
Joining Forces! Reusing Contracts for Deductive
Verifiers through Automatic Translation⋆

Lukas Armborst[0000−0001−7565−0954], Sophie Lathouwers[0000−0002−7544−447X],
and Marieke Huisman[0000−0003−4467−072X]

University of Twente, Enschede, the Netherlands
{l.armborst,s.a.m.lathouwers,m.huisman}@utwente.nl

Abstract. Deductive verifiers can be used to prove the correctness of
programs by specifying the program’s intended behaviour using annota-
tions such as pre- and postconditions. Unfortunately, most verifiers use
their own unique specification language for those contract-based anno-
tations. While many of them have similar concepts and syntax, there
are numerous semantic differences and subtleties that make it very dif-
ficult to reuse specifications between verifiers. But reusing specifications
could help overcome one of the bottlenecks of deductive verification,
namely writing specifications. Therefore, we present the Specification
Translator, a tool to automatically translate annotations for deductive
verifiers. It currently supports Java programs annotated for OpenJML,
Krakatoa and VerCors. Using the Specification Translator, we show
that we can reuse 81% of the annotations, which would otherwise need to
be manually translated. Moreover, it allows to reuse tools such as Daikon
that generate annotations only in the syntax of one specific tool.

Keywords: Annotations · Specifications · Deductive verification · Trans-
lation · Tool interoperability.

1 Introduction

Deductive verification is a powerful technique that can be used to improve the
reliability of software. It can be used to reason about e.g. memory safety and
functional correctness, even if the system has an infinite state space and con-
currency. There exist many deductive verifiers, some of which are better suited
to certain problems than others. Therefore, it is important that tools cooperate
such that users can select the tool best suited to their problem. For example,
some deductive verifiers support the use of different solvers for individual proof
tasks (e.g. Why3 [18], Krakatoa [17]). However, tool interoperability for deduc-
tive verifiers is much harder when it comes to reusing specifications, because
most tools use their own unique specification language. As a result, it is cur-
rently impossible to switch between tools without investing significant time and
effort to manually translate the specifications.

⋆ This work was supported by the NWO VICI 639.023.710 Mercedes project.

2 Armborst et al.

Finding and writing the specifications is considered to be one of the large
bottlenecks in applying deductive verification in practice [3,22]. This is why
we would like to reuse specifications where possible, such as for APIs (e.g.
[2,5,7,15,20,26]). Often the verification requires more lines of specification than
lines of code. For example, one of the APIs [2] required four times as many lines
of specification as lines of code. Unfortunately, with the current limited tool in-
teroperability, it can be difficult for users to verify a program that uses one of
these APIs. The user is either limited to using the same verifier for their program
as was used for the library, or they need to spend significant effort to re-verify
the library in their verifier of choice.

To enable the reuse of specifications, we propose the Specification Trans-
lator, a tool to automatically translate specifications between OpenJML [13],
Krakatoa [17] and VerCors [6]. We specifically target deductive verifiers for Java
programs. We chose to support OpenJML because it is one of the most well-
known deductive verifiers for Java and it supports a large subset of Java Mod-
eling Language (JML) [27]. Krakatoa has been included since it is no longer
actively developed and thus it would be useful to port the specifications to an-
other tool that is still being maintained. And, it is one of the few verifiers that
supports using various solvers for individual proof tasks. VerCors has been in-
cluded because it is based on separation logic, which showcases how to deal with
extensions to standard JML. The Specification Translator makes it easier
to share verified programs between these tools. Moreover, it can also be used to
reuse results from other tools, such as specification generators like Daikon [16].

In this paper, we investigate to what extent specifications can be automat-
ically translated to enable reuse between verifiers. To achieve this, we explore
the semantic differences between verifiers. There are often commonalities be-
tween specification languages, as many Java-based deductive verifiers have a
specification language inspired by JML. However, translating annotations is not
as straightforward as it might seem since you need detailed knowledge about
the specification languages and their semantic differences. For example, some of
the things one needs to know when translating from tool X to Y, for example
OpenJML to VerCors, include:

– Does tool X have any built-in assumptions? If so, do these correspond to the
built-in assumptions of tool Y?
• OpenJML assumes that variables are non-null by default whereas Ver-
Cors requires the user to write annotations to express this.

– Does tool Y support all the concepts used in the annotations for tool X? If
not, does it have a similar concept?
• OpenJML has assignable clauses to indicate whether you can write to
a variable. VerCors does not have those, but it is built on permission-
based separation logic and requires annotations indicating the amount
of permissions for a specific memory location.

• OpenJML supports behavior clauses, which can be used to make case
distinctions in the specifications. VerCors does not support those, so one
needs to rewrite pre- and postconditions with implications to indicate
that something should hold only for a specific case.

Reusing Contracts for Deductive Verifiers through Automatic Translation 3

– Even if Y supports a concept, does it have the same semantics as in tool X?
• In OpenJML the term “predicate” refers to a boolean expression, whereas
in VerCors it is a function that returns a boolean. As such, VerCors’
predicates are more similar to model methods in OpenJML.

The Specification Translator handles most of these details automatically,
reducing the manual effort for the user.

For the translation, the Specification Translator uses an intermediate
representation which contains concepts supported by multiple tools, and makes
many implicit assumptions explicit. This makes it easy to extend the Specifi-
cation Translator with new input and output languages.

In our evaluation, we show that we can translate most annotations between
the verifiers (81%), and we analyse whether the program can be verified after
translation or how much effort is still required. Moreover, we show how we can
use the Specification Translator combined with Daikon to generate speci-
fications for VerCors. This used to be impossible without manual intervention.

Contributions In short, this paper introduces the tool Specification Trans-
lator, which can translate specifications between Krakatoa, OpenJML and Ver-
Cors. With this tool, we enable tool interoperability, and thereby prevent users
from spending a lot of time re-doing existing work, such as library verification,
and instead allow them to build on top of it and focus on new research in-
stead. Our evaluation shows for 30 programs and 2 larger case studies that more
than 80% of the specifications can be reused when using the Specification
Translator, highlighting its effectiveness in reducing the effort of integrating
tool results. The Specification Translator also supports the integration of
tools like Daikon, which supports one single specification language for Java, with
other verifiers, maximising their impact. Moreover, the paper highlights the dif-
ferences in semantics between Krakatoa, OpenJML and VerCors, as well as how
to translate between them.

Outline of the paper In the next section, we will describe the design of the
Specification Translator. Section 3 explains some of the more intricate
translations and design choices. Then, Section 4 evaluates the tool, specifically
how many annotations can be reused and reverified. We discuss related work in
Section 5 and conclude in Section 6.

2 Design of the Specification Translator

This section gives an overview of how the Specification Translator works
(see Figure 1). We briefly explain which transformations are done on an exam-
ple. Let us assume we have a file with OpenJML annotations that we want to
translate into VerCors annotations. First, the file is converted into an OpenJML-
specific syntax tree that resembles an abstract syntax tree. However, it is enriched
with formatting information such as whitespace, which is normally left out of an
AST. This allows all translations to remain as close as possible to the original

4 Armborst et al.

Java-file with
annotations

Tool-specific AST · · · Tool-specific AST

Intermediate representation
Java-file with
translated
annotations

Specification Translator

Fig. 1. Overview of how the Specification Translator works. Given an annotated
Java-file, the input is first converted into a tool-specific AST. This is translated via a
tool-independent intermediate representation into the tool-specific AST of the target
tool. From there, the output file is generated.

file, including formatting. We will refer to these syntax trees as AST, despite
the additional verbosity. Then, the OpenJML-specific AST is translated into
the intermediate representation. OpenJML-specific annotations are commented
if they are not supported by any other tool and thus cannot be translated. It
will also desugar some expressions, such as making implicit assumptions explicit.
Afterwards, the intermediate representation is translated into a VerCors-specific
AST. This may again comment some annotations, if VerCors does not support
them. Others may be rewritten, if they are not supported in the target spec-
ification language directly, but the intention can still be expressed. Using the
VerCors-specific AST, we generate the output file with all translated annota-
tions.

If there are annotations that are not translatable, the tool informs the user
on the command line. In the file, instead of silently removing the problematic
annotations, they are turned into comments. This ensures traceability, and helps
the user in case manual intervention is needed.

Intermediate representation Given that many tools based their specification
language on the Java Modeling Language (JML), the intermediate represen-
tation (IR) is also based on that standard. A few JML concepts were left out of
the IR, most notably redundancy, such as assignable redundantly or example
definitions. This does not change the specifications’ meaning, as redundant spec-
ifications do not constrain the program any more than the given non-redundant
specifications. Concepts were left out if at most one tool supported them, taking
into account tools whose support may be added in the future, such as KeY [1]
and Verifast [25]. If several tools support a feature in some way, it is incorporated
into the IR to facilitate translating between such tools without losing function-
ality. Currently, this mostly concerns memory access permissions for tools that
are based on separation logic, such as VerCors and Verifast. The IR is defined
in more detail with a grammar in the appendix1.

1 Due to publisher constraints, the appendix was moved online after peer review, to
https://doi.org/10.4121/73361fbb-2633-4011-b615-cce19d8ac196.

https://doi.org/10.4121/73361fbb-2633-4011-b615-cce19d8ac196

Reusing Contracts for Deductive Verifiers through Automatic Translation 5

Limitations The Specification Translator translates as much as possible,
however we cannot guarantee that the file will verify with the target tool. One
possible reason is that a concept used in the original specification is not directly
supported by the target tool, and the user has to find a different way to express
the property. The tool rewrites specifications into a related concept wherever
possible. Another reason for an unsuccessful verification after translation is that
the target tool requires more extensive annotations. Where possible, the tool
generates annotations for built-in assumptions, such as objects being non-null
in OpenJML, but it does not generate completely new specifications.

We do not provide soundness guarantees for the translation. To do so, one
needs to formalise the semantics of all tools involved, which is an effort out of
scope for this work. Instead, we provide carefully considered translations and
show their usefulness in practice. In the unlikely event that a substantial part
of the specifications is dropped or altered semantically, we expect the user or
target verifier to catch this during re-verification (see Section 4).

The Specification Translator only uses syntactic analysis to identify
features and translate them, there is no semantic analysis such as name reso-
lution or typing. While this limits the translation in a few cases, as mentioned
in Section 3, it significantly reduces the complexity of the tool, and thereby
the potential for errors. The evaluation in Section 4 shows that this analysis is
sufficient to translate the annotations in the overwhelming majority of cases.

Extending the tool The Specification Translator has been designed keep-
ing extendability in mind. By having an IR, a new language does not require
a direct translation to every other language. Instead, to add a new input lan-
guage, one only needs to add a parser and a translation into the IR. To add a
new output language, one needs to add a translation from the IR into the new
output language. The syntax trees for the different tools are based on a common
underlying data structure, on which any new tool-specific AST can also build.
This eliminates the need to redefine AST nodes from scratch if similar nodes
exist in the other languages.

Artifact The tool is available at https://doi.org/10.4121/21e79524-40c4-4dc1-
8108-94e7b6fc6d9f.

3 Translating Annotations

The Specification Translator currently supports the translation of annota-
tions between OpenJML, Krakatoa and VerCors. This section discusses for each
tool the choices that have been made in the translations to and from these tools.

3.1 OpenJML

OpenJML [13] is an open-source tool, which can verify Java programs that are
annotated with JML specifications. Its annotation language closely adheres to
the JML standard. As the IR is largely based on JML, the translation from
OpenJML to the IR does not require many changes.

https://doi.org/10.4121/21e79524-40c4-4dc1-8108-94e7b6fc6d9f
https://doi.org/10.4121/21e79524-40c4-4dc1-8108-94e7b6fc6d9f

6 Armborst et al.

Non-null by default One notable exception is that OpenJML assumes by default
that references are not null, for instance a method only returns non-null values.
References that can be null need to be explicitly annotated as nullable. This is
different from other tools like VerCors and the Java standard, where references
are always nullable. Therefore, the Specification Translator annotates all
classes as nullable by default when translating to OpenJML, disabling this
implicit assumption of OpenJML. In turn, when translating from OpenJML to
the IR, the Specification Translator generates non null modifiers in cases
such as parameters that are nullable in Java but implicitly non-null in OpenJML.

Access permissions When translating to OpenJML, the Specification Trans-
lator needs to deal with the extensions that the IR adds to JML. One example
are access permissions which are used by tools built on separation logic.

Access permissions are used to indicate whether it is allowed to read from
or write to a variable. The Specification Translator will therefore generate
assignable clauses for all variables that occur in permission expressions in
preconditions, and loop modifies clauses for all permission expressions in loop
invariants. Tools based on fractional permissions [8], such as VerCors, allow for
more fine-grained control than these JML clauses and therefore the translation
can be an over-approximation.

If the permission expression also contains the value at that location, such as
the “x points to 5” (x7→5) of classical separation logic, then this is turned into
a Boolean equality x==5. Other concepts of separation logic are also turned into
Boolean versions, for instance the separating conjunction becomes a Boolean
conjunction. This retains a significant part of the meaning, although additional
annotations may be required before the program can be verified again, e.g. ex-
plicitly stating that two references are not aliases.

Privacy modifiers OpenJML takes privacy modifiers into account for its veri-
fication. For example, the contract of a public method usually cannot refer to
private variables of the object. Other tools, like VerCors, do not have such a
restriction, meaning everything is implicitly in the public scope. To mimic such
behaviour, and avoid OpenJML giving many warnings about object visibility,
the translation from the IR to OpenJML’s AST marks all fields and methods,
which are not already public, as spec public.

Predicates Both Krakatoa and VerCors have predicates, with slightly different
meanings. In Krakatoa, they are boolean functions (see Listing 1.1 for an ex-
ample), while in VerCors they can also contain access permissions. Additionally,
VerCors treats them like abstract functions and does not automatically inspect
and use their body; an explicit unfold statement is needed to do so (for more
details, see [32]). OpenJML does not support predicates like that. The most
similar construct in OpenJML is a model method, which is a method that only
exists for the specification. We can translate the declaration of the predicate
into the declaration of a model method with a boolean return type and other-
wise the same signature as the predicate. In Krakatoa and VerCors, predicates

Reusing Contracts for Deductive Verifiers through Automatic Translation 7

Listing 1.1. Krakatoa predicate
1 /*@ predica te Sorted (in t a [] ,
2 in t eger l , in t eger h)
3 @ = \ f o r a l l in t eger i ;
4 @ l<=i<h ==> a [i] <= a [i +1];
5 @*/

Listing 1.2. Translated predicate
/*@ ensures \ r e s u l t ==

@ (\ f o r a l l i n t i ; l <= i < h
==> a [i] <= a [i +1]) ;

@ model boolean Sorted (in t a [] ,
@ in t l , i n t h) ;
@*/

do not have contracts and instead their body is completely visible to the calling
context (potentially after using unfold). To mimic that, the body is turned into
a postcondition of the model method. We show a small example of a predicate
translation from Krakatoa to OpenJML in Listings 1.1 and 1.2.

Data types Some tools have additional data types that can be used in ghost code,
such as VerCors’ multisets. Other tools often do not have an exactly equivalent
type, so the Specification Translator comments out any explicit reference
to data types that OpenJML does not support. However, as our syntactic anal-
ysis does not do type checking, it cannot identify all places where an object of
such a type is used. As a result, the Specification Translator may only
comment out some of the usages, and others may require manual intervention.

3.2 Krakatoa

Krakatoa was originally developed as a Java frontend for the Why platform [17].
Nowadays, it can still be used in combination with Why3 [18]. It can verify
Java programs annotated with the Krakatoa Modeling Language (KML) [34].
KML is inspired by JML and ANSI/ISO C Specification Language (ACSL). We
have used Krakatoa’s documentation and the generated WhyML programs to
determine the semantics of KML. Krakatoa is no longer actively developed and
there are only a handful of examples available which seems to indicate limited
use of the tool. As a result, it seems that there is little demand for translation
to Krakatoa, therefore we have chosen to provide limited support for this.

Assumes in behaviors Method contracts in JML can have behaviors. These
clauses can be used to split the specification into multiple cases, e.g. if an element
is in the list or not. To distinguish which case applies, Krakatoa uses assumes-
clauses instead of requires-clauses. For the translation of assumes clauses into the
IR, we use the semantics as explained in Krakatoa’s reference manual2. Namely,
given an assumes-clause A and an ensures-clause E in a behavior, then \old
(A) =⇒ E should hold if the program terminates normally.

Inductive predicates Krakatoa supports inductive predicates. These inductive
predicates consist of a predicate, possibly some parameters, and several case
definitions. The case definitions describe when the predicate should evaluate

2 https://krakatoa.lri.fr/krakatoa.html

https://krakatoa.lri.fr/krakatoa.html

8 Armborst et al.

to true. This should be a least fixpoint, meaning that only these cases should
evaluate to true and no others. Other tools do not have a concept to express a
least fixpoint and therefore the best we can do is to over-approximate for the
IR. We define a (non-inductive) predicate and translate the case definitions into
postconditions. We warn the user about this over-approximation.

Lemmas Lemmas are typically used to assist the prover to determine whether
the program adheres to the specification. They become part of the prover’s
implicit knowledge, and the prover can automatically use them where needed. We
considered translating lemmas to ghost functions. However, that would require
the user to call the ghost method explicitly, i.e. add additional annotations.
Instead, we translate them into axioms in the IR which makes sure that the
user does not need to add any annotations manually. Axioms are assumed to be
correct, whereas lemmas generate proof obligations. The lemmas (should) have
already been verified in Krakatoa originally, so simply assuming their correctness
at this point should not introduce any unsoundness. Nevertheless, to be safe, we
warn the user that these axioms should be proven separately.

3.3 VerCors

VerCors [6] is an open-source tool to verify concurrent programs, using JML-
like annotations and permission-based separation logic as its foundation. While
the specification language is JML-like, there are some notable deviations. In
particular, many JML features are not supported, such as axioms, and instead
there are new constructs to accommodate concepts from separation logic.

Permissions VerCors does not support assignable or accessible clauses in
method contracts, which can be used to indicate whether you can write to or
read from a variable. In VerCors this can be expressed with write permission for
the locations that are assignable, and at least read permission for those that are
accessible. Thus each assignable or accessible clause can be represented with
a pair of a pre- and a postcondition containing those access permissions. Likewise,
loop modifies clauses are turned into loop invariants with write permissions.
This may be an over-approximation as loop modifies can refer to local variables
on the stack, while permissions can only refer to heap locations. However, the
Specification Translator’s lack of name resolution means that we cannot
distinguish them, and the user needs to remove these permissions manually. In
the examples in the evaluation (Section 4), this was not a frequent case, and was
always a quick and straight-forward fix.

Bound checks A notable difference between VerCors and other tools are type
bounds: VerCors only supports unbounded integers. In contrast, OpenJML checks
at every assignment if the value is within the bounds of a machine integer, and
warns about potential over- or underflows. This means that a program that
verifies in VerCors may not verify in OpenJML. In the opposite direction, a

Reusing Contracts for Deductive Verifiers through Automatic Translation 9

verified OpenJML program will also verify in VerCors, as long as the specifica-
tion does not explicitly rely on the boundedness guarantees. The Specification
Translator could try to add explicit assertions about value bounds to every
assignment to mimic OpenJML’s behaviour. However, they would require in-
formation about the type of expressions to derive the right bounds, which the
syntactic analysis of the Specification Translator cannot always provide.
More importantly, they would clutter the program a lot, so we decided to not
include those checks. Instead, the user has to manually add bound checks when
translating to VerCors, if variable bounds are of interest. Moreover, they may
have to provide additional annotations that ensure variable bounds after trans-
lating from VerCors to OpenJML, before the program verifies again, or disable
the bound checks in OpenJML.

Behaviors Unlike the IR, VerCors does not support behavior-clauses. In other
tools, like OpenJML and Krakatoa, a method contract can specify multiple be-
haviours for the method, for example depending on the value of a parameter
(Listing 1.3 gives an example). Whenever a behavior’s precondition is met, the
method has to adhere to the specifications of that behavior block, such as guar-
anteeing its postconditions. When calling the method, at least one behavior’s
precondition has to be met. In contrast, in VerCors all preconditions must be
met at every call, and the postconditions are ensured unconditionally. However,
a postcondition can be an implication, thereby explicitly containing a condition.

The Specification Translator uses this to turn a behavior into condi-
tional postconditions: Each postcondition of a behavior is turned into an impli-
cation, using the conjunction of all preconditions of the behavior as a condition
(see Lines 8-9 and 10-12 in Listing 1.4). If the behavior contains accessible
and assignable clauses, they are treated similarly: They are turned into a pair
of pre- and postcondition as described above, both of which are conditional on
the behavior’s precondition (Lines 1-4). Additionally, the individual precon-
ditions of the behavior are replaced with one single precondition of the form∨

behavior b

(∧
precond. p in b p

)
, meaning a disjunction over all behavior blocks

for the method, where each disjunct is a conjunction of the preconditions of
that behavior (Lines 5-7). If the clause used the keyword normal behavior or
exceptional behavior, then this clause implicitly assumes the postcondition
signals (Exception e) false or ensures false, respectively. These implicit
postconditions are made explicit in the translation, and also become conditional
on the behavior’s preconditions (Line 13).

Invariants In JML, one can define invariants, which an object has to satisfy at
every observable execution point, such as the end of initialisation and before and
after invoking any method which is not declared as helper [28, Ch. 8.2]. Ver-
Cors does not support invariants. Thus, invariants are turned into pre- and post-
conditions for every non-helper method, and postconditions for constructors.
While this is a close approximation, it does not exactly replicate the meaning of
invariant: Observable points also include any time when no method is ongoing.
The authors of [28] note themselves that the definition is highly non-modular,

10 Armborst et al.

Listing 1.3. OpenJML program
with behaviors

1 /*@ behavior
2 requ i res inp > 0 | | inp==0;
3 requ i res inp > =1;
4 ensures \ r e s u l t ;
5 a l so excep t iona l behav ior
6 requ i res inp < 0;
7 ass i gnab l e errors ;
8 s i gna l s (Exception e)
9 errors == \ old (errors)+1;

10 @*/
11 boolean checkPos (int inp){
12 . . .
13 }
14

Listing 1.4. Translated contract
1 /*@ requ i res (inp<0)
2 ==> Perm(errors , wri te) ;
3 ensures \ old (inp<0)
4 ==> Perm(errors , wri te) ;
5 requ i res ((inp>0 | | inp==0)
6 && (inp>=1))
7 | | (inp<0) ;
8 ensures \ old ((inp>0 | | inp==0)
9 && (inp>=1)) ==> \ r e s u l t ;

10 s i gna l s (Exception e)
11 \ old (inp<0) ==>
12 (errors == \ old (errors)+1) ;
13 ensures \ old (inp<0) ==> f a l s e ;
14 */
15 boolean checkPos (int inp) { . . . }

and propose the same work-around we use, to allow modular verification. Note
that in the concurrent setting of VerCors, a concurrent thread may observe
more execution points than the ones mentioned above. Zaharieva-Stojanovski et
al. [35] propose a more involved notion of class invariants for concurrency. How-
ever, this requires explicitly marking program segments where the class invariant
may be broken. VerCors does not support these special annotations, yet, so we
keep the original notion of observability.

Predicates As mentioned in Section 3.1, VerCors supports predicates, which can
contain both boolean expressions and access permissions. To use this content,
the predicate has to be explicitly unfolded, and refolded back into a predicate
afterwards. In the translation from VerCors to the IR, these fold and unfold

statements are turned into assertions. This mimics the fact that VerCors actually
checks that the predicate holds at that position. It can also serve as a guidance
to provers, indicating that the knowledge of this predicate is needed here.

4 Evaluation

We evaluate how much the Specification Translator improves tool interop-
erability by showing (1) how many annotations can be reused between tools, and
(2) how the Specification Translator allows the reuse of tools like Daikon.

4.1 Reuse of Specifications

In this section we focus on the question “How many annotations can be reused?”.
We have randomly selected 10 verifiable programs per tool (Krakatoa, OpenJML
and VerCors) from the Java examples that are distributed with each tool, as well
as 2 bigger case studies. We will first discuss the results for the smaller examples.
This includes overviews per tool of how many annotations could be translated,
a discussion on how much manual effort is needed after translation and a note
on how many translations are trivial.

Reusing Contracts for Deductive Verifiers through Automatic Translation 11

For each program, we measure how many lines were translated. This is deter-
mined by inspecting the specifications to see whether the intent of the specifica-
tion before translation was preserved in the specification after translation. This
could either be through a correct translation, or by omitting the specification
if there is a corresponding default assumption in the target verifier. Aside from
how many lines could be translated, we also measure how long the translation
took, and whether the program could be verified after translation. If the verifi-
cation was unsuccessful, the error message was manually inspected to determine
the cause of the verification failure.

We distinguish between errors caused by the verifier (e.g. missing support
for a Java construct used in the original file) and those caused by the translator
(e.g. a method signature is no longer uniquely defined after translation). For
the verification, we have used OpenJML v0.8.59 and VerCors v2.0.0 (beta). As
mentioned in Section 3.2, support for translating to Krakatoa is limited, so we did
not evaluate that direction. However, all Krakatoa examples were verified with
Krakatoa v2.41 (with Why3 v0.88.3) before translating them. For the translation
time, each translation was run five times, and the average is provided. The given
time is CPU time, obtained with Python profiling tools. The time was recorded
in the virtual machine which was provided for the iFM 2023 artifact evaluation
(4 CPU cores, 8 GB of RAM, running Ubuntu 22.04).

The results can be seen in Tables 1 to 3. The second column of the tables
indicates the number of lines that have specifications. This includes lines of code
that have specifications embedded, such as void m(/*@nullable*/ int[] a),
but does not include lines that have no meaningful specifications, such as the line
@*/. Of the total of 991 lines analysed for this subsection, 806 were successfully
translated or not needed in the target tool (81%).

Krakatoa examples The results of translating the Krakatoa examples to Open-
JML and VerCors can be found in Table 1. The translation takes around three
seconds for each example, which is significantly faster than any human could
translate them. Several examples verify after translation without any manual
intervention.

There are several examples (tagged ‘I’) that require additional annotations
before they can be re-verified. For example, OpenJML checks for integer over-
flows while this was disabled in several Krakatoa examples. Therefore, OpenJML
requires additional specifications about the bounds of variables. The MyCosine

example only had annotations that used built-in functions from Krakatoa. These
functions are not available in other tools and can therefore not be translated.
Nonetheless, the translation to OpenJML contains some annotations as the tool
adds privacy modifiers and ensures that objects are nullable as discussed in Sec-
tion 3.1. The translation introduces an error in one case (TreeMax), which is a
name clash between two originally polymorphic methods. This is a limitation of
the Specification Translator as it does not do name resolution.

Most of the issues we ran into when verifying programs with VerCors after
the translation were caused by limitations of VerCors (tagged ‘L’). Some were
caused by minor bugs in VerCors, such as missed corner cases of the parser,

12 Armborst et al.

Table 1. Krakatoa examples and their translation into OpenJML and VerCors. In the
result columns, ‘I’ indicates incomplete, i.e. more annotations are needed. ‘E’ indicates
empty, i.e. the file does not contain any annotations that express the intent of the
original annotations. ‘T’ indicates that the translation introduced an error. ‘L’ indicates
failed verification due to a limitation of the target verifier.

Krakatoa OpenJML VerCors

program li
n
es

w
it
h

a
n
n
o
ta
ti
o
n
s

li
n
es

su
cc
es
sf
u
ll
y

tr
a
n
sl
a
te
d

li
n
es

w
it
h

a
n
n
o
ta
ti
o
n
s

ti
m
e
in

s

re
su
lt

li
n
es

su
cc
es
sf
u
ll
y

tr
a
n
sl
a
te
d

li
n
es

w
it
h

a
n
n
o
ta
ti
o
n
s

ti
m
e
in

s

re
su
lt

ArrayMax 13 100% 12 2.67 ✗(I) 85% 9 2.79 ✗(I)
BankingExample 6 100% 8 2.12 ✓ 83% 7 2.16 ✗(L)
Counter 5 40% 5 3.00 ✗(I) 40% 2 2.19 ✗(I)
Creation 20 95% 21 3.11 ✗(I) 75% 7 2.16 ✗(L)
MyCosine 9 0% 5 2.61 ✓(E) 0% 0 2.19 ✗(L)
Negate 9 89% 10 2.98 ✗(I) 78% 8 2.23 ✗(L)
Purse 16 94% 19 2.66 ✗(I) 88% 18 2.22 ✗(I)
Sort2 38 11% 7 2.93 ✗(I) 11% 4 2.63 ✗(L)
Termination 6 83% 9 2.66 ✓ 83% 5 2.12 ✓
TreeMax 24 33% 15 2.65 ✗(T) 25% 5 2.40 ✗(L)

that we expect to be fixed in the near future and thus we have not modified
our tool. VerCors also has limited support for inheritance in Java and difficulties
dealing with Class.method() calls. Similar to the previous examples, the user
sometimes needs to add additional annotations (tagged ‘I’).

OpenJML examples Table 2 shows that all OpenJML examples could be trans-
lated to VerCors, with only a few lines not being translated. One such line had
modifiers to disable integer bound checking that VerCors does not perform any-
way, and one only contained a nullable modifier that is already the default in
VerCors. Thus, the only line with an effect is a loop invariant that referred to
the OpenJML built-in variable \count which does not exist in VerCors.

Like before, the translation time was negligible. Unfortunately, none of the ex-
amples verified after translation. This is to be expected, as VerCors requires the
additional information of access permissions. While the Specification Trans-
lator tries to derive them from e.g. assignable clauses, none of the examples
used those clauses. All the examples marked with ‘I’ were missing access permis-
sions, and verified after manually adding those. Several examples failed because
of limitations of VerCors, e.g. it does not support calls to standard library func-
tions. Examples failing because of such limitations of VerCors are marked with
‘L’. None of the verification failures are caused by the translator, instead they
are caused by limitations of the verifiers.

Reusing Contracts for Deductive Verifiers through Automatic Translation 13

Table 2. OpenJML examples and their translation into VerCors. In the result columns,
‘I’ indicates incomplete, i.e. it needs more annotations to be verified. ‘L’ indicates that
the program could not be verified due to a limitation of the verifier.

OpenJML VerCors
lines with lines successfully lines with

program annotations translated annotations time in s result

BinarySearchGood 12 100% 12 2.70 ✗(L)
BubbleSort 10 100% 11 2.72 ✗(I)
ChangeCase 8 100% 4 2.53 ✗(L)
HeapSort 46 100% 47 3.80 ✗(L)
InvertInjection 16 100% 16 3.49 ✗(L)
MaxByElimination 7 100% 8 3.49 ✗(I)
MergeSort 19 100% 21 3.01 ✗(L)
SelectionSort 12 100% 12 2.75 ✗(I)
SumMax 4 75% 4 2.73 ✗(L)
TwoSum 18 84% 18 3.05 ✗(L)

VerCors examples The results of translating the VerCors is shown in Table 3.
Some VerCors examples verified successfully in OpenJML. One example used
a public class which did not match the file name, so OpenJML failed to verify
it. This highlights the stronger visibility checks of OpenJML. Renaming the
file made it verify. Several examples caused OpenJML to issue warnings about
potential over- or underflows, but did otherwise verify. In some cases, constructs
were not supported, such as data types, and additional annotations are required.

Effort to Verify We also investigated how much manual effort is needed after
the automatic translation, before the files verify successfully in the respective
target tool. In some cases, the effort was negligible, for instance all files in Table 3
marked overflow verify if the overflow check is turned off by adding the modifiers
code bigint math and spec bigint math to the respective class. Notice that
turning off these checks actually makes the behaviour of OpenJML more faithful
to the behaviour of VerCors. However, the translator keeps the checks by default,
as this allows the user to leverage the additional capabilities of the target tool.

In other cases, only a little more effort is required. For Krakatoa, six of
the translations to OpenJML required three or less changes, e.g. adding a bound
check or redefining a simple predicate. Six translations from Krakatoa to VerCors
also required some effort. For translations to VerCors, most examples required
permissions to be added manually. For those small example files, an experienced
VerCors user can determine the necessary permissions easily. However, in general
this can be a non-trivial task, and research into permission inference is still on-
going (e.g. [14]). In such cases, one could use the Specification Translator
in a workflow pipeline, followed by invoking a dedicated inference tool. Another
common task for VerCors was to add an existing precondition also as a postcon-

14 Armborst et al.

Table 3. VerCors examples and their translation into OpenJML.

VerCors OpenJML
lines with lines successfully lines with

program annotations translated annotations time in s result

BoogieTest 6 100% 7 2.39 ✗(overflow)
Incr 6 100% 11 2.41 ✗(overflow)
KnuthTabulate 8 100% 15 2.49 ✗(incomplete)
LabeledWhile 19 63% 23 2.41 ✓
ListAppend-

ASyncDefInline
17 38% 9 2.53 ✗(incomplete)

LoopInv 4 100% 5 2.34 ✗(overflow)
PairInsertionSort 32 100% 42 2.87 ✓
refute4 3 100% 6 2.25 (✓) (name)
RosterFixed 24 88% 32 2.61 ✗(limitation)
SwapInteger 6 100% 11 2.25 ✓

dition or loop invariant. While the need for this may not always be obvious, an
experienced user will quickly recognise and resolve the issue.

There were also five examples that required significant user intervention, such
as redefining an intricate predicate. For the Krakatoa examples, these were Sort2
and TreeMax, which required significant effort to rewrite predicates. For the
VerCors examples, in ListAppendASyncDefInline a VerCors-specific data type
needed to be replaced, and RosterFixed required defining a JMLDataGroup
to handle access restrictions. To resolve the issues for these VerCors examples,
we also used a newer version of OpenJML (0.17.0-alpha-15). For the OpenJML
examples, only MergeSort needed complex user intervention, namely providing
a contract for a Java library function.

Some files could not be verified at all, because they relied on features not
supported by the target tool. For example, VerCors does not support some Java
features used by two Krakatoa examples and two OpenJML examples.

Trivial Translations As many specification languages are based on JML, we also
analysed how many of the translations were trivial, i.e. required no change at
all for reuse. We compared the specifications generated by the Specification
Translator with the original ones. We found that around 55% of the original
specification lines needed changing in order to be reused, or were commented out
because there was no direct translation. Thus, if translated manually without our
tool, these 55% would require some user intervention. Since the Specification
Translator was able to translate 81% of specification lines, we conclude that
using it significantly reduces the amount of user intervention required.

Case Studies Next, we demonstrate the Specification Translator on two
bigger API verification case studies.

Reusing Contracts for Deductive Verifiers through Automatic Translation 15

Firstly, we use a verification case study that used Krakatoa to verify a genetic
algorithm [9]. The original file has 164 lines with specification. We have trans-
lated these specifications to OpenJML, resulting in 178 lines with specification.
We were able to translate 89% of the original specification. Before OpenJML
can analyse the file, some additional annotations are needed to resolve parsing
issues. The original file contained several predicates that could not be translated,
as they used labels, therefore the user will have to redefine these. The user will
also need to add some static modifiers to several of these predicates. Finally,
several \fresh expressions are used in preconditions. These should be removed
as OpenJML does not allow \fresh expressions in preconditions.

Secondly, we use a verification case study where a version of Java’s ArrayList
was verified in VerCors3. The VerCors file has 258 lines with specifications. We
used the Specification Translator to translate this to OpenJML, with the
resulting file having 327 lines with specifications. All the lines could be trans-
lated. OpenJML could parse the translated file without manual intervention, and
already verified 17 out of 23 methods successfully. Some of the warnings resulted
from two pure methods not being marked pure. Marking these methods as pure
reduced the number of OpenJML warnings to 10. The majority concerned over-
or underflows in arithmetic operations, which is to be expected when translating
from VerCors. Another is related to inheritance, which is also not fully sup-
ported by VerCors. One method was a stub stand-in for a library, and used as a
body assume false. OpenJML warned about that, but had no other complaints
about that method. Finally, the anti-aliasing of VerCors’ separation logic did not
fully translate to OpenJML, causing some warnings.

To conclude, for the Krakatoa and VerCors case studies we were able to
translate 89% and 100% respectively. This shows that using the Specification
Translator allows us to reuse large parts of existing specifications for APIs,
and significantly reduces the manual effort required for translation.

4.2 Reuse of Tools

Aside from reusing specifications, the Specification Translator also allows
reusing tools that only support a limited number of specification languages. For
example, Daikon [16] can generate specifications in JML, but does not support
VerCors’ specification language. With our tool, the JML specifications gener-
ated by Daikon can be translated to VerCors. This makes Daikon applicable for
verifiers that do not support JML directly, without having to alter Daikon.

As an example, we use the QueueAr.java provided with Daikon. Running
Daikon on the un-annotated file generates 127 lines with specifications. Many of
those are JML-specific and not directly usable in VerCors, in particular class-
level invariants and assignable clauses. After using the Specification Trans-
lator, the file had 252 lines with annotations. 16 of those referred to the owner
of JML’s type system, which VerCors does not support, but the remaining 94%
were valid VerCors specifications. Note that this means an increase by more than

3 This was done by student Joost Sessink as part of a course.

16 Armborst et al.

100 usable specification lines. These mainly stem from adding class-level invari-
ants as pre- and postconditions to all relevant methods. Without the Specifica-
tion Translator, all these specifications would have to be written manually.

Note that while the specifications generated by Daikon were helpful, they
were not sufficient for verification with OpenJML, nor with VerCors after the
translation. However, our goal was to make Daikon-generated specifications us-
able for VerCors, regardless of the verification result. This was successful for
nearly all specifications.

5 Related Work

To the best of our knowledge, this paper presents the first tool for translating
annotations for deductive verification. We discuss three related research areas:
(1) translations to/from JML, (2) common tool formats, and (3) tool interoper-
ability.

Translating to/from JML Many translations to and from JML have been pro-
posed in earlier work. This includes translation from B machines to JML [10],
OCL to/from JML [23], JML to executable Java [4], JML from Alloy expres-
sions [21], from temporal properties [19], from VDM-SL [33] and from security
automata [24]. However, none of these target the translation of annotations be-
tween different deductive verifiers. Also of note is Raghavan and Leavens [29],
who simplify JML specifications by removing syntactic sugar, thus a JML-to-
JML translation. While some of the transformations we do are similar, there is
not a lot of overlap: Many of the syntactic sugar that they remove is already
supported by the verifiers we looked at. Moreover, their translation left con-
cepts that we needed to remove, such as behavior clauses when translating to
VerCors.

Common tool formats Many different common formats for tools have been pro-
posed, such as the earlier mentioned JML (Java Modeling Language) [27]. Other
formats include JIR (JML Intermediate Language) and JFSL (JForge Specifica-
tion Language). JIR [31] aims to decouple front-ends and back-ends by introduc-
ing an intermediate representation. JFSL aims to address some shortcomings of
JML by extending it with e.g. support for expressing the transitive closure [11].
These languages are not sufficient for our goals since they do not support con-
structs outside of JML such as permissions in VerCors. Moreover, we believe that
a new language will not solve the problem because new techniques are still being
developed that may require new types of specifications. Also, it would require
all tool developers to modify their tool to support the new language. With the
Specification Translator we can improve the tool interoperability between
deductive verifiers without burdening the tool developers.

Tool interoperability Another related topic is tool interoperability. Christakis et
al. [12] have proposed to extend the output of static verifiers to make implicit

Reusing Contracts for Deductive Verifiers through Automatic Translation 17

assumptions explicit, for instance about integer overflows. They then use other
verifiers or test case generation to check these assumptions, creating a tool chain.
During our translation, we similarly turn some implicit assumptions into explicit
proof obligations. While we both address tool interoperability, they focus on the
verification results and how these can be used in tool chains, whereas we focus
on the reuse of specifications between verifiers as well as from inference tools
such as Daikon. Aside from making assumptions explicit, our approach also
supports the reuse of other specifications through translation. Consequently,
our target verifier attempts to re-verify the properties proven by the original
verifier, without reusing its results. Moreover, our approach does not require any
modifications to the existing verifiers as is the case for the work of Christakis et
al. For their approach, differences in the specification languages of tools can be
a major hindrance, and a translation tool like ours can increase the applicability
of their work.

Another idea that focuses on the reuse of existing artefacts is proof repair.
The idea of proof repair is to automatically update proofs used by proof assis-
tants. This can be used to fix a proof when a newer version of the same proof
assistant has changes that are backward incompatible [30]. Instead of updating
proofs, we focus on updating specifications between different deductive verifiers.
We can extend the Specification Translator to support translating specifi-
cations between different versions of the same tool to achieve a similar goal for
deductive verifiers.

6 Conclusion

We have presented the Specification Translator, the first tool for trans-
lating contract-based specifications between deductive verifiers for Java. Using
the Specification Translator allows users to reuse existing tools and speci-
fications, thereby minimising the burden of writing specifications and enhancing
tool interoperability. We have shown that we could translate 81% of the specifi-
cations between tools, reducing the effort for the user significantly compared to
having to translate them manually. Moreover, it allows us to use tools such as
Daikon for new deductive verifiers without needing to modify these tools.

For future work, aside from supporting other tools like Verifast, we would
like to exploit the new abilities for reuse. This includes building verified libraries
based on verification efforts from other tools, and exploring tool integration like
the Daikon example.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive Software Verification – The KeY Book - From Theory to Practice, Lec-
ture Notes in Computer Science, vol. 10001. Springer International Publishing
(2016). https://doi.org/10.1007/978-3-319-49812-6, Tool website: https://www.
key-project.org/

https://doi.org/10.1007/978-3-319-49812-6
https://www.key-project.org/
https://www.key-project.org/

18 Armborst et al.

2. Armborst, L., Huisman, M.: Permission-based verification of red-black trees
and their merging. In: 2021 IEEE/ACM 9th International Conference on
Formal Methods in Software Engineering (FormaliSE). pp. 111–123 (2021).
https://doi.org/10.1109/FormaliSE52586.2021.00017

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned
from microkernel verification — specification is the new bottleneck. Elec-
tronic Proceedings in Theoretical Computer Science 102, 18–32 (nov 2012).
https://doi.org/10.4204/eptcs.102.4

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation: Verification
Principles - 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 12476, pp. 60–80. Springer (2020).
https://doi.org/10.1007/978-3-030-61362-4 4

5. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Paskevich, A., Wies, T. (eds.) Verified Software. Theories, Tools,
and Experiments. pp. 35–48. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-72308-2 3

6. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S.A. (eds.)
Integrated Formal Methods - 13th International Conference, IFM 2017, Turin,
Italy, September 20-22, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10510, pp. 102–110. Springer (2017). https://doi.org/10.1007/978-3-319-66845-1 7,
Tool website: https://www.utwente.nl/vercors/

7. Boer, M.d., Gouw, S.d., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal
specification and verification of JDK’s identity hash map implementation. In: ter
Beek, M.H., Monahan, R. (eds.) Integrated Formal Methods. pp. 45–62. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-07727-
2 4

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
Static Analysis. pp. 55–72. Springer Berlin Heidelberg, Berlin, Heidelberg (2003).
https://doi.org/10.1007/3-540-44898-5 4

9. Brizhinev, D., Goré, R.: A case study in formal verification of a Java program.
Computing Research Repository abs/1809.03162 (2018), http://arxiv.org/abs/
1809.03162

10. Cataño, N., Wahls, T., Rueda, C., Rivera, V., Yu, D.: Translating B machines
to JML specifications. In: Ossowski, S., Lecca, P. (eds.) Proceedings of the ACM
Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30,
2012. pp. 1271–1277. ACM (2012). https://doi.org/10.1145/2245276.2231978

11. Chicote, M., Ciolek, D., Galeotti, J.: Practical JFSL verification us-
ing TACO. Software: Practice and Experience 44(3), 317–334 (2014).
https://doi.org/10.1002/spe.2237, https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe.2237

12. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal
Methods. Lecture Notes in Computer Science, vol. 7436, pp. 132–146. Springer
Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 13

13. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bo-
baru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA For-
mal Methods. pp. 472–479. Springer Berlin Heidelberg, Berlin, Heidelberg

https://doi.org/10.1109/FormaliSE52586.2021.00017
https://doi.org/10.4204/eptcs.102.4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-319-66845-1_7
https://www.utwente.nl/vercors/
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/3-540-44898-5_4
http://arxiv.org/abs/1809.03162
http://arxiv.org/abs/1809.03162
https://doi.org/10.1145/2245276.2231978
https://doi.org/10.1002/spe.2237
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2237
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2237
https://doi.org/10.1007/978-3-642-32759-9_13

Reusing Contracts for Deductive Verifiers through Automatic Translation 19

(2011). https://doi.org/10.1007/978-3-642-20398-5 35, Tool website: https://
www.openjml.org/

14. Dohrau, J.: Automatic Inference of Permission Specifications. Ph.D. thesis, ETH
Zurich (2022)

15. Efremov, D., Mandrykin, M., Khoroshilov, A.: Deductive verification of unmodified
linux kernel library functions. In: Margaria, T., Steffen, B. (eds.) Leveraging Appli-
cations of Formal Methods, Verification and Validation. Verification. pp. 216–234.
Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-
030-03421-4 15

16. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007). https://doi.org/10.1016/j.scico.2007.01.015,
Tool website: https://plse.cs.washington.edu/daikon/

17. Filliâtre, J., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) Computer Aided Ver-
ification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-
7, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4590, pp. 173–
177. Springer (2007). https://doi.org/10.1007/978-3-540-73368-3 21, Tool website:
https://krakatoa.lri.fr/

18. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In:
Felleisen, M., Gardner, P. (eds.) Programming Languages and Systems.
ESOP. pp. 125–128. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37036-6 8

19. Giorgetti, A., Groslambert, J.: JAG: JML annotation generation for verifying tem-
poral properties. In: Baresi, L., Heckel, R. (eds.) Fundamental Approaches to Soft-
ware Engineering, 9th International Conference, FASE 2006, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 27-28, 2006, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 3922, pp. 373–376. Springer (2006). https://doi.org/10.1007/11693017 27

20. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification. pp. 273–289.
Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-
319-21690-4 16

21. Grunwald, D., Gladisch, C., Liu, T., Taghdiri, M., Tyszberowicz, S.S.: Gen-
erating JML specifications from alloy expressions. In: Yahav, E. (ed.) Hard-
ware and Software: Verification and Testing - 10th International Haifa Verifi-
cation Conference, HVC 2014, Haifa, Israel, November 18-20, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8855, pp. 99–115. Springer (2014).
https://doi.org/10.1007/978-3-319-13338-6 9

22. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G.J. (eds.) Computing and
Software Science - State of the Art and Perspectives, Lecture Notes in Computer
Science, vol. 10000, pp. 345–373. Springer (2019). https://doi.org/10.1007/978-3-
319-91908-9 18

23. Hamie, A.: Translating the object constraint language into the java modelling
language. In: Proceedings of the 2004 ACM Symposium on Applied Computing. p.
1531–1535. SAC ’04, Association for Computing Machinery, New York, NY, USA
(2004). https://doi.org/10.1145/967900.968206

https://doi.org/10.1007/978-3-642-20398-5_35
https://www.openjml.org/
https://www.openjml.org/
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1016/j.scico.2007.01.015
https://plse.cs.washington.edu/daikon/
https://doi.org/10.1007/978-3-540-73368-3_21
https://krakatoa.lri.fr/
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/11693017_27
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-319-13338-6_9
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/967900.968206

20 Armborst et al.

24. Huisman, M., Tamalet, A.: A formal connection between security automata and
JML annotations. In: Chechik, M., Wirsing, M. (eds.) Fundamental Approaches to
Software Engineering, 12th International Conference, FASE 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5503, pp. 340–354. Springer (2009). https://doi.org/10.1007/978-3-642-00593-
0 23

25. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens,
F.: VeriFast: A powerful, sound, predictable, fast verifier for C and
Java. In: NASA Formal Methods Symposium. pp. 41–55. Springer (2011).
https://doi.org/10.1007/978-3-642-20398-5 4

26. Knüppel, A., Thüm, T., Pardylla, C., Schaefer, I.: Experience report on formally
verifying parts of OpenJDK's API with KeY. Electronic Proceedings in Theoretical
Computer Science 284, 53–70 (nov 2018). https://doi.org/10.4204/eptcs.284.5

27. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(may 2006). https://doi.org/10.1145/1127878.1127884

28. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual (May
2013), dept. of Computer Science, Iowa State University. Available from http:
//www.jmlspecs.org

29. Raghavan, A., Leavens, G.: Desugaring JML method specifications. Computer Sci-
ence Technical Reports 345 (2005), http://lib.dr.iastate.edu/cs techreports/345

30. Ringer, T., Yazdani, N., Leo, J., Grossman, D.: Adapting proof automation to
adapt proofs. In: Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs. p. 115–129. CPP 2018, Association for Com-
puting Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3167094

31. Robby, Chalin, P.: Preliminary design of a unified JML representation and software
infrastructure. In: Proceedings of the 11th International Workshop on Formal Tech-
niques for Java-like Programs. FTfJP ’09, Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1557898.1557903

32. Summers, A.J., Drossopoulou, S.: A formal semantics for isorecursive and equire-
cursive state abstractions. In: Castagna, G. (ed.) ECOOP 2013 – Object-Oriented
Programming. pp. 129–153. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39038-8 6

33. Tran-Jørgensen, P.W.V., Larsen, P.G., Leavens, G.T.: Automated translation of
VDM to JML-annotated Java. Int. J. Softw. Tools Technol. Transf. 20(2), 211–235
(2018). https://doi.org/10.1007/s10009-017-0448-3

34. Tushkanova, E., Giorgetti, A., Marché, C., Kouchnarenko, O.: Modular Spec-
ification of Java Programs. Research Report RR-7097, INRIA (2009), https:
//hal.inria.fr/inria-00434452

35. Zaharieva-Stojanovski, M., Huisman, M.: Verifying class invariants in con-
current programs. In: Gnesi, S., Rensink, A. (eds.) Fundamental Approaches
to Software Engineering. pp. 230–245. Springer Berlin Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54804-8 16

https://doi.org/10.1007/978-3-642-00593-0_23
https://doi.org/10.1007/978-3-642-00593-0_23
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.4204/eptcs.284.5
https://doi.org/10.1145/1127878.1127884
http://www.jmlspecs.org
http://www.jmlspecs.org
http://lib.dr.iastate.edu/cs_techreports/345
https://doi.org/10.1145/3167094
https://doi.org/10.1145/1557898.1557903
https://doi.org/10.1007/978-3-642-39038-8_6
https://doi.org/10.1007/s10009-017-0448-3
https://hal.inria.fr/inria-00434452
https://hal.inria.fr/inria-00434452
https://doi.org/10.1007/978-3-642-54804-8_16

	Joining Forces! Reusing Contracts for Deductive Verifiers through Automatic Translation

