
VERIFICATION OF
CONCURRENT AND DISTRIBUTED SOFTWARE

MARIEKE HUISMAN
UNIVERSITY OF TWENTE, NETHERLANDS

§ How to ensure software quality?

§ Classical program logic

§ VerCors exercise

§ Separation logic: reasoning about pointers

§ The next challenge: concurrent software

§ Permission-based separation logic

§ VerCors exercise

§ Verification of GPU kernels

§ Reasoning about parallel blocks

§ VerCors exercise

§ Advanced verification features

OUTLINE OF THIS LECTURE

Verification of Concurrent and Distributed Software 2

Code voor exercises and some

examples available from

https://wwwhome.ewi.utwente.nl

/~marieke/VTSA

SOFTWARE QUALITY

Verification of Concurrent and Distributed Software 3

Peter Naur
1968
Working on the
Software crisis
report

An important
challenge:
Reliable software
with parallel
computations

Verification of Concurrent and Distributed Software 4

SOFTWARE IS EVERYWHERE

All software
has errors!

Software failures
can have
enormous impact

Volkskrant

Verification of Concurrent and Distributed Software 5

VERIFICATION AS PART OF SOFTWARE DEVELOPMENT

Warning: this method does not have intended
behaviour.

Click here for a counterexample

Warning: at this point a nullpointer exception
can occur.

Click here for an example execution

Realising this dream requires substantial research
§ Enlarge class of properties that can be established
§ Automatic feedback

Use logic to describe behaviour of program components
§ Precondition: what do you know in advance?
§ Postcondition: what holds afterwards

Example: increaseBy(int n)
requires n >= 0
ensures x == old(x) + n

Verification of Concurrent and Distributed Software 6

SPECIFYING PROGRAM BEHAVIOUR

Bob Floyd

Tony Hoare

Dates back
to the 60-ies

Hoare triples + logic
Notation: {P}S{Q}
Syntactic verification of programs

precondition postcondition

HISTORY OF PROGRAM VERIFICATION

Floyd - Hoare

Krakatoa

My thesis
(around 2000) State-of-the-art

Dijkstra

Verification of Concurrent and Distributed Software 7

PROGRAM LOGIC

Bob Floyd
1936 - 2001

Verification of Concurrent and Distributed Software 8

§ Precondition: property that should be satisfied when method is called –
otherwise correct functioning of method is not guaranteed

§ Postcondition: property that method establishes – caller can assume
this upon return of method

§ Method specification is contract between implementer and caller of
method.
§ Caller promises to call method only in states
in which precondition holds
§ Implementer guarantees postcondition will
be established

PRE- AND POSTCONDITIONS

Verification of Concurrent and Distributed Software 9

§ {P}S{Q}

§ Due to Tony Hoare (1969)

§ Meaning: if P holds in initial state s, and execution of S in s terminates
in state s', then Q holds in s’

§ Formally:
{P}S{Q} = ∀s.P(s) Ù (S,s) è s’ Þ Q(s’)

HOARE TRIPLES

Verification of Concurrent and Distributed Software 10

§ Hoare triples: specify behaviour of methods
§ How to guarantee that methods indeed respect this behaviour?

§ Collection of derivation rules to reason about Hoare triples

§ Rules defined by induction on the program structure
§ Proven sound w.r.t. program semantics

§ Here: a very simple language, but exists for more complicated
languages

HOARE LOGIC

Verification of Concurrent and Distributed Software 11

AXIOMS

{P}Skip{P}

{P[v:= e]}v := e{P}

Skip

Ass.

Verification of Concurrent and Distributed Software 12

STATEMENT DECOMPOSITION

{P}S1{Q} {Q}S2{R}

{P}S1;S2{R}

{P Ù b}S1{Q} {P Ù ¬b}S2{Q}

{P}if (b) S1 else S2 {Q}

Seq

If

Verification of Concurrent and Distributed Software 13

EXAMPLE

{a ≥ 0 Ù n ≥ 0} k:= 0; z := 1; while (k < n) {z := z * a; k := k + 1;} {z = a^n}

{a ≥ 0 Ù n ≥ 0} k:= 0; z := 1 {a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }
{a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 } while (k < n) {z := z * a; k := k + 1;} {z = a^n} Seq

Seq

{a ≥ 0 Ù n ≥ 0} k:= 0 {a ≥ 0 Ù n ≥ 0 Ù k = 0 }

{a ≥ 0 Ù n ≥ 0 Ù k = 0 } z := 1 {a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }

{a ≥ 0 Ù n ≥ 0 Ù 0 = 0} k:= 0 {a ≥ 0 Ù n ≥ 0 Ù k = 0 }
a ≥ 0 Ù n ≥ 0 Þ a ≥ 0 Ù n ≥ 0 Ù 0 = 0

Ass

(*)

{a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù 1 = 1} z := 1 {a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }
a ≥ 0 Ù n ≥ 0 Ù k = 0 Þ a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù 1 = 1

(*)

Ass

a ≥ 0 Ù n ≥ 0 Ù k = 0 [k := 0] =
a ≥ 0 Ù n ≥ 0 Ù 0 = 0

a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 [z := 1] =
a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù 1 = 1

(*): precondition strengthening

Verification of Concurrent and Distributed Software 14

RULES OF CONSEQUENCE

P Þ P' {P'}S{Q}

{P}S{Q}

{P}S{Q} Q Þ Q'

{P}S{Q'}

Pre. Str.

Post. Weak.

Verification of Concurrent and Distributed Software 15

.

§ I called loop invariant
§ Preserved by every iteration of the loop

§ Can in general not be found automatically

LOOPS

{I Ù b}S{I}

{I}while (b) S {I Ù ¬b}
Loop

Verification of Concurrent and Distributed Software 16

{ a ≥ 0 Ù n ≥ 0 }
k := 0;
z := 1;
{ a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }
while (k < n)

{ z := z * a;
k := k + 1;

}
{ z = a^n }

What should be the loop invariant?

EXAMPLE: METHOD POWER

Verification of Concurrent and Distributed Software

z = a^k Ù k ≤ n Ù a ≥ 0 Ù k ≥ 0

17

{z = a^k Ù k ≤ n Ù a ≥ 0 Ù !(k = n)} z := z * a; k := k + 1 {z = a^k Ù k ≤ n Ù a ≥ 0}
{z = a^k Ù k ≤ n Ù a ≥ 0 Ù !(k = n)} z := z * a {z = a^(k +1) Ù k + 1 ≤ n Ù a ≥ 0 }

EXAMPLE CONTINUED

{a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 } while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}
Pre. Str.
a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 Þ z = a^k Ù k ≤ n Ù a ≥ 0

{z = a^k Ù k ≤ n Ù a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n} Post. Weak.

{z = a^k Ù k ≤ n Ù a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^k Ù k ≤ n Ù a ≥ 0 Ù k = n }
z = a^k Ù k ≤ n Ù a ≥ 0 Ù k = n Þ z = a^n

Loop
Seq

{z = a^(k + 1) Ù k + 1 ≤ n Ù a ≥ 0} k := k + 1 {z = a^k Ù k ≤ n Ù a ≥ 0}
Ass

{z*a = a^(k+1) Ù k + 1 ≤ n Ù a ≥ 0} z := z * a {z = a^(k +1) Ù k + 1 ≤ n Ù a ≥ 0}
z = a^k Ù k ≤ n Ù a ≥ 0 Ù !(k = n) Þ z*a = a^(k +1) Ù a ≥ 0 Ù k + 1 ≤ n

Ass

Pre. Str.

Verification of Concurrent and Distributed Software 18

TOOL SUPPORT FOR PROGRAM VERIFICATION

Rustan Leino

Verification of Concurrent and Distributed Software 19

Many intermediate predicates can be computed

§ Weakest liberal precondition wp(S,Q)

§ The weakest predicate such that {wp(S,Q)}S{Q}

§ Due to Edsger Dijkstra (1975)

§ Calculus allows to compute weakest

preconditions of sequential code

§ Proof obligations: preconditions imply weakest

liberal preconditions

§ Loop invariants still given explicitly

A CALCULATIONAL APPROACH

1932 -
2002

Verification of Concurrent and Distributed Software 20

Preferably also counter example: why does program not have desired
behaviour

AUTOMATION

Verification of Concurrent and Distributed Software 21

Program with
desired
properties

Apply weakest
precondition

rules

Proof
obligations in
first-order logic

Automatic
first-order

logic provers

√
X

Verification of Concurrent and Distributed Software 22

VERCORS TOOL ARCHITECTURE

Z3

VerCors
Tool

Silicon

Silver
Viper

Transformations

OpenCL

OpenMP

PVL

Java

Developed at
ETH Zurich

See iFM 2017

§ PVL syntax: https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax
§ Two kinds of verification:

§ Memory safety (postcondition true), method will terminate without
exceptions

§ Functional correctness: postcondition expresses something about
poststate of the method

§ Two useful abbreviations
§ Context: pre- and postcondition

§ Invariant: pre- and postcondition, and at loop entry and exit

PROGRAM CORRECTNESS IN VERCORS

Verification of Concurrent and Distributed Software 23

EXERCISES

Verification of Concurrent and Distributed Software 24

Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA

§ Idealised language
§ No side-effects in conditions
§ No pointers
§ No multi-threading

Separation logic
§ Reasoning about pointers
§ Natural extension to multi-threading

LIMITATIONS OF CLASSICAL PROGRAM LOGIC

Verification of Concurrent and Distributed Software 25

SEPARATION LOGIC

John Reynolds
1935 - 2013

Verification of Concurrent and Distributed Software 26

class C {

D f;
D g;

}

class D {
int x;
D() {
x = 0;

}

ensures c.g.x == 0;
void m(C c) {
d = new D;
c.f = d;
c.g = d;
update_x(c.f, 3);

}

ensures d.x == v;
void update_x(D d, int v) {
d.x = v;

}
}

THE CHALLENGE OF POINTER PROGRAMS

Verification of Concurrent and Distributed Software

This should not
be verified!

27

§ State distinguishes heap and store
§ Heap contains dynamically allocated data that exists during run-time of

program
(Object-oriented program: the objects are stored on the heap)

§ Store (or call stack) contains data related to method call (parameters,
local variables)

§ Heap accessed by pointers
§ Locations on heap can be aliased
§ Main idea: assertions about state can be decomposed into assertions

about disjoint substates

SEPARATION LOGIC

Verification of Concurrent and Distributed Software 28

Syntax extension of predicate logic:
φ ::= e.f ® e’ | φ à φ | φ ‒à φ | ...

where e is an expression, and f a field
Meaning:

§ e.f ® e’ – heap contains location pointed to by e.f, containing the
value given by the meaning e’

§ φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2,
respectively

§ φ1 ‒à φ2 – if heap extended with part that satisfies φ1,
composition satisfies φ2

Monotone w.r.t. extensions of the heap

INTUITIONISTIC SEPARATION LOGIC

Verification of Concurrent and Distributed Software 29

Magic wand
not frequently
used

§ Reasoning about programs with pointers
§ Two interpretations e.f ® v

§ Field e.f contains value v

§ Permission to access field e.f

A field can only be accessed or written if e.f ® _ holds!
§ Implicit disjointness of parts of the heap allows reasoning about

(absence) of aliasing
x.f ® _ à y.f ® _ implicitly says that x and y are not aliases

§ Local reasoning
§ only reason about heap that is actually accessed by code fragment
§ rest of heap is implicitly unaffected: frame rule

ADVANTAGES OF SEPARATION LOGIC

Verification of Concurrent and Distributed Software 30

§ For simplicity v is typically assumed to be a simple (unqualified)
expression

§ Any assignment e.f = e’.g can be split up in x = e’.g; e.f = x

PROOF RULE FOR UPDATES OF THE HEAP

{e.f ® _} e.f = v {e.f ® v}

Verification of Concurrent and Distributed Software 31

class Box {
int cnts;

requires this.cnts ® _;
ensures this.cnts ® o;
void set (int o) {

this.cnts = o;
return null;

}

requires this.cnts ® X;
ensures this.cnts ® X Ù result = X;
int get() {

return this.cnts;
}

}

EXAMPLE: CLASS BOX

Verification of Concurrent and Distributed Software

Compare with specifications
in classical Hoare logic
requires true;
ensures this.cnts == o;

32

.

where R does not contain any variable that is modified by S.

FRAME RULE

{P}S{Q}

{P à R}S{Q à R}

Verification of Concurrent and Distributed Software 33

class C {
D f;
D g;

}

class D {
int x;

D() {
x = 0;

}

ensures c.g.x == 0;
void m(C c) {
d = new D;
c.f = d;
c.g = d;
update_x(c.f, 3);

}

ensures d.x == v;
void update_x(D d, int v) {
d.x = v;

}

THE CHALLENGE OF POINTER PROGRAMS

Verification of Concurrent and Distributed Software

Empty frame

c.f ® _ à c.g ® _
does not hold

34

§ Classical separation logic: this.cnts ® X
§ Implicit dynamic frames: Perm(this.cnts) à this.cnts == X
§ VerCors: Perm(this.cnts, write) ** this.cnts == X

SEPARATION LOGIC VS IMPLICIT DYNAMIC FRAMES

Verification of Concurrent and Distributed Software 35

class Box {

int cnts;

requires Perm(this.cnts, write);
ensures Perm(this.cnts, write);
void setCnts (int o) {
this.cnts = o;

}

given int x;
requires Perm(this.cnts, write) **

this.cnts == x;
ensures Perm(this.cnts, write) **

\result == x;
int getCnts () {
return this.cnts;

}
}

BOX IN VERCORS

Verification of Concurrent and Distributed Software 36

Given: ghost parameter

CONCURRENCY: THE NEXT CHALLENGE

Verification of Concurrent and Distributed Software 37

Doug Lea

THE FUTURE OF COMPUTING IS MULTICORE

Verification of Concurrent and Distributed Software 38

Multicore Cell
Processor

Multiple threads of execution

Coordination problem shifts
from hardware to software

Single core processors:
The end of Moore’s law

Solution:
Multi-core processors

MULTIPLE THREADS CAUSE PROBLEMS

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

Verification of Concurrent and Distributed Software 39

Viper
Verifast
Iris
TaDa
Flow
...

VERIFICATION OF MULTITHREADED PROGRAMS

Owicki - Gries

Jones

Concurrency
(multithreading)

VerCors
O’Hearn

2004
separation logic

Floyd - Hoare

Krakatoa

Dijkstra

Verification of Concurrent and Distributed Software 40

requires true
ensures x is the last element in the list
void addToList(Elem x) {

// code

}

Verification of Concurrent and Distributed Software

SPECIFICATIONS IN A CONCURRENT SETTING

Any other thread
might invalidate
this!

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can
update the list

x

41

SOME HISTORY: REASONING ABOUT THREADS

Susan Owicki

Verification of Concurrent and Distributed Software 42

§ For each thread: give a complete proof outline
§ Verify each thread w.r.t. the proof outline
§ For each annotation in the proof outline, show that it cannot be

invalidated by any other thread: interference freedom

OWICKI-GRIES METHOD (1975)

David Gries

Verification of Concurrent and Distributed Software 43

§ Jones (1980)
§ Compositional
§ For each thread, specify

§ what it assumes from other threads

§ what it guarantees to other threads

RELY-GUARANTEE METHOD

rely Ú guar1 Þ rely2
rely Ú guar2 Þ rely1

guar1 Ú guar2 Þ guar
árelyi, guariñ : {Pi} Si {Qi}, i = 1,2
árely, guarñ : {P} S1 || S2 {Q}

Rely: what transitions may
other threads make
Guarantee: what transitions
may current thread make

Verification of Concurrent and Distributed Software 44

CONCURRENT SEPARATION LOGIC

John Boyland

Verification of Concurrent and Distributed Software 45

where no variable free in Pi or Qi is changed in Sj (if i ¹ j)

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

{P1}S1{Q1} {Pn}Sn{Qn}
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn}

Verification of Concurrent and Distributed Software 46

{x = 0}x := x + 1; x := x + 1{x = 2} {y = 0} y := y + 1; y := y + 1 {y = 2}

{x = 0 à y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 à y = 2}

EXAMPLE

No interference between the threads

Verification of Concurrent and Distributed Software 47

§ Simultaneous reads not allowed

§ Number of parallel threads is fixed

WHY IS THIS NOT SUFFICIENT?

1. Distinguish between read and write accesses

Verification of Concurrent and Distributed Software 48

§ Permission to access a variable
§ Value between 0 and 1
§ Full permission 1 allows to change the variable
§ Fractional permission in (0, 1) allows to inspect a variable

§ Points-to predicate decorated with a permission
§ Global invariant: for each variable, the sum of all the permissions in

the system is never more than 1
§ Permissions can be split and combined

PERMISSIONS

Verification of Concurrent and Distributed Software 49

{PointsTo(x,1,0) à Perm(n, ½)} {PointsTo(y,1,0) à Perm(n, ½)}

x := x + n; x := x + n y := y + n; y := y + n

{PointsTo(x,1,2*n) à Perm(n, ½)} {PointsTo(y,1,2*n) à Perm(n, ½)}

{PointsTo(x,1,0) à PointsTo(y,1,0) à Perm(n,1)}

x := x + n; x := x + n || y := y + n; y := y + n

{PointsTo(x,1,2*n) à PointsTo(y,1,2*n) à Perm(n,1)}}

EXAMPLE

Shared variable is only read
No interference between the threads

Permissions on n equally
distributed over threads

Perm(x,1) = Perm(x, ½) à Perm(x, ½)

Verification of Concurrent and Distributed Software 50

§ Simultaneous reads not allowed

§ Number of parallel threads is fixed

WHY IS THIS NOT SUFFICIENT?

2. Dynamic thread creation

Thread specifications indicate how
permissions should be distributed

1. Distinguish between read and write accesses

Verification of Concurrent and Distributed Software 51

1/2

EXAMPLE

t1

x := new List;
x.val := ...;
t2 := new T;
t2.y := x;
fork t2;
read x.val;
...

join t2;
x.val := ...;

run(){
...
read y.val
...
}

val

next

t1.x.val

t2.y.val

t2

1

1/2

class List {
int val; List next;
...

}

class T {
List y;
void run() { ... }

}

Verification of Concurrent and Distributed Software 52

requires Perm (y.val, ½);
ensures Perm(y.val, ½);
void run() {....}

§ Forking thread has to give up required permissions

§ Joining thread gains back ensured permissions

What happens if run is specified as follows:
requires Perm(y.val, 1);
ensures Perm(y.val, 1);;
void run() {....}

SPECIFICATION FOR RUN METHOD IN T2

Verification of Concurrent and Distributed Software 53

0

EXAMPLE

t1

x := new List;
x.val := ...;
t2 := new T;
t2.y := x;
fork t2();
read x.val;
...

join t2;
read x.val;
x.val := ...;

run(){
...
read y.val
...
}

val

next

t1.x.val

t2.y.val

t2

1

1

class List {
int val; List next;
...

}

class T {
List y;
void run() { ... }

}

NOT
ALLOWED!

Now the
permissions
are back

Verification of Concurrent and Distributed Software 54

§ Lock x acquired and released with lock x and unlock x

§ Each lock has associated resource invariant

§ Lock acquired resource invariant lend to thread

§ Lock released resource invariant taken back from thread

§ Class Object contains predicate

resource lock_invariant() = true;

§ In rules: if I is resource invariant of x

{true} lock x {I}

{I}unlock x{true}

§ This is sound only for single-entrant locks

RESOURCE INVARIANT – CLASSICAL APPROACH

{true}
lock x;
{I}
lock x;
{I à I}
...

Resource I has
been duplicated!

Verification of Concurrent and Distributed Software 55

class locktest {

resource lock_invariant() =
Perm(x, 1/2);

int x;

locktest(int y) {
x = y;

}

void m() {
lock this;
int v = x;
unlock this;

}
}

LOCKS IN PVL

Verification of Concurrent and Distributed Software 56

Perm(x, write) = Perm(x, 1)
Perm(x, read) = Perm(x, v) for some v

EXERCISES

Verification of Concurrent and Distributed Software 57

Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA

