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§ How to ensure software quality?

§ Classical program logic

§ VerCors exercise

§ Separation logic: reasoning about pointers

§ The next challenge: concurrent software

§ Permission-based separation logic

§ VerCors exercise

§ Verification of GPU kernels

§ Reasoning about parallel blocks

§ VerCors exercise

§ Advanced verification features

OUTLINE OF THIS LECTURE
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Code voor exercises and some 

examples available from

https://wwwhome.ewi.utwente.nl

/~marieke/VTSA



SOFTWARE QUALITY
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Peter Naur
1968
Working on the
Software crisis
report



An important 
challenge:
Reliable software 
with parallel 
computations
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SOFTWARE IS EVERYWHERE

All software 
has errors!

Software failures 
can have 
enormous impact

Volkskrant
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VERIFICATION AS PART OF SOFTWARE DEVELOPMENT

Warning: this method does not have intended 
behaviour. 

Click here for a counterexample

Warning: at this point a nullpointer exception 
can occur.

Click here for an example execution

Realising this dream requires substantial research
§ Enlarge class of properties that can be established
§ Automatic feedback



Use logic to describe behaviour of program components
§ Precondition: what do you know in advance?
§ Postcondition: what holds afterwards

Example: increaseBy(int n) 
requires n >= 0
ensures x == old(x) + n
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SPECIFYING PROGRAM BEHAVIOUR

Bob Floyd

Tony Hoare

Dates back 
to the 60-ies

Hoare triples + logic
Notation: {P}S{Q}
Syntactic verification of programs

precondition postcondition



HISTORY OF PROGRAM VERIFICATION

Floyd  - Hoare

Krakatoa

My thesis 
(around 2000) State-of-the-art

Dijkstra
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PROGRAM LOGIC

Bob Floyd
1936 - 2001

Verification of Concurrent and Distributed Software 8



§ Precondition: property that should be satisfied when method is called –
otherwise correct functioning of method is not guaranteed

§ Postcondition: property that method establishes – caller can assume 
this upon return of method  

§ Method specification is contract between implementer and caller of 
method.
§ Caller promises to call method only in states
in which precondition holds
§ Implementer guarantees postcondition will 
be established

PRE- AND POSTCONDITIONS
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§ {P}S{Q}

§ Due to Tony Hoare (1969) 

§ Meaning: if P holds in initial state s, and execution of S in s terminates 
in state s', then Q holds in s’

§ Formally:
{P}S{Q} = ∀s.P(s) Ù (S,s) è s’ Þ Q(s’)

HOARE TRIPLES
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§ Hoare triples: specify behaviour of methods
§ How to guarantee that methods indeed respect this behaviour?

§ Collection of derivation rules to reason about Hoare triples

§ Rules defined by induction on the program structure
§ Proven sound w.r.t. program semantics

§ Here: a very simple language, but exists for more complicated 
languages

HOARE LOGIC

Verification of Concurrent and Distributed Software 11



AXIOMS

{P}Skip{P}                                                      

{P[v:= e]}v := e{P}

Skip

Ass.
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STATEMENT DECOMPOSITION

{P}S1{Q}    {Q}S2{R} 

{P}S1;S2{R}

{P Ù b}S1{Q}     {P Ù ¬b}S2{Q} 

{P}if (b) S1 else S2 {Q}

Seq

If
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EXAMPLE

{a ≥ 0 Ù n ≥ 0} k:= 0; z := 1; while (k < n) {z := z * a; k := k + 1;} {z = a^n}   

{a ≥ 0 Ù n ≥ 0} k:= 0; z := 1 {a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }   
{a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 } while (k < n) {z := z * a; k := k + 1;} {z = a^n}   Seq

Seq

{a ≥ 0 Ù n ≥ 0} k:= 0 {a ≥ 0 Ù n ≥ 0 Ù k = 0 }   

{a ≥ 0 Ù n ≥ 0 Ù k = 0 } z := 1 {a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }   

{a ≥ 0 Ù n ≥ 0 Ù 0 = 0} k:= 0 {a ≥ 0 Ù n ≥ 0 Ù k = 0 }   
a ≥ 0 Ù n ≥ 0 Þ a ≥ 0 Ù n ≥ 0 Ù 0 = 0

Ass

(*)

{a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù 1 = 1} z := 1 {a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }   
a ≥ 0 Ù n ≥ 0 Ù k = 0 Þ a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù 1 = 1

(*)

Ass

a ≥ 0 Ù n ≥ 0 Ù k = 0 [k := 0] = 
a ≥ 0 Ù n ≥ 0 Ù 0 = 0

a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 [z := 1] = 
a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù 1 = 1

(*): precondition strengthening
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RULES OF CONSEQUENCE

P Þ P'     {P'}S{Q} 

{P}S{Q}

{P}S{Q}     Q Þ Q' 

{P}S{Q'}

Pre. Str.

Post. Weak.
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.

§ I called loop invariant
§ Preserved by every iteration of the loop

§ Can in general not be found automatically

LOOPS

{I Ù b}S{I} 

{I}while (b) S {I Ù ¬b}
Loop
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{ a ≥ 0 Ù n ≥ 0 } 
k := 0;
z := 1;
{ a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 }
while (k < n)

{  z := z * a;
k := k + 1;

}
{ z = a^n }

What should be the loop invariant?

EXAMPLE: METHOD POWER

Verification of Concurrent and Distributed Software

z = a^k Ù k ≤ n Ù a ≥ 0 Ù k ≥ 0
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{z = a^k Ù k ≤ n Ù a ≥ 0 Ù !(k = n)} z := z * a; k := k + 1 {z = a^k Ù k ≤ n Ù a ≥ 0}   
{z = a^k Ù k ≤ n Ù a ≥ 0 Ù !(k = n)} z := z * a {z = a^(k +1) Ù k + 1 ≤ n Ù a ≥ 0 }   

EXAMPLE CONTINUED

{a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 } while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}   
Pre. Str.
a ≥ 0 Ù n ≥ 0 Ù k = 0 Ù z = 1 Þ z = a^k Ù k ≤ n Ù a ≥ 0

{z = a^k Ù k ≤ n Ù a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}   Post. Weak.

{z = a^k Ù k ≤ n Ù a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^k Ù k ≤ n Ù a ≥ 0 Ù k = n }   
z = a^k Ù k ≤ n Ù a ≥ 0 Ù k = n Þ z = a^n   

Loop
Seq

{z = a^(k + 1) Ù k + 1 ≤ n Ù a ≥ 0} k := k + 1 {z = a^k Ù k ≤ n Ù a ≥ 0}   
Ass

{z*a = a^(k+1) Ù k + 1 ≤ n Ù a ≥ 0} z := z * a {z = a^(k +1) Ù k + 1 ≤  n Ù a ≥ 0}   
z = a^k Ù k ≤ n Ù a ≥ 0 Ù !(k = n) Þ z*a = a^(k +1) Ù a ≥ 0 Ù k + 1 ≤ n

Ass

Pre. Str.
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TOOL SUPPORT FOR PROGRAM VERIFICATION

Rustan Leino
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Many intermediate predicates can be computed

§ Weakest liberal precondition wp(S,Q)

§ The weakest predicate such that {wp(S,Q)}S{Q}

§ Due to Edsger Dijkstra (1975)

§ Calculus allows to compute weakest 

preconditions of sequential code

§ Proof obligations: preconditions imply weakest 

liberal preconditions

§ Loop invariants still given explicitly 

A CALCULATIONAL APPROACH

1932 -
2002
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Preferably also counter example: why does program not have desired 
behaviour

AUTOMATION
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Program with 
desired 
properties

Apply weakest 
precondition  

rules 

Proof 
obligations in 
first-order logic

Automatic 
first-order 

logic provers

√
X
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VERCORS TOOL ARCHITECTURE

Z3

VerCors
Tool

Silicon

Silver
Viper

Transformations

OpenCL

OpenMP

PVL

Java

Developed at 
ETH Zurich

See iFM 2017



§ PVL syntax: https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax
§ Two kinds of verification:

§ Memory safety (postcondition true), method will terminate without 
exceptions

§ Functional correctness: postcondition expresses something about 
poststate of the method

§ Two useful abbreviations
§ Context: pre- and postcondition

§ Invariant: pre- and postcondition, and at loop entry and exit

PROGRAM CORRECTNESS IN VERCORS
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EXERCISES
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Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA



§ Idealised language
§ No side-effects in conditions
§ No pointers
§ No multi-threading

Separation logic
§ Reasoning about pointers
§ Natural extension to multi-threading

LIMITATIONS OF CLASSICAL PROGRAM LOGIC
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SEPARATION LOGIC

John Reynolds
1935 - 2013
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class C {

D f;
D g;

}

class D {
int x;
D() {
x  = 0;

}

ensures c.g.x == 0;
void m(C c) {
d = new D;
c.f = d;
c.g = d;
update_x(c.f, 3);

}

ensures d.x == v;
void update_x(D d, int v) {
d.x = v;

}
}

THE CHALLENGE OF POINTER PROGRAMS

Verification of Concurrent and Distributed Software

This should not
be verified!

27



§ State distinguishes heap and store
§ Heap contains dynamically allocated data that exists during run-time of 

program 
(Object-oriented program: the objects are stored on the heap)

§ Store (or call stack) contains data related to method call (parameters, 
local variables)

§ Heap accessed by pointers
§ Locations on heap can be aliased
§ Main idea: assertions about state can be decomposed into assertions 

about disjoint substates

SEPARATION LOGIC
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Syntax extension of predicate logic:
φ ::= e.f ® e’ | φ à φ | φ ‒à φ | ... 

where e is an expression, and f a field
Meaning: 

§ e.f ® e’ – heap contains location pointed to by e.f, containing the 
value given by the meaning e’ 

§ φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2, 
respectively

§ φ1 ‒à φ2 – if heap extended with part that satisfies φ1, 
composition satisfies φ2 

Monotone w.r.t. extensions of the heap

INTUITIONISTIC SEPARATION LOGIC
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Magic wand 
not frequently 
used



§ Reasoning about programs with pointers
§ Two interpretations e.f ® v 

§ Field e.f contains value v

§ Permission to access field e.f

A field can only be accessed or written if e.f ® _ holds!
§ Implicit disjointness of parts of the heap allows reasoning about 

(absence) of aliasing
x.f ® _  à y.f ® _ implicitly says that x and y are not aliases

§ Local reasoning
§ only reason about heap that is actually accessed by code fragment
§ rest of heap is implicitly unaffected: frame rule

ADVANTAGES OF SEPARATION LOGIC
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§ For simplicity v is typically assumed to be a simple (unqualified) 
expression

§ Any assignment e.f = e’.g can be split up in x = e’.g; e.f = x

PROOF RULE FOR UPDATES OF THE HEAP

{e.f ® _} e.f = v {e.f ® v}
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class Box {
int cnts;

requires this.cnts ® _;
ensures this.cnts ® o;
void set (int o) {

this.cnts = o;
return null;

}

requires this.cnts ® X;
ensures this.cnts ® X Ù result = X;
int get() {

return this.cnts;
}

}

EXAMPLE: CLASS BOX

Verification of Concurrent and Distributed Software

Compare with specifications 
in classical Hoare logic
requires true;
ensures this.cnts == o;
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.

where R does not contain any variable that is modified by S.

FRAME RULE

{P}S{Q} 

{P à R}S{Q à R}
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class C {
D f;
D g;

}

class D {
int x;

D() {
x = 0;

}

ensures c.g.x == 0;
void m(C c) {
d = new D;
c.f = d;
c.g = d;
update_x(c.f, 3);

}

ensures d.x == v;
void update_x(D d, int v) {
d.x = v;

}

THE CHALLENGE OF POINTER PROGRAMS

Verification of Concurrent and Distributed Software

Empty frame

c.f ® _ à c.g ® _
does not hold

34



§ Classical separation logic: this.cnts ® X
§ Implicit dynamic frames: Perm(this.cnts) à this.cnts == X
§ VerCors: Perm(this.cnts, write) ** this.cnts == X

SEPARATION LOGIC VS IMPLICIT DYNAMIC FRAMES
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class Box {

int cnts;

requires Perm(this.cnts, write);
ensures Perm(this.cnts, write);
void setCnts (int o) {
this.cnts = o;

}

given int x;
requires Perm(this.cnts, write) **     

this.cnts == x;
ensures Perm(this.cnts, write) **

\result == x;
int getCnts () {
return this.cnts;

}
}

BOX IN VERCORS
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Given: ghost parameter



CONCURRENCY: THE NEXT CHALLENGE
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Doug Lea



THE FUTURE OF COMPUTING IS MULTICORE
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Multicore Cell 
Processor

Multiple threads of execution

Coordination problem shifts
from hardware to software

Single core processors: 
The end of Moore’s law

Solution:
Multi-core processors  



MULTIPLE THREADS CAUSE PROBLEMS

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25
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Viper
Verifast
Iris 
TaDa
Flow
...

VERIFICATION OF MULTITHREADED PROGRAMS

Owicki  - Gries

Jones

Concurrency
(multithreading)

VerCors
O’Hearn

2004
separation logic

Floyd  - Hoare

Krakatoa

Dijkstra
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requires true
ensures x is the last element in the list
void addToList(Elem x) {

// code 

} 

Verification of Concurrent and Distributed Software

SPECIFICATIONS IN A CONCURRENT SETTING

Any other thread 
might invalidate 
this!

‘x is in the list’ 
cannot even be 
guaranteed!

Except when no 
other thread can 
update the list

x

41



SOME HISTORY: REASONING ABOUT THREADS

Susan Owicki
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§ For each thread: give a complete proof outline
§ Verify each thread w.r.t. the proof outline
§ For each annotation in the proof outline, show that it cannot be

invalidated by any other thread: interference freedom

OWICKI-GRIES METHOD (1975)

David Gries
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§ Jones (1980)
§ Compositional 
§ For each thread, specify 

§ what it assumes from other threads

§ what it guarantees to other threads

RELY-GUARANTEE METHOD

rely Ú guar1 Þ rely2
rely Ú guar2 Þ rely1

guar1 Ú guar2 Þ guar
árelyi, guariñ : {Pi} Si {Qi}, i = 1,2
árely, guarñ : {P} S1 || S2 {Q}

Rely: what transitions may 
other threads make
Guarantee: what transitions 
may current thread make
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CONCURRENT SEPARATION LOGIC

John Boyland
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where no variable free in Pi or Qi is changed in Sj (if i ¹ j)

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

{P1}S1{Q1}     .......... {Pn}Sn{Qn}
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn} 
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{x = 0}x := x + 1; x := x + 1{x = 2}          {y = 0} y := y + 1; y := y + 1 {y = 2}

{x = 0 à y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 à y = 2}

EXAMPLE

No interference between the threads
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§ Simultaneous reads not allowed

§ Number of parallel threads is fixed

WHY IS THIS NOT SUFFICIENT?

1. Distinguish between read and write accesses
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§ Permission to access a variable
§ Value between 0 and 1
§ Full permission 1 allows to change the variable
§ Fractional permission in (0, 1) allows to inspect a variable

§ Points-to predicate decorated with a permission
§ Global invariant: for each variable, the sum of all the permissions in 

the system is never more than 1
§ Permissions can be split and combined

PERMISSIONS
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{PointsTo(x,1,0) à Perm(n, ½)} {PointsTo(y,1,0) à Perm(n, ½)}

x := x + n; x := x + n y := y + n; y := y + n

{PointsTo(x,1,2*n) à Perm(n, ½)}       {PointsTo(y,1,2*n) à Perm(n, ½)}         

{PointsTo(x,1,0) à PointsTo(y,1,0) à Perm(n,1)}

x := x + n; x := x + n || y := y + n; y := y + n

{PointsTo(x,1,2*n) à PointsTo(y,1,2*n) à Perm(n,1)}}

EXAMPLE

Shared variable is only read
No interference between the threads

Permissions on n equally 
distributed over threads

Perm(x,1) = Perm(x, ½) à Perm(x, ½)
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§ Simultaneous reads not allowed

§ Number of parallel threads is fixed

WHY IS THIS NOT SUFFICIENT?

2. Dynamic thread creation

Thread specifications indicate how 
permissions should be distributed

1. Distinguish between read and write accesses
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1/2

EXAMPLE

t1                       

x := new List;
x.val := ...;
t2 := new T;
t2.y := x;
fork t2;
read x.val;
...

join t2;
x.val := ...;

run(){
...
read y.val
... 
}

val

next

t1.x.val

t2.y.val

t2

1

1/2

class List {
int val; List next;
...

}

class T {
List y;
void run() { ... }

}
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requires Perm (y.val, ½);
ensures Perm(y.val, ½);
void run() {....}

§ Forking thread has to give up required permissions

§ Joining thread gains back ensured permissions

What happens if run is specified as follows:
requires Perm(y.val, 1);
ensures Perm(y.val, 1);;
void run() {....}

SPECIFICATION FOR RUN METHOD IN T2
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0

EXAMPLE

t1                       

x := new List;
x.val := ...;
t2 := new T;
t2.y := x;
fork t2();
read x.val;
...

join t2;
read x.val;
x.val := ...;

run(){
...
read y.val
... 
}

val

next

t1.x.val

t2.y.val

t2

1

1

class List {
int val; List next;
...

}

class T {
List y;
void run() { ... }

}

NOT 
ALLOWED!

Now the 
permissions 
are back
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§ Lock x acquired and released with lock x and unlock x

§ Each lock has associated resource invariant

§ Lock acquired          resource invariant lend to thread

§ Lock released          resource invariant taken back from thread

§ Class Object contains predicate

resource lock_invariant() = true;

§ In rules: if I is resource invariant of x

{true} lock x {I}

{I}unlock x{true}

§ This is sound only for single-entrant locks

RESOURCE INVARIANT – CLASSICAL APPROACH

{true}
lock x;
{I}
lock x;
{I à I}
...

Resource I has 
been duplicated!
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class locktest {

resource lock_invariant() = 
Perm(x, 1/2);

int x;

locktest(int y) {
x = y;

}

void m() {
lock this;
int v = x;
unlock this;

}
}

LOCKS IN PVL
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Perm(x, write) = Perm(x, 1)
Perm(x, read) = Perm(x, v) for some v



EXERCISES
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Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA


