the terms in the second sum by(D√d√
nε

)3/20

· 6n8k7d1/2D1/2

σ
· ε1/3

m
6 +

(2z1d+2)b−2
3

=

(
6n317/40k7d23/40D13/20

σ
· ε31/120

)m
6 +

(2z1d+2)b−2
3

.

As noted above,

m

6
+

(2z1d+ 2)b− 2

3
≥ 20bd

3
>

120

31
,

so we can use Fact 2.1 to decrease the exponent, which gives us

ε ·
(

6n317/40k7d23/40D13/20

σ

)120/31

< ε ·
(
O(1) · n317/10k28d23/10D13/5

σ4

)
.

Using these bounds, we can simplify inequality (10):

Pr

[
∃B ∈ B : Λ(B) ≤ 6D

√
nd

Y
· ε1/3

]

≤ ε · n ·
(
O(1) · n24k21d3/2D3/2

σ3

)
+ ε · nk ·

(
O(1) · n317/10k28d23/10D13/5

σ4

)
≤ ε ·

(
O(1) · n327/10k29d23/10D13/5

σ4

)
.

On the other hand Y = k5 ·
√
ndD ≥ 1, so Lemma 2.5 guarantees

Pr
[
δε ≤ Y ε1/6

]
≤ ε ·

(
O(1) · n5Y

σ

)6

= ε ·
(
O(1) · n11/2k5d1/2D1/2

σ

)6

= ε ·
(
O(1) · n33k30d3D3

σ6

)
.

Finally, we know from Lemma 3.5 that if a non-degenerate blueprint B results in a
potential drop of at most ε, then δε · Λ(B) ≤ 6D

√
ndε. We must therefore have either

δε ≤ Y ε1/6 or Λ(B) ≤ 6D
√
nd

Y · ε1/3. Therefore,

Pr
[
∆6 ≤ ε

]
≤ Pr

[
∃B ∈ B : Λ(B) ≤ 6D

√
nd

Y
· ε1/3

]
+ Pr

[
δε ≤ Y ε1/6

]
≤ ε ·

(
O(1) · n327/10k29d23/10D13/5

σ4

)
+ ε ·

(
O(1) · n33k30d3D3

σ6

)
≤ ε ·

(
O(1) · n33k30d3D3

σ6

)
,

which concludes the proof.
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4.7. Proof of the Main Theorem
Given the analysis of the different types of iterations, we can complete the proof that
k-means has polynomial smoothed running time.

PROOF OF THEOREM 1.1. Throughout this section, we assume d ≥ 2. The proof of
Theorem 1.1 for d = 1 is deferred to Lemma 5.3.

Let T denote the maximum number of iterations that k-means can need on the per-
turbed data set X , and let ∆ denote the minimum possible potential drop over a period
of four consecutive iterations. As remarked in Section 2, we can assume that all the
data points lie in the hypercube [−D/2, D/2]d for D =

√
90kd · ln(n), because the alter-

native contributes only an additive term of +1 to E [T ].
After the first iteration, we know Ψ ≤ ndD2. This implies that if T ≥ 4t + 1, then

∆ ≤ ndD2/t. However, in the previous sections, we proved that for ε ∈ (0, 1],

Pr[∆ ≤ ε] ≤
6∑
i=1

Pr
[
∆i ≤ ε

]
≤ ε · O(1) · n33k30d3D3

σ6
.

Recall from Section 2 that T ≤ n3kd regardless of the perturbation. Therefore,

E [T ] ≤ O(ndD2) +

n3kd∑
t=ndD2

4 · Pr
[
T ≥ 4t+ 1

]
≤ O(ndD2) +

n3kd∑
t=ndD2

4 · Pr

[
∆ ≤ ndD2

t

]

≤ O(ndD2) +

n3kd∑
t=ndD2

4ndD2

t
·
(
O(1) · n33k30d3D3

σ6

)

= O(ndD2) +

(
O(1) · n34k30d4D5

σ6

)
·

 n3kd∑
t=ndD2

1

t


= O(ndD2) +

(
O(1) · n34k30d4D5

σ6

)
·O(kd · ln(n))

=
O(1) · n34k34d8 · ln4(n)

σ6
,

which completes the proof.

5. A POLYNOMIAL BOUND IN ONE DIMENSION
In this section, we consider a one-dimensional set X ⊆ R of points. The aim is to prove
that the expected number of steps until the potential has dropped by at least 1 is
bounded by a polynomial in n and 1/σ.

We say that the point set X is ε-spread if the second-smallest distance between any
two points is at least ε: For every x1, x2, x3, x4 ∈ X , where x1 6= x4 but x2 and x3 are
possibly equal, we have |x1 − x2| ≥ ε or |x3 − x4| ≥ ε. The following lemma justifies the
notion of ε-spread.

LEMMA 5.1. Assume that X is ε-spread. Then the potential drops by at least ε2

4n2 in
every iteration.
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PROOF. Since d = 1, we can order the clusters from left to right. A cluster is called
active during an iteration if it gains or loses points during this iteration. Let Ci be the
left-most active cluster, and let Cj be the right-most active cluster.

We consider Ci first. Ci exchanges only points with the cluster to its right, for other-
wise it would not be the leftmost active cluster. Thus, it cannot gain and lose points
simultaneously. Assume that it gains points. Let Ai be the set of points of Ci before the
iteration, and let Bi be the set of points that it gains. Obviously, minx∈Bi

x > maxx∈Ai
x.

If Bi ∪ Ai contains at least three points, then we are done: If |Ai| ≥ 2, then we con-
sider the two rightmost points x1 ≤ x2 of Ai and the leftmost point x3 of Bi. We
have |x1 − x2| ≥ ε or |x2 − x3| ≥ ε since X is ε-spread. Thus, x3 has a distance of
at least ε/2 from the center of mass cm(Ai) because dist(x1, x3) ≥ ε, x1 ≤ x2 ≤ x3, and
cm(Ai) ≤ (x1 + x2)/2. Hence,

cm(Bi) ≥ cm(Ai) +
ε

2
.

Thus, the cluster center moves to the right from cm(Ai) to

cm(Ai ∪Bi) =
|Ai| · cm(Ai) + |Bi| · cm(Bi)

|Ai ∪Bi|

≥
|Ai ∪Bi| · cm(Ai) + |Bi| · ε2

|Ai ∪Bi|
≥ cm(Ai) +

ε

2n
.

The case |Ai| = 1 and |Bi| ≥ 2 is analogous. The same holds if cluster Cj switches from
Aj to Aj ∪ Bj with |Aj ∪ Bj | ≥ 3, or if Ci or Cj lose points but initially have at least
three points. Thus, in these cases, a cluster moves by at least ε/(2n), which causes a
potential drop by at least ε2/(4n2).

It remains to consider the case that |Ai ∪ Bi| = 2 = |Aj ∪ Bj |. Thus, Ai = {ai},
Bi = {bi}, and also Aj = {aj}, Bj = {bj}. We restrict ourselves to the case that Ci
consists only of ai and gains bi and that Cj has aj and bj and loses bj because all other
cases can be handled analogously. If only two clusters are active, we have bi = bj , and
we have only three different points. Otherwise, all four points are distinct. In both
cases we have either |ai− bi| ≥ ε or |aj− bj | ≥ ε since X is ε-spread. But then either the
center of Ci or the center of Cj moves by at least ε/2, which implies that the potential
decreases by at least ε2/4 ≥ ε2/(4n2).

If X is ε-spread, then the number of iterations until the potential drops by at least 1
is at most 4n2/ε2 by the lemma above. Let us prove that X is likely to be ε-spread.

LEMMA 5.2. The probability that X is not ε-spread is bounded from above by n4ε2

σ2 .

PROOF. The point set X is not ε-spread if there exist points x1, x2, x3, x4 ∈ X , where
x1 6= x4 but x2 = x3 is allowed, with |x1 − x2| < ε and |x3 − x4| < ε. Let an adversary
fix points x1, x2, x3, x4. To avoid dependencies, let the adversary also fix the positions
of x2 and x3. The probability that x1 is within a distance of less than ε of x2 is at most

2ε√
2πσ
≤ ε

σ . The probability that x4 is within a distance of less than ε of x3 is bounded
analogously. Since the positions of x2 and x3 are fixed, the two events are independent.
Thus, the probability that both distances are smaller than ε is at most

(
ε
σ

)2. The lemma
follows now from a union bound over the at most n4 possible choices for x1, . . . , x4.

Now we have all ingredients for the proof of the main lemma of this section.

LEMMA 5.3. Fix an arbitrary set X ′ ⊆ [0, 1] of n points and assume that each point
in X ′ is independently perturbed by a normal distribution with mean 0 and standard
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deviation σ, yielding a new set X of points. Then the expected number of iterations of
k-means on X is bounded by O

(
n7k2 log2 n

σ2

)
.

PROOF. We choose D =
√

90k ln(n). As remarked in Section 2, we can assume that
the perturbed point set is a subset of the interval [−D/2, D/2]. The alternative con-
tributes an additive term of 1 to the expected number of iterations.

If all points are in the interval [−D/2, D/2], then the potential after the first iter-
ation is bounded from above by nD2. Let T be the random variable of the number of
iterations. If T ≥ t + 2, then X cannot be ε-spread with 4n3D2/ε2 ≤ t. Thus, X cannot
be ε-spread with ε = 2Dn3/2/

√
t. As k-means runs for at most n3k iterations,

E [T ] = 2 +

n3k∑
t=1

Pr
[
T ≥ t+ 2

]
≤ 2 +

n3k∑
t=1

Pr

[
X is not

2Dn3/2

√
t

-spread
]

≤ 2 +

n3k∑
t=1

4D2n7

tσ2
=

n3k∑
t=1

O

(
kn7 log n

tσ2

)
= O

(
kn7 log n

σ2
· log n3k

)
= O

(
n7k2 log2 n

σ2

)
.

6. CONCLUDING REMARKS
In this paper, we settled the smoothed running time of the k-means method for ar-
bitrary k and d. The exponents in our smoothed analysis are constant but large. We
did not make a huge effort to optimize the exponents as the arguments are intricate
enough even without trying to optimize constants. Furthermore, we believe that our
approach, which is essentially based on bounding the smallest possible improvement
in a single step, is too pessimistic to yield a bound that matches experimental obser-
vations. A similar phenomenon occurred already in the smoothed analysis of the 2-opt
heuristic for the TSP [Englert et al. 2007]. There it was possible to improve the bound
for the number of iterations by analyzing sequences of consecutive steps rather than
single steps. It is an interesting question if this approach also leads to an improved
smoothed analysis of k-means.

Squared Euclidean distances, while most natural, are not the only distance measure
used for k-means clustering. The k-means method can be generalized to arbitrary Breg-
man divergences [Banerjee et al. 2005]. Bregman divergences include the Kullback-
Leibler divergence, which is used, e.g., in text classification, or Mahalanobis distances.
Due to its role in applications, k-means clustering with Bregman divergences has at-
tracted a lot of attention recently [Ackermann and Blömer 2009; Ackermann et al.
2010]. Recently, upper bounds of poly(n

√
k, 1/σ) as well as kkd · poly(n, 1/σ) have been

shown for the smoothed running time of k-means with (almost arbitrary) Bregman
divergences [Manthey and Röglin 2009b]. However, it remains open if the polynomial
bound can be transferred to general Bregman divergences as well.
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