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1. MULTI-CRITERIA TRAVELING SALESMAN PROBLEM

1.1. Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most famous combinatorial optimization
problems. Given a graph, the goal is to find a Hamiltonian cycle of maximum or minimum
weight (Max-TSP or Min-TSP). An instance of Max-TSP is a complete graph G = (V,E)
with edge weights w : E → Q+. The goal is to find a Hamiltonian cycle of maximum
weight. The weight of a Hamiltonian cycle (more general, of any set of edges) is the sum of
the weights of its edges. If G is undirected, we have Max-STSP (symmetric TSP). If G is
directed, we obtain Max-ATSP (asymmetric TSP).

An instance of Min-TSP is also a complete graph G with edge weights w that fulfill the
triangle inequality: w(u, v) ≤ w(u, x) + w(x, v) for all u, v, x ∈ V . The goal is to find a
Hamiltonian cycle of minimum weight. We have Min-STSP if G is undirected and Min-
ATSP if G is directed.

All these variants are NP-hard and APX-hard. Thus, we have to content ourselves with
approximate solutions. The currently best approximation algorithm for Max-STSP achieves
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an approximation ratio of 7/9 [Paluch et al. 2009], and the currently best algorithm for Max-
ATSP achieves a ratio of 2/3 [Kaplan et al. 2005]. Min-ATSP can be approximated with
a factor of O(log n/ log log n), where n is the number of vertices of the instance [Asadpour
et al. 2010].

Cycle covers are often used for designing approximation algorithms for the TSP [Bläser
and Manthey 2005; Kaplan et al. 2005; Feige and Singh 2007]. A cycle cover of a graph is a
set of vertex-disjoint cycles such that every vertex is part of exactly one cycle. The general
idea is to compute an initial cycle cover and then to join the cycles to obtain a Hamiltonian
cycle. This technique is called subtour patching [Gilmore et al. 1985]. Hamiltonian cycles are
special cases of cycle covers that consist of a single cycle. Thus, the weight of a maximum-
weight cycle cover bounds the weight of a maximum-weight Hamiltonian cycle from above,
and minimum-weight cycle covers provide lower bounds for minimum-weight Hamiltonian
cycles. In contrast to Hamiltonian cycles, cycle covers of maximum or minimum weight can
be computed efficiently by reduction to matching problems [Ahuja et al. 1993].

1.2. Multi-Criteria Optimization

In many optimization problems, there is more than one objective function. This is also the
case for the TSP: We might want to minimize travel time, expenses, number of flight changes,
etc., while maximizing, e.g., our profit along the way. This leads to k-criteria variants of the
TSP (k-Max-STSP, k-Max-ATSP, k-Min-STSP, and k-Min-ATSP for short).

With respect to a single criterion, the term “optimal solution” is well-defined. However, if
several criteria are involved, there is no natural notion of a best choice. Instead, we have to
be satisfied with trade-off solutions. The goal of multi-criteria optimization is to cope with
this dilemma. To transfer the concept of optimal solutions to multi-criteria optimization
problems, the notion of Pareto curves (also known as Pareto sets or efficient sets) has
been introduced [Ehrgott 2005]. A Pareto curve is a set of solutions that can be considered
optimal.

We introduce the following terms only for maximization problems. After that, we briefly
state the differences for minimization problems. An instance of k-Max-TSP is a complete
graph G with edge weights w1, . . . , wk : E → Q+. A Hamiltonian cycle H dominates another

Hamiltonian cycle H̃ if wi(H) ≥ wi(H̃) for all i ∈ [k] = {1, . . . , k} and wi(H) > wi(H̃) for

at least one i. This means that H is strictly preferable to H̃. A Pareto curve of solutions
contains all solutions that are not dominated by another solution. For other maximization
problems, k-criteria variants are defined analogously.

Unfortunately, Pareto curves cannot be computed efficiently in many cases: First, they
are often of exponential size. Second, because of reductions from knapsack problems, they
are NP-hard to compute even for otherwise easy optimization problems. Third, TSP is NP-
hard already with only one objective function, and optimization problems do not become
easier with more objectives involved. Therefore, we have to be satisfied with approximate
Pareto curves.

For simpler notation, let w(H) = (w1(H), . . . , wk(H)). Inequalities are meant component-
wise. A set P of Hamiltonian cycles of V is called an α approximate Pareto curve for (G,w)

if the following holds: For every Hamiltonian cycle H̃, there exists a Hamiltonian cycle
H ∈ P with w(H) ≥ αw(H̃). We have α ≤ 1, and a 1 approximate Pareto curve is a Pareto
curve.

An algorithm is called an α approximation algorithm if, given G and w, it computes
an α approximate Pareto curve. It is called a randomized α approximation if its success
probability is at least 1/2. This success probability can be amplified to 1−2−m by executing
the algorithm m times and taking the union of all sets of solutions. (We can also remove
solutions from this union that are dominated by other solutions in the union.) Again, the
concepts can be transfered easily to other maximization problems.
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Papadimitriou and Yannakakis [2000] have shown that (1−ε) approximate Pareto curves
of size polynomial in the instance size and 1/ε exist. The technical requirement for the
existence is that the objective values of all solutions for an instance X are either 0 or within
an interval [2−p(N), 2p(N)] for some polynomial p, where N is the size of X. This is fulfilled
by most optimization problems and in particular in our case.

A fully polynomial time approximation scheme (FPTAS) for a multi-criteria optimization
problem computes (1 − ε) approximate Pareto curves in time polynomial in the size of
the instance and 1/ε for all ε > 0. Multi-criteria maximum-weight matching admits a
randomized FPTAS [Papadimitriou and Yannakakis 2000], i. e., the algorithm succeeds
in computing a (1 − ε) approximate Pareto curve with a probability of at least 1/2. This
randomized FPTAS yields also a randomized FPTAS for the multi-criteria maximum-weight
cycle cover problem [Manthey and Ram 2009].

To define Pareto curves and approximate Pareto curves also for minimization problems,
in particular for k-Min-STSP and k-Min-ATSP, we have to replace all “≥” and “>” above
by “≤” and “<”. Furthermore, α approximate Pareto curves are now defined for α ≥ 1,
and an FPTAS achieves an approximation ratio of 1 + ε. There also exists a randomized
FPTAS for the multi-criteria minimum-weight cycle cover problem.

1.3. Known Results

For an overview of the literature about multi-criteria optimization, including multi-criteria
TSP, we refer to Ehrgott and Gandibleux [2000; 2005].

Angel et al. [2004; 2005] have considered k-Min-STSP restricted to edge weights 1 and 2.
They analyzed a local search heuristic and proved that it achieves an approximation ratio
of 3/2 for k = 2 and of 2 − 2

k+1 for k ≥ 3. Ehrgott [2000] has analyzed a variant of k-
Min-STSP, where all objectives are encoded into a single objective by using some norm. He
proved approximation ratios between 3/2 and 2 for this problem, where the ratio depends
on the norm used. k-Min-STSP can be approximated with a ratio of 2 + ε [Manthey and
Ram 2009]. For k-Min-ATSP, we are not aware of any prior approximation algorithm.

Bläser et al. [2008] have devised the first randomized approximations for k-Max-STSP
and k-Max-ATSP. Their algorithms achieve ratios of 1

k −ε for k-Max-STSP and 1
k+1 −ε for

k-Max-ATSP. They have conjectured that approximation ratios of Ω(1/ log k) are possible.

1.4. New Results

We devise approximation algorithms for k-Max-STSP, k-Max-ATSP, and k-Min-ATSP that
work for any number k of criteria.

First, we solve the conjecture of Bläser et al. [2008] affirmatively. We even prove a stronger
result: For k-Max-STSP, we achieve a ratio of 2/3− ε, while for k-Max-ATSP, we achieve a
ratio of 1/2−ε (Section 4). The general idea of these algorithms is sketched in Section 2. After
that, we introduce a decomposition technique in Section 3 that will lead to our algorithms
(Section 4). Our algorithms are randomized and their running-time is polynomial in the
input size for any fixed ε > 0 and any fixed number k of criteria.

Furthermore, as a first step towards deterministic approximation algorithms for k-Max-
TSP, we devise an approximation algorithm for 2-Max-STSP that achieves an approximation
ratio of 7/27 (Section 5). As a side effect, this result proves that for 2-Max-STSP, there
always exists a single Hamiltonian cycle that already is a 1/3 approximate Pareto curve.
This does not hold for any other variant of multi-criteria TSP.

Finally, we devise the first approximation algorithm for k-Min-ATSP (Section 6). The
approximation ratio of our algorithm is log n + ε, where n is the number of vertices. Our
algorithm is randomized and its running-time is polynomial in the input size and in 1/ε for
any fixed number of criteria.
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2. IDEA FOR MULTI-CRITERIA MAX-TSP

For Max-ATSP, we can easily get a 1/2 approximation: We compute a maximum-weight
cycle cover and remove the lightest edge of each cycle. This yields a collection of paths.
Then we add edges to connect the paths, which yields a Hamiltonian cycle. For Max-STSP,
this approach gives a ratio of 2/3 since the length of every cycle is at least three.

Unfortunately, this does not generalize to multi-criteria Max-TSP. The reason is that
the term “lightest edge” is not well defined: An edge that has little weight with respect
to one objective might have a huge weight with respect to another objective. Based on
this observation, the basic idea behind our algorithms is “guessing” the heavy edges such
that the remaining edges are all light-weight. A similar technique has already been used
by Ravi and Goemans [1996] for bi-criteria spanning trees. Since the remaining edges are
light-weight, and we can break one edge of every cycle without losing too much weight with
respect to any objective function. This is based on the decompositions introduced in the
following section.

3. DECOMPOSITIONS

Given a cycle cover C, a decomposition of C is a collection P ⊆ C of paths. From such a
collection P , we obtain a Hamiltonian cycle just by connecting the endpoints of the paths
appropriately. In order to get approximation algorithms for multi-criteria Max-TSP, our goal
is to find collections P with w(P ) ≥ αw(C) for an α as large as possible. Decompositions
have already been used by Bläser et al. [2008] for their approximation algorithms for multi-
criteria Max-TSP. With their decompositions, they have achieved approximation ratios of
1
k−ε and 1

k+1−ε, and they conjectured that approximation ratio Ω(1/ log k) is possible. We
introduce a slightly different kind of decompositions, which enables us to design constant-
factor approximations.

Let C be a cycle cover, and let w = (w1, . . . , wk) be edge weights. We say that the pair

(C,w) is η-light for some η ≤ 1 if w(e) ≤ ηw(C) for all e ∈ C. From now on, let ηk,ε = ε2

2 ln k .

Theorem 3.1. Let ε ∈ (0, 12 ) be arbitrary, and let k ≥ 2 be arbitrary. Let C be a cycle
cover, and let w = (w1, . . . , wk) be edge weights such that (C,w) is ηk,ε-light.

If C is directed, then there exists a collection P ⊆ C of paths with w(P ) ≥ ( 1
2 − ε) ·w(C).

If C is undirected, then there exists a collection P ⊆ C of paths with w(P ) ≥ ( 2
3−ε)·w(C).

Proof. The proof uses Hoeffding’s inequality [1963, Theorem 2].

Lemma 3.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random vari-
ables, where Xj assumes values in the interval [aj , bj ]. Let X =

∑n
j=1Xj. Then

P
(
X < E(X)− t

)
≤ exp

(
− 2t2∑n

j=1(bj − aj)2

)
.

We start by considering the directed case. Let C be a directed cycle cover with edge
weights w such that (C,w) is ηk,ε-light. We scale the weights such that w(C) = 1/ηk,ε.
Thus, w(e) ≤ 1 for all e ∈ C.

Let c1, . . . , cm be the cycles of C, and consider any cycle cj of C. We choose one edge of cj
for removal uniformly at random. By doing this for j ∈ [m], we obtain a decomposition P of
C. Fix any objective i. Let Xj =

∑
e∈cj∩P wi(e) be the random variable of the contribution

of cj to the weight wi(P ). Since wi(e) ∈ [0, 1] for all e ∈ C, there exist aj , bj ∈ R such
that Xj assumes only values in [aj , bj ] and 0 ≤ bj − aj ≤ 1. Let X =

∑m
j=1Xj = wi(P ) be

the random variable of the weight of P with respect to objective i. Since every cycle has a
length of at least two, the probability of deleting any fixed edge is at most 1/2. Thus, by
linearity of expectation, we have E(X) ≥ A/2.
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If we can show that P(X < ( 1
2 − ε) · A) < 1/k, then, by a union bound, P(∃i ∈ [k] :

wi(P ) < ( 1
2 −ε) ·A) < 1, which would imply the existence of a decomposition P as claimed.

Since 0 ≤ bj − aj ≤ 1, we have

wi(C) = A =

m∑
j=1

wi(cj) ≥
m∑
j=1

bj ≥
m∑
j=1

bj − aj ≥
m∑
j=1

(bj − aj)2.

Plugging this into Hoeffding’s bound yields

P
(
wi(P ) <

(
1

2
− ε
)
· wi(C)

)
≤ exp

(
−2ε2wi(C)2

wi(C)

)
<

1

k2

for k ≥ 2 since wi(C) = 2 ln k/ε2 = 1/ηk,ε. The proof for undirected cycle covers is identical
except for E(X) ≥ 2A/3 and therefore omitted.

We now know that decompositions exist. But, in order to use them in approximation
algorithms, we have to find them efficiently. Theorem 3.1 immediately yields a randomized
algorithm: Assume that we have an ηk,ε-light pair (C,w). We randomly select one edge of
every cycle of C for removal and put all remaining edges into P . The probability that P is
not a (1

2−ε)- or (2
3−ε)-decomposition (depending on whether C is directed or undirected) is

bounded from above by 1/k ≤ 1/2. Thus, we obtain a feasible decomposition with constant
probability. We iterate this process until a feasible decomposition is found.

For the deterministic algorithm, we assume again that we have an ηk,ε-light pair (C,w).
We scale the weights such that wi(C) = 1/ηk,ε for all i. Then w(e) ≤ 1 for all e ∈ C. The
main idea is to reduce an arbitrary instance to a new instance whose size depends only on
k and ε.

First, we normalize our cycle cover such that they consist solely of cycles of the shortest
possible length. For directed cycle covers C, we can restrict ourselves to cycles of length two:
Any cycle c of length ` with edges e1, . . . , e` can be replaced by b`/2c cycles (e2j−1, e2j) for
j = 1, . . . , b`/2c. If ` is odd, then we add an edge e`+1 with w(e`+1) = 0 and add the cycle
(e`, e`+1). (Technically, edges consist of vertices, and we cannot simply reconnect them.
What we mean is that we create new cycles of length two, and the edges of those cycles
have the same names and the same weights as in the original cycles.) We do this for all
cycles of length at least three and call the resulting cycle cover C ′. Now any decomposition
P ′ of C ′ yields a decomposition P of the original cycle cover C by removing the newly
added edges e`+1 if they are in P ′. Furthermore, wi(e) ≤ 1 for the new cycle cover C ′.
Analogously, undirected cycle covers can be normalized to consist solely of cycles of length
three.

Second, assume that we have two cycles c and c′ in a normalized cycle cover with w(c) +
w(c′) ≤ 1. Then we can combine c and c′ to c̃: Let e1, e2 and e′1, e

′
2 be the edges of c and c′,

respectively. Then we can replace ei and e′i by ẽi with w(ẽi) = w(ei)+w(e′i). The cycle cover
plus edge weights thus obtained are still ηk,ε-light. We continue combining cycles greedily
until no more combinations are possible. For undirected cycles, we proceed analogously.
The difference is that the cycles consist of three edges. The resulting cycle cover contains
at most 2k/ηk,ε cycles. Thus, an optimal decomposition can be found with a running-time
that now only depends on k and ε.

Overall, for every fixed ε > 0 and k ≥ 2, we have a deterministic algorithm that, given an
ηk,ε-light directed cycle cover C with edge weights w, computes a ( 1

2 − ε)-decomposition of

C in time polynomial in the input size. If C is undirected, a ( 2
3 − ε)-decomposition can be

computed analogously. We call these algorithms Decompose with parameters C, w, and ε.
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4. APPROXIMATION ALGORITHMS FOR MULTI-CRITERIA MAX-TSP

In this section, MaxCC-Approx denotes the randomized FPTAS for cycle covers. More
precisely, let G be a graph (directed or undirected), w = (w1, . . . , wk) be edge weights,
ε > 0, and p > 0. Then MaxCC-Approx(G,w, ε, p) yields a (1 − ε)-approximate Pareto
curve of cycle covers of G with weights w with a success probability of at least 1− p.

4.1. Multi-Criteria Max-ATSP

Our goal is to guess small sets of heavy edges such that decomposition on the remaining
graph is possible. To do so, we need the following notation. For a graph G = (V,E) and
a subset K ⊆ E of G’s edges (K forms a subset of a Hamiltonian cycle), we get G−K by
contracting all edges of K. Contracting a single edge (u, v) means removing all outgoing
edges of u, removing all incoming edges of v, and identifying u and v. Analogously, for
a Hamiltonian cycle H and edges K, we obtain a Hamiltonian cycle H−K of G−K by
contracting the edges in K. If (G,w) is an instance, then (G−K , w) denotes the instance
with w modified according to the edge contractions.

We now prove the following: For every Hamiltonian cycle H̃, there exists a (small) set

K ⊆ H̃ of edges such that H̃−K is light-weight. Therefore, let

f(k, ε) = k ·

⌈
log(1/2 + ε)

log
(
1− ηk,ε/2 + ( ε2 )3

)⌉ .
From now on, we assume that ε ∈ (0, 1

2 ln k ) is fixed.

Lemma 4.1. For every Hamiltonian cycle H̃ and every ε > 0, there exists a subset
K ⊆ H̃ such that |K| ≤ f(k, ε) and, for every i ∈ [k], we have at least one of the following
two properties:

(1 ) wi(K) ≥ ( 1
2 − ε) · wi(H̃).

(2 ) wi(e) ≤
(
ηk,ε/2 − ( ε2 )3

)
· wi(H̃−K) for all e ∈ H̃−K .

Proof. We put edges one by one into K until the properties are met for all objectives.
If not all i fulfill Property 1 or 2 yet, then we have to add another vertex to K. Let
ξ = ηk,ε/2 − ( ε2 )3 for short. There exists an edge e ∈ H̃ \ K and an i ∈ [k] such that

wi(e) > ξwi(H̃−K) and wi(K) < ( 1
2 − ε) · wi(H̃). We say that this i is the winner of round

j, and we add e to K. Let us call the new set K ′ = K ∪ {e}.
Whenever an i ∈ [k] is a winner, we have

wi(H̃−K′)

wi(H̃−K)
≤ 1− ξ .

By definition, we have w(K) + w(H̃−K) = w(H̃). Thus, if i has won ` rounds on the way

to K, we can conclude that wi(K) ≥
(
1 − (1 − ξ)`

)
· wi(H̃). For ` =

⌈ log 1/2+ε
log(1−ξ)

⌉
, we have

wi(K) ≥ ( 1
2 − ε) ·wi(H̃). Observing that every round has a winner completes the proof.

Now we know that few edges for K suffice to make H̃−K light-weight. But given the set

K, how do we find an appropriate cycle cover? Therefore, let βi = max{wi(e) | e ∈ H̃−K}
be the weight of the heaviest edge with respect to the ith objective. Let β = β(H̃−K) =
(β1, . . . , βk). We modify our edge weights w to wβ as follows:

wβ(e) =

{
w(e) if w(e) ≤ β and

0 if wi(e) > βi for some i.
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Algorithm 1 Approximation algorithm for k-Max-ATSP.

PTSP ←MaxATSP-Approx(G,w, ε)
input: directed complete graph G = (V,E), w : E → Qk+, ε > 0

output: ( 1
2 − ε) approximate Pareto curve PTSP for k-Max-ATSP with a probability of at

least 1/2
1: for all K ⊆ E with |K| ≤ f(k, ε) that form a subset of a tour and bounds β do
2: CK,β ←MaxCC-Approx(G−K , w

β , ε2 ,
1

2n2k+f(k,ε) )
3: for all I ⊆ [k] and C ∈ CK,β do

4: if wβI (e) ≤ ηk,ε/2 · wβI (C) for all e ∈ C then

5: P ← Decompose(C,wβI ,
ε
2 )

6: add edges to P ∪K to obtain a Hamiltonian cycle H
7: add H to PTSP

This means that we set all edge weights exceeding β to 0. Since H̃−K does not contain any

of those edges, we have w(H̃−K) = wβ(H̃−K). The advantage of wβ is that, if we compute
a (1 − ε) approximate Pareto curve Cβ of cycle covers with edge weights wβ , we obtain a
cycle cover to which we can apply decomposition to obtain a collection P of paths. This is
stated in the following lemma.

Lemma 4.2. Let ν > 0 be arbitrary. Let H0 be a directed Hamiltonian cycle with w(e) ≤(
ηk,ν−ν3

)
·w(H0) for all e ∈ H0. Let β = β(H0), and let C be a (1−ν) approximate Pareto

curve of cycle covers with respect to wβ.
Then C contains a cycle cover C with wβ(C) ≥ (1−ν)·w(H0) and wβ(e) ≤ ηk,ν ·wβ(C) for

all e ∈ C. This cycle cover C yields a decomposition P ⊆ C with w(P ) ≥ ( 1
2 − 2ν) ·w(H0).

Proof. Since the Hamiltonian cycle H0 is in particular a cycle cover, the set C contains
a cycle cover C with wβ(C) ≥ (1− ν) ·wβ(H0) = (1− ν) ·w(H0). For every edge e ∈ C and

every i, we have wβi (e) ≤ (ηk,ν − ν3) · wβi (H0) ≤ ηk,ν−ν3

1−ν · wβi (C) ≤ ηk,ν · wi(C). The last

inequality follows from ηk,ν − ν3 ≤ ηk,ν · (1 − ν). This is equivalent to ν2 ≥ ηk,ν = ν2

2 ln k ,
which is valid.

The cycle cover C can be decomposed into a collection P ⊆ C of paths with w(P ) ≥
wβ(P ) ≥ ( 1

2 − ν) ·wβ(C) ≥ ( 1
2 − ν) · (1− ν) ·w(H0) ≥ ( 1

2 − 2ν) ·w(H0) by Theorem 3.1.

For H0 = H̃−K , the set P approximates H̃−K , and P ∪K yields a tour H that approx-

imates H̃. However, to obtain an algorithm, we have to find β and K. So far, we have
assumed that we already know the Hamiltonian cycles that we aim for. But there is only a
polynomial number of possibilities for β and K: For all β and for all i ∈ [k], we can assume
that there is an edge with wi(e) = βi. Thus, there are at most O(n2) choices for βi, hence
at most O(n2k) in total. The cardinality of K is bounded in terms of f(k, ε) as shown in the
lemma above. For fixed k and ε, there is only a polynomial number of subsets of cardinality
at most f(k, ε).

Overall, we obtain MaxATSP-Approx (Algorithm 1) and the following theorem.

Theorem 4.3. For every fixed k ≥ 2 and ε > 0, MaxATSP-Approx is a randomized
1
2−ε approximation for k-criteria Max-ATSP whose running-time is polynomial in the input
size.

Proof. Let us analyze the approximation ratio first. To do this, we assume that all
randomized computations are successful. After that, we analyze success probability and
running-time.
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Let H̃ be an arbitrary Hamiltonian cycle. We have to show that there exists a Hamiltonian
cycle H ∈ PTSP with w(H) ≥ ( 1

2 − ε) · w(H̃). By Lemma 4.1, there exists a set K ⊆ H̃ of
cardinality at most f(k, ε) and a set I ⊆ [k] with the following properties:

— For every i ∈ [k] \ I, we have wi(K) ≥ ( 1
2 − ε) · wi(H̃).

— For every i ∈ I and for every edge e ∈ H̃−K , we have wi(e) ≤
(
ηk,ε/2− ( ε2 )3

)
·wi(H̃−K).

Let β = β(H̃−K). According to Lemma 4.2 with H0 = H̃−K and ν = ε/2, the set
CK,β contains a cycle cover C that can be decomposed into a collection P of paths such

that wi(P ) ≥ ( 1
2 − ε) · wi(H̃−K). The set P ∪ K is also a collection of paths. We get a

Hamiltonian cycle H ⊇ P ∪K by adding arbitrary edges. For the weight of H, we have

wi(H) ≥ wi(K) ≥
(

1

2
− ε
)
· w(H̃)

for every i ∈ I and

wi(H) ≥ wi(P ) + wi(K) ≥
(

1

2
− ε
)
· wi(H̃−K) + wi(K) ≥

(
1

2
− ε
)
· wi(H̃)

for every i ∈ [k] \ I since wi(K) +wi(H̃−K) = wi(H̃). This proves the approximation ratio.
The running time and the error probability remain to be analyzed. The error probabilities

of the randomized computations in line 2 are chosen such that they sum up to at most 1/2.
This yields that the probability that one of the computations fails is at most 1/2. The
running time follows since f(k, ε) is independent of n, the number of bounds β is bounded
by n2k, and there are 2k possible sets I.

4.2. Multi-Criteria Max-STSP

Our goal is again to show that, for any Hamiltonian cycle H̃, taking out a small set K of
heavy edges suffices to make the rest of H̃ light-weight. Unfortunately, contracting heavy
edges in undirected graphs is not as easy as it is in directed graphs: The statements “remove
all incoming” and “remove all outgoing” edges are not well-defined in an undirected graph.

To circumvent these problems, we do not contract edges e = {u, v}. Instead, we set the
weight of all edges incident to u or v to 0. This allows us to add the edge e to any collection
P of paths without decreasing the weight: We remove all edges incident to u or v from P ,
and then we add e. The result is again a collection of paths.

However, by setting the weight of edges adjacent to u or v to 0, we might destroy a lot
of weight with respect to some objective. To circumvent this problem as well, we put larger
neighborhoods of the edges into K. In this way, we can add our heavy-weight edge (plus
some more edges of its neighborhood) to the collection of paths without losing too much
weight from removing other edges. Lemma 4.4 below justifies this.

Lemma 4.4. Let H̃ be a Hamiltonian cycle as described above, let w = (w1, . . . , wk) be

edge weights, and let e1, . . . , e` be any ` distinct edges of H̃. Then there exists a j ∈ [`] such
that

w(ej) ≤
k

`
· w(H̃).

Proof. Suppose otherwise and assume without loss of generality that wi(H̃) > 0 for

all i. We scale the weights such that wi(H̃) = 1 for all i. Then for all j there is an ij with

wij (ej) >
k
` · wij (H̃) = k

` . Thus,
∑`
j=1

∑k
i=1 wi(ej) >

∑`
j=1

k
` · wij (H̃) = k. But, since all

edges are distinct, we also have
∑`
j=1

∑k
i=1 wi(ej) ≤

∑k
i=1 wi(H̃) = k – a contradiction.
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Let H̃ be an arbitrary Hamiltonian cycle. Let e0, e1, . . . , en−1 be the edges of H̃ in the

order in which they appear in H̃ (e0 is chosen arbitrarily). Let ej = {vj , vj+1}, where
arithmetic of the indices here and in the following is modulo n. Now let e0 be a heavy-
weight edge of H̃. Then we put e0 into our set K, and we set the weight of all edges incident
to v0 and v1 to 0. But in this way, we lose the weight of e1 and e−1. In order to maintain
the approximation ratio, we have to avoid that we lose too much weight. Therefore, we
consider paths that include e0. If we set the weight of all edges incident to vp+1, . . . , vq with
p < 0 < q to 0, we lose only the weight of ep and eq. To keep track of things, we also put
ep+1, . . . , eq−1 into K. Furthermore, we put the two edges ep and eq, whose weight might
get lost, into a set T . By Lemma 4.4, we can make sure that both ep and eq are not too
heavy. Finally, we put vp+1, . . . , vq into the set L, which is the set of vertices whose adjacent
edges have now weight 0. We denote the corresponding edge weights by wL (see below for
a formal definition).

Given any collection of paths P , we can now remove all edges of weight 0 and add the
edges ep+1, . . . , eq−1 to obtain a new collection of paths. This does not change the weight
with respect to wL. The only edges that we cannot force to be in H are ep and eq. In order
to maintain a good approximation ratio we have to make sure that both are light with
respect to all objectives. This is where Lemma 4.4 comes into play: If we choose p and q
sufficiently large, then ep and eq are light.

To fix notation, let K be the of edges that we want to keep of H̃. Let L = L(K) = {v ∈
V | ∃e ∈ K : v ∈ e} be the set of vertices incident to edges in K. Let w−L be defined by

w−L(e) =

{
w(e) if e ∩ L = ∅ and

0 if e ∩ L 6= ∅.

This means that the weight of edges incident to L is set to 0, which includes the edges in
K. For a bound β, w−L,β(e) is defined accordingly: w−L,β(e) = w−L(e) if w−L(e) ≤ β and
w−L,β(e) = 0 otherwise.

There are more edges of H̃ \K whose weight is affected by w−L: Let

T = T (K) = {e ∈ H̃ | e /∈ K, e ∩ L(K) 6= ∅}

be the set of edges that have exactly one endpoint in L. The weights of these edges are set
to 0 in w−L, but we cannot force them to be in any cycle cover as mentioned above. (They

are the edges of H̃ that are adjacent to K but not in K.)
The following lemma is the undirected counterpart of Lemma 4.1. In particular, it takes

care of the set T , which is only needed for the analysis and not for the algorithm. Let

g(k, ε) = k ·

⌈
log(1/3)

log
(
1− ηk,ε/3 + ( ε3 )3

)⌉ .
The function g plays the same role as the function f in the previous subsection.

Lemma 4.5. For every Hamiltonian cycle H̃ and every ε > 0, there exists a subset K ⊆
H̃ of at most g(k, ε) paths, each of length at most 12k

ε g(k, ε) with the following properties:
Let L = L(K) and T = T (K). For every i ∈ [k], we have at least one of the following two
properties:

(1 ) wi(K) ≥ (2/3− ε) · wi(H̃).

(2 ) w−Li (e) ≤
(
ηk,ε/3 − ( ε3 )3

)
· w−Li (H̃) for all e ∈ H̃.

Furthermore, we have w(T ) ≤ ε
3 · w(H̃).
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Proof. The proof is similar to the proof of Lemma 4.1, but slightly more involved since
we have to keep track of the set T . Let ξ = ηk,ε/3 − ( ε3 )3.

We put paths one by one into K until the properties are met. If not all i fulfill Property 1
or 2 yet, then we have to add another path to K. In this case, there exists an edge e0 ∈ H̃−K
and an i ∈ [k] such that wi(e0) > ξ · w−Ki (H̃) and wi(K) < ( 2

3 − ε) · wi(H̃). We call i the
winner of round j and add it to K. Furthermore, we extend e0 to both sides to obtain
paths ep, ep+1, . . . , e0, . . . , eq for some p < 0 < q. Here, p is chosen such that either w(ep) ≤

ε
6g(k,ε) · w(H̃) or ep ∈ K ∪ T , and q is chosen analogously. We can choose −p, q ≤ 6kg(k,ε)

ε .

We put ep and eq into T and ep+1, . . . , eq−1 into K.
Now let K be the set of edges before an iteration, and let K ′ = K ∪ {ep+1, . . . , eq−1} be

the set of edges afterwards. We have w−K
′

i (H̃) +wi(e0) ≤ w−Ki (H̃). Since wi(e0) > ξw−Ki ,

this yields w−K
′

i (H̃) < (1 − ξ) · w−Ki (H̃). Thus, if i is the winner in ` rounds, and the

resulting set of edges is K, then w−Ki (H̃) ≤ (1−ξ)` ·wi(H̃). If ` = dlog1−ξ 1/3e = g(k, ε)/k,
then

w−Ki (H̃) ≤ 1

3
· wi(H̃) . (1)

Since every round has a winner, after at most g(k, ε), all properties are met. This is because

w(H̃) = w(K)+w(T )+w−K(H̃). Any edge e ∈ T fulfills w(e) ≤ ε
6g(k,ε) ·w(H̃). Since we put

at most 2g(k, ε) edges into T , we have w(T ) ≤ ε
3 · w(H̃). Together with (1), this concludes

the proof.

Again, given that we have the correct set K ⊆ H̃, we have to find a cycle cover that
approximates H̃ with respect to w−L(K). That this can be done is shown in the following
undirected counterpart of Lemma 4.2.

Lemma 4.6. Let ν > 0 be arbitrary. Let H̃ be an undirected Hamiltonian cycle with
w(e) ≤

(
ηk,ν − ν3

)
·w(H̃) for all e ∈ H̃. Let β = β(H̃), and let C be a (1− ν) approximate

Pareto curve of cycle covers with respect to wβ.
Then C contains a cycle cover C with wβ(C) ≥ (1−ν)·w(H̃) and wβ(e) ≤ ηk,ν ·wβ(C) for

all e ∈ C. This cycle cover C yields a decomposition P ⊆ C with w(P ) ≥ ( 2
3 − 2ν) · w(H̃).

Proof. The proof is almost identical to the proof of Lemma 4.2 and thus omitted.

Now we have everything for algorithm MaxSTSP-Approx (Algorithm 2) and Theo-
rem 4.7.

Theorem 4.7. For every k ≥ 2 and ε > 0, MaxSTSP-Approx is a randomized 2
3 − ε

approximation for k-criteria Max-STSP whose running-time is polynomial in the input size.

Proof. Let us first concentrate on the approximation ratio. Consider any Hamiltonian
cycle H̃. We have to show that PTSP contains a Hamiltonian cycle H with w(H) ≥ (2/3−
ε)w(H̃). According to Lemma 4.5, there exists a set K ⊆ H̃ and a subset I ⊆ [k] of the
objectives such that the following holds:

— For every i ∈ [k] \ I, we have wi(K) ≥ (2/3− ε) · wi(H̃).
— For every i ∈ I and for every edge e ∈ H−K , we have wi(e) ≤

(
ηk,ε/3− ( ε3 )3

)
·wi(H−K).

Let L = L(K), and let β = β(H̃) with respect to the edge weights w−L. According to
Lemma 4.6 with edge weights w−L and ν = ε/3, the set CL,β contains a cycle cover C from

which we get a decomposition P ⊆ C with w−Li (P ′) = w−Li (P ) ≥ ( 2
3 −

2ε
3 ) ·w−Li (H̃). (P ′ is

obtained from P by removing edges of weight 0.) Since w(H̃) = w−L(H̃)+w(T )+w(K) and
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Algorithm 2 Approximation algorithm for k-Max-STSP.

PTSP ←MaxSTSP-Approx(G,w, ε)
input: undirected complete graph G = (V,E), w : E → Qk+, ε > 0

output: ( 2
3 − ε) approximate Pareto curve PTSP for k-Max-STSP with a probability of at

least 1/2
1: for all K ⊆ E that consist of at most g(k, ε) paths of length at most ≤ 12kg(k, ε)/ε do
2: for all bounds β do
3: L← L(K)
4: CL,β ←MaxCC-Approx(G,w−L,β , ε3 ,

1
2n2k+12kg2(k,ε)/ε

)

5: for all I ⊆ [k] and C ∈ CL,β do

6: if w−L,βI (e) ≤ ηk,ε/3 · w−L,βI (C) for all e ∈ C then

7: P ← Decompose(C,w−L,βI , ε4 )
8: remove edges of weight 0 from P to get P ′

9: add edges to K ∪ P ′ to get a Hamiltonian cycle H; add H to PTSP

w(T ) ≤ ε
3 ·w(H̃) according to Lemma 4.5, we have w(H) ≥ w(P ′ ∪K) ≥ (2/3− ε) ·w(H̃),

which is enough.
The error probabilities of the randomized computations in line 4 sum up to at most 1/2

since there are at most n2k bounds β and at most n6kg
2(k,ε) subsets K. By a union bound,

the probability that one of the computations fails is thus at most 1/2. The running time
follows since g(k, ε) is independent of n, the number of bounds β is bounded by n2k, and
the number of I is 2k.

5. DETERMINISTIC APPROXIMATIONS FOR 2-MAX-STSP

The algorithms presented in the previous section are randomized due to the computation
of approximate Pareto curves of cycle covers. So are most approximation algorithms for
multi-criteria TSP with the exception of a simple (2 + ε) approximation for k-Min-STSP
[Manthey and Ram 2009].

As a first step towards deterministic approximation algorithms for multi-criteria Max-
TSP, we present a deterministic 7/27 ≈ 0.26 approximation for 2-Max-STSP. The key
insight for the results of this section is the following lemma.

Lemma 5.1. Let M be a (not necessarily perfect) matching, let H be a collection of
paths or a Hamiltonian cycle, and let w be edge weights (w is a single-criterion function).
Then there exists a subset P ⊆ H such that

(1 ) P ∪M is a collection of paths or a Hamiltonian cycle (we call P in this case an M -
feasible set) and

(2 ) w(P ) ≥ w(H)/3.

Proof. We prove the lemma by induction on |M |+ |H|. For |M |+ |H| = 0, the lemma
is trivially true. As induction hypothesis, we assume the lemma holds for all M and H with
|M |+ |H| < `, and we want to prove it for |M |+ |H| = `.

We distinguish two cases. The first case is M ∩ H 6= ∅. Then we set P̃ = M ∩ H
and H ′ = H \ M . By induction hypothesis, there exists an M -feasible P ′ ⊆ H ′ such

that w(P ′) ≥ w(H ′)/3. Since P̃ ⊆ M , also P = P ′ ∪ P̃ is M -feasible. Observing that

w(P ) = w(P ′) + w(P̃ ) ≥ w(H ∩M) + w(H \M)/3 ≥ w(H)/3 completes this case.
The second case is that M and H are disjoint. Let e = argmax{w(e) | e ∈ H} be a

heaviest edge of H, and let f1, f2 ∈ H be the two edges of H that are incident to e. Let
H ′ = H \ {e, f1, f2}. (It can happen that f1 or f2 do not exist, namely if H is not a
Hamiltonian cycle but a collection of paths. But this is fine.)
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Fig. 1. Contraction for the proof of Lemma 5.1: We keep e and remove f1, f2 (1(a)). Then we can contract
z1 and z2 to z (1(b)).

Let us first treat the case that e is incident to two edges z1, z2 ∈ M of the matching.
Then we contract z1 and z2 to a single edge z that connects the two endpoints of z1 and
z2 that are not incident to e and remove the two vertices incident to e (see Figure 1). Let
M ′ = (M \{z1, z1})∪{z}. Since e, f1, f2 are removed, H ′ and M ′ are a valid instance for the
lemma, i.e., M ′ is a matching and H ′ is a collection of paths (H ′ cannot be a Hamiltonian
cycle). We can apply the induction hypothesis since |M ′|+ |H ′| < `.

In this way, we obtain anM ′-feasible set P ′ ⊆ H ′ with w(P ′) ≥ w(H ′)/3. Set P = P ′∪{e}.
Since w(e) ≥ w({e, f1, f2})/3, we have w(P ) ≥ w(H)/3. Since P ′ is M ′-feasible, the set P
is M -feasible by construction.

What remains to be considered is the case the e is not incident to two edges z1, z2 ∈M .
Then we consider the shortest path in e1, . . . , eq ∈ H of edges in H that includes e such that
e1 and eq are incident to any edges z1, z2 ∈ M . The reasoning above holds in exactly the
same way if replace e by the path e1, . . . , eq, and we put e1, . . . , eq into P . If no such path
exists, then either M = ∅, which is easy to handle, or the path containing e ends somewhere
at a vertex of degree 1 in H ∪M . In the latter case, we can simply put the whole path
into P .

Lemma 5.1 yields tight bounds for the existence of approximate Pareto curves with only
a single element. This is the purpose of the following theorem.

Theorem 5.2.

(1 ) For every undirected complete graph G with edge weights w1 and w2, there exists a
Hamiltonian cycle H such that {H} is a 1/3 approximate Pareto curve for 2-Max-
STSP.

(2 ) Part (1) is tight: There exists a graph G with edge weights w1 and w2 such that, for all
ε > 0, no single Hamiltonian tour of G is a (1/3 + ε) approximate Pareto curve.

Before embarking on the proof of the theorem, let us remark that single-element approx-
imate Pareto curves exist for no other variant of multi-criteria TSP than 2-Max-STSP: For
k-Max-STSP for k ≥ 3, we can consider a vertex incident to three edges of weight (1, 0, 0),
(0, 1, 0), and (0, 0, 1), respectively. All other edges of the graph have weight 0. Then no
single Hamiltonian cycle can have positive weight with respect to all three objectives simul-
taneously. Similarly, no such result is possible for k-Max-ATSP and for k-Min-TSP for any
k ≥ 2.

Proof. Let H1 and H2 be Hamiltonian cycles of G such that H1 maximizes w1 and
H2 maximizes w2. Then there exists a matching M ⊆ H1 with w(M) ≥ w(H1)/3. (We can
actually get w(H1)/2 if G has an even number of vertices and n−1

2n ·w(H1) if the number n of
G’s vertices is odd. This, however, does not improve the result.) We apply Lemma 5.1 with
H = H2 and obtain an M -feasible set P ⊆ H2. From M and P , we obtain a Hamiltonian
cycle H ′ ⊇ M ∪ P : Either M ∪ P is already a Hamiltonian cycle, then nothing has to be
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Fig. 2. The graph for Theorem 5.2(2). Solid edges are of weight (1, 0), dashed edges are of weight (0, 1),
dotted edges have weight (0, 0).

Algorithm 3 Approximation algorithm for 2-Max-STSP.

PTSP ← BiMaxSTSP-Approx(G,w1, w2)
input: undirected complete graph G = (V,E), edge weights w1, w2 : E → Qk+
output: a 7/27 approximate Pareto curve H for 2-Max-STSP

1: compute a maximum-weight matching M with respect to w1

2: compute a 7/9 approximate Hamiltonian cycle H2 with respect to w2

3: P ← H2 ∩M
4: M ′ ←M
5: H2 ← H2 \ P
6: while H2 6= ∅ do
7: e← argmax{w2(e′) | e′ ∈ H2}
8: extend e to a path e1, . . . , eq ∈ H2 such that only e1 and eq are incident to edges
z1, z2 ∈M ′ or the path cannot be extended anymore

9: P ← P ∪ {e1, . . . , eq}
10: H2 ← H2 \ {e1, . . . , eq}
11: if z1 or z2 exists then
12: let f1, f2 ∈ H2 be the two edges extending the path if they exist
13: H2 ← H2 \ {f1, f2}
14: if both z1 and z2 exist then
15: contract z1 and z2 to z
16: M ′ ← (M ′ \ {z1, z2}) ∪ {z}
17: let H be a Hamiltonian cycle obtained from P ∪M

done. Or M ∪ P is a collection of paths. Then we add appropriate edges to obtain H ′. We
claim that {H ′} is a 1/3 approximate Pareto curve: Let H̃ be any Hamiltonian tour. Then

w1(H ′) ≥ w1(M) ≥ w1(H1)/3 ≥ w1(H̃)/3

and

w2(H ′) ≥ w2(P ) ≥ w2(H2)/3 ≥ w2(H̃)/3.

To finish the proof, let us show that ratio 1/3 is tight. Consider the graph in Figure 2.
The solid edges plus two dotted edges form a Hamiltonian cycle of weight (3, 0). The dashed
edges plus two other dotted edges form a Hamiltonian cycle of weight (0, 3). To get a single-
element ( 1

3 +ε)-approximate Pareto curve {H}, we must have wi(H) ≥ 1+3ε for i ∈ {1, 2}.
Thus, the Hamiltonian cycle H must contain two solid edges and two dashed edges, which
is impossible.

Lemma 5.1 and Theorem 5.2 are constructive in the sense that, given a Hamiltonian cycle
H2 that maximizes w2, the tour H can be computed in polynomial time. A matching M with
w1(M) ≥ w1(H1)/3 can be computed in cubic time. However, since we cannot compute an
optimal H2 efficiently, the results cannot be exploited directly to get an algorithm. Instead,
we use an approximation algorithm for finding a Hamiltonian tour with as much weight with
respect to w2 as possible. Using the 7/9 approximation algorithm for Max-STSP [Paluch
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Algorithm 4 Approximation algorithm for k-Min-ATSP.

PTSP ←MinATSP-Approx(G,w, ε)
input: directed complete graph G = (V,E), n = |V |, edge weights w : E → Qk+, ε > 0
output: (log n + ε) approximate Pareto curve for k-Min-ATSP with a probability of at

least 1/2
1: ε′ ← ε2/ log3 n
2: P0 ← {∅}
3: for j ← 1 to blog2 nc do
4: Pj ← ∅
5: for all C ∈ Pj−1 do
6: if (V,C) is connected then
7: add C to Pj
8: else
9: select one vertex of every component of (V,C) to obtain V ′

10: C ←MinCC-Approx(V ′, w, ε′, 1
2Q logn ) . Q is defined in Lemma 6.2

11: Pj ← Pj ∪ {C ∪ C ′ | C ′ ∈ C}
12: while there are C,C ′ ∈ Pj with the same ε′-signature do
13: remove one of them arbitrarily

14: j ← j + 1

15: PTSP ← ∅
16: for all C ∈ Pblog2 nc do
17: walk along the Eulerian cycle of C, take shortcuts to obtain a Hamiltonian cycle H
18: add H to PTSP

et al. 2009], we obtain Algorithm 3 (which is an algorithmic version of Lemma 5.1) and the
following theorem.

Theorem 5.3. BiMaxSTSP-Approx is a deterministic 7/27 approximation algorithm
with running-time O(n3) for 2-Max-STSP.

Proof. The running-time is dominated by the running-time of the 7/9 approximation
for Max-STSP by Paluch et al. [2009] and the time for computing the matching, both of
which is O(n3). The approximation ratio follows from 7

9 ·
1
3 = 7

27 .

6. APPROXIMATION ALGORITHM FOR MULTI-CRITERIA MIN-ATSP

Now we turn to k-Min-ATSP, i.e., Hamiltonian cycles of minimum weight are sought in
directed graphs. Algorithm 4 is an adaptation of the algorithm of Frieze et al. [1982] to
multi-criteria ATSP. Therefore, we briefly describe their algorithm: We compute a cycle
cover of minimum weight. If this cycle cover is already a Hamiltonian cycle, then we are
done. Otherwise, we choose an arbitrary vertex from every cycle. Then we proceed recur-
sively on the subset of vertices thus chosen to obtain a Hamiltonian cycle that contains
all these vertices. The cycle cover plus this Hamiltonian cycle form an Eulerian graph. We
traverse the Eulerian cycle and take shortcuts whenever visiting vertices more than once.
The approximation ratio achieved by this algorithm is log2 n for Min-ATSP [Frieze et al.
1982].

To approximate k-Min-ATSP, we use MinATSP-Approx (Algorithm 4), which proceeds
as follows: We compute an approximate Pareto curve of cycle covers of minimum weight.
This is done by MinCC-Approx, where MinCC-Approx(G,w, ε, p) computes a (1 + ε)
approximate Pareto curve of cycle covers of G with weights w with a success probability
of at least 1 − p in time polynomial in the input size, 1/ε, and log(1/p). Then we iterate
by computing approximate Pareto curves of cycle covers on vertex sets V ′ for every cycle
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cover C in the previous set. The set V ′ contains exactly one vertex of every cycle of C.
Unfortunately, it can happen that we construct a super-polynomial number of solutions
in this way. To cope with this, we remove some intermediate solutions if there are other
intermediate solutions whose weight is close by. We call this process sparsification. It is
performed in lines 12 and 13 of Algorithm 4 and based on the following observation: Let
ε > 0, and consider a set H of edges of weight w(H) ∈ Qk+. For every i ∈ {1, . . . , k} with

wi(H) 6= 0, there is a unique `i ∈ N such that wi(H) ∈
[
(1+ε)`i , (1+ε)`i+1

)
. If wi(H) = 0,

then we let `i = −∞. We call the vector ` = (`1, . . . , `k) the ε-signature of H and of w(H).

Since w(H) ∈
(
[2−p(N), 2p(N)] ∪ {0}

)k
, where N is the size of the instance, the number of

possible values of `i is bounded by a polynomial q(N, 1/ε). There are at most qk different
ε-signatures, which is polynomial for fixed k. To get an approximate Pareto curve, we can
restrict ourselves to at most one solution for any ε-signature.

The set P0 is initialized with the empty set of edges. In the loop in lines 3 to 14, the
algorithm computes iteratively Pareto curves of cycle covers. The set Pj contains sets C of
edges consisting of cycle covers: Given a C ∈ Pj−1, Pj contains cycle covers on the graph
consisting of one node for every connected component of C. If (V,C) is already connected,
then C is simply put into Pj without modification. In lines 12 and 13, the sparsification
takes place. Finally, in lines 15 to 18, Hamiltonian cycles are constructed from the Eulerian
graphs.

Let us now come to the analysis of the algorithm. Our goal is to prove the following
result, which follows from Lemmas 6.2, 6.3, and 6.5 below. MinATSP-Approx is the first
approximation algorithm for k-Min-ATSP.

Theorem 6.1. For every ε > 0 and k ≥ 2, Algorithm 4 is a randomized (log n + ε)
approximation for k-Min-ATSP with a success probability of at least 1/2. Its running-time
is polynomial in the input size and 1/ε.

We observe that for every j ∈ {0, 1, . . . , blog2 nc} and C ∈ Pj , the graph (V,C) consists
of at most n/2j connected components. For j = 0, this holds since (V, ∅) consists of n
connected components. For j > 0 and C ∈ Pj−1, (V,C) consists of at most n/2j−1 connected
components by the induction hypothesis. If (V,C) is connected, then C ∈ Pj , and the claim

holds since n/2j ≥ n/2blog2 nc ≥ 1. Otherwise, since every cycle involves at least two vertices,
the claim holds also for Pj . This yields that (V,C) is connected for all C ∈ Pblog2 nc: Such

a (V,C) consists of at most n/2j ≤ n/2blog2 nc < 2 connected components.
Let us now analyze the running-time. After that, we examine the approximation perfor-

mance and finally the success probability.

Lemma 6.2. The running-time of Algorithm 4 is polynomial in the input size and 1/ε.

Proof. Let N be the size of the instance at hand, and let Q = Q(N, 1/ε′) be a two-
variable polynomial that bounds the number of different ε′-signatures of solutions for in-
stances of size at most N . We abbreviate “polynomial in the input size and 1/ε” simply by
“polynomial.” This is equivalent to “polynomial in the input size and 1/ε′” by the choice
of ε′.

The approximate Pareto curves can be computed in polynomial time with a success
probability of at least 1− (2Q log n)−1 by executing the randomized FPTAS dlog(2Q log n)e
times. Thus, all operations can be implemented to run in polynomial time provided that
the cardinalities of all sets Pj are bounded from above by a polynomial Q for all j. Then,
for each j, at most Q approximate Pareto curves of cycle covers are constructed in line 10.

For every ε′-signature and every j, the set Pj contains at most one set of edges for
any ε′-signature. The lemma follows since the number of different ε′-signatures is bounded
by Q.
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Let us now analyze the approximation ratio. To do so, we will assume that all randomized
computations of (1 + ε′) approximate cycle covers are successful.

Lemma 6.3. Assume that in all executions of line 10 of Algorithm 4 an (1 +ε′) approx-
imate Pareto curve of cycle covers is successfully computed. Then Algorithm 4 achieves an
approximation ratio of log2 n+ ε for k-Min-ATSP.

Proof. Let H̃ be any Hamiltonian cycle on V . We have to show that the set PTSP of
solutions computed by Algorithm 4 contains a Hamiltonian cycle H with w(H) ≤ (log2 n+

ε) · w(H̃).
Given any C ∈ Cblog2 nc, due to the triangle inequality, we construct a Hamiltonian cycle

H in lines 15 to 18 such that w(H) ≤ w(C). What remains to be proved is that, for every

Hamiltonian cycle H̃, there exists a C ∈ Cblog2 nc such that w(C) ≤ (log n+ ε) · w(H̃).

Lemma 6.4. For every j, there exists a C ∈ Pj with w(C) ≤ (1 + ε′)j · j · w(H̃).

Proof. The proof is by induction on j. For j = 0, the lemma holds since w(∅) = 0.
Now assume that the lemma holds for j − 1 for j > 0. Consider any C ∈ Pj−1 that

satisfies the lemma for j−1 and H̃. Such a C exists by the induction hypothesis. If (V,C) is
connected, then C ∈ Pj , and C satisfies the lemma also for j. Otherwise, let V ′ be the set of

vertices chosen from the connected components of (V,C) in line 9. Let H̃ ′ be H̃ restricted

to V ′ by taking shortcuts. By the triangle inequality, we have w(H̃ ′) ≤ w(H̃). After line 10,

C contains a cycle cover C ′ with w(C ′) ≤ (1 + ε′) · w(H̃ ′). Then

w(C ′ ∪ C) ≤
(
(1 + ε′)j−1 · (j − 1) + (1 + ε′)

)
· w(H̃).

What remains to be analyzed is the sparsification in lines 12 to 13. After that Pj contains
a C ′′ (with might coincide with C ∪ C ′) with with the same ε′-signature as C ∪ C ′. Thus,

w(C ′′) ≤ (1 + ε′) · w(C ∪ C ′′) ≤ (1 + ε′) ·
(
(1 + ε′)j · j + (1 + ε′)

)
· w(H̃)

≤ (1 + ε′)j+1 · (j + 1) · w(H̃),

and C ′′ fulfills the requirements of the lemma.

Since every C ∈ Cblog2 nc yields a Hamiltonian cycle without increasing the weight, we
obtain an approximation ratio of

log2 n · (1 + ε′)blognc ≤ log2 n ·
(

1 +
ε2

log3 n

)logn

≤ log2 n · exp

(
ε2

log2 n

)
≤ log2 n+ ε.

The first inequality follows from our choice of ε′. The second inequality holds since (1+ x
y )y ≤

exp(x). The third inequality holds because exp(x2) ≤ 1 + x for x ∈ [0, 0.7] (we assume
ε/ log n < 0.7 without loss of generality).

Lemma 6.5. The probability that in a run of Algorithm 4 every execution of line 10 is
successful is at least 1/2.

Proof. Line 10 of Algorithm 4 is executed at most Q · log n times, where Q is an upper
bound for the number of different ε′-signatures of solutions of instances of size at most N .
Each execution fails with a probability of at most 1

2Q logn . Thus by a union bound, the

probability that one of them fails is at most 1/2.

Since randomization is only needed for MinCC-Approx, Lemma 6.5 completes the proof
of Theorem 6.1.
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Remark 6.6. According to Bläser et al. [2006], the algorithm of Frieze et al. [1982] can
be turned into a 1

1−γ -approximation for Min-ATSP with γ-triangle inequality for γ ∈ [ 12 , 1).

An instance fulfills the γ-triangle inequality, if w(u, v) ≤ γ ·(w(u, x)+w(x, v)) for all distinct
u, v, x. In the same way, Algorithm 4 can be turned into a 1

1−γ + ε approximation for this

variant of multi-criteria TSP. This improves over existing results [Manthey and Ram 2009]
for γ ≥ 0.55.

7. CONCLUDING REMARKS

We have presented approximation algorithms for almost all variants of multi-criteria TSP.
The approximation ratios of our algorithms are independent of the number k of criteria and
come close to the currently best ratios for TSP with a single objective. Furthermore, they
work for any number of criteria.

Furthermore, we have devised a deterministic 7/27 approximation for 2-Max-STSP with
cubic running-time, and we proved that for 2-Max-STSP, there always exists a 1/3 approx-
imate Pareto curve that consists of a single element.

Most approximation algorithms for multi-criteria TSP use randomness since computing
approximate Pareto curves of cycle covers requires randomness. This raises the question
of whether there are algorithms for multi-criteria TSP that are faster, deterministic, and
achieve better approximation ratios.
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