UNIVERSITY OF TWENTE.

VERIFICATION OF
CONCURRENT AND DISTRIBUTED SOFTWARE

MARIEKE HUISMAN

OUTLINE OF THIS LECTURE

Classical program logic

= \erCors exercise

How to ensure software quality?

= Separation logic: reasoning about pointers

» The next challenge: concurrent software

» Permission-based separation logic

= \erCors exercise

/ - Verification of GPU kernels

Code voor exercises and some
examples available from
https://wwwhome.ewi.utwente.nl

= Reasoning about parallel blocks | /~marieke/VTSA

= \erCors exercise

_= Advanced verification features

Verification of Concurrent and Distributed Software

& SOFTWARE QUALITY

Peter Naur
1968

Working on the
Software crisis
report

‘ UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

SOFTWARE IS EVERYWHERE

Software failures
can have
enormous impact

All software

has errors!

e ek 7

Y \ N & ‘ . :
Saiie Volkskranty

Ny i
v 12
Versen wocnten deagageAne v estron

Gedateerd computersysteem
veroorzaakte chaos op Britse
luchthavens

An important
challenge:
Reliable software
with parallel
computations

UNIVERSITEIT TWENTE.

Verification of Concurrent and Distributed Software

VERIFICATION AS PART OF SOFTWARE DEVELOPMENT

iy #$.0'Q- G @2 & PlAv BE@ w ¢

5 | @ positionjava 2
It D * Creates a Builder by copying an existing Position
2 3 other The existing instance to copy

Y private Builder(EET.Position other) {

y super (SCHEMAS);

) if (isValidValue(fields()[0], other.deldatetime)) {
this.deldatetime = data().deepCopy(fields()[0].schema(),
fieldSetFlags(O[@] = true;

instance

Warning: this method does not have intended
behaviour.
Click here for a counterexample

other.deldatetime);

}
if (isValidValue(fields(O[1], other.granularity)) {
this.granularity = data().deepCopy(Fields()[1].schema(),

fieldSetFlags([1] = true;

other:

}
if (isValidvalue(fields()[2], other.granularity_unit)) {
this.granularity_unit = data().deepCopy(fields()[2].schema(),

fFieldSetFlags()[2] = true;

other.granularity_un

}
if (isvalidvalue(fields(O[3], other.segment_id)) {
this.segment_id = data().deepCopy(fields()[3].schema(), other.segment_id);

fieldSetFlags(O[3] = true;

}

if (isValidvalue(fields()[4], other.source)) {
this.source = data().deepCopy(fields()[4].schema(), other.source);
fieldSetFlags(O[4] = true;

}
if (isValidValue(fields()[S], other.type)) {
this.type = data().deepCopy(fields()[5].schema(), other.type);

fieldSetFlags()[S] = true;

Warning: at this point a nullpointer exception
can occur.
Click here for an example execution

}
if (isValidValue(fields()[6], other.guantity)) {
this.quantity = data().deepCopy(fields()[6].schema(),

fieldSetFlags()[6] = true;

other.quantity);

}
if (isValidvalue(fields(O[7], other.guantity_unit)) {
this.quantity_unit = data().deepCopy(fields()[7].schema(), O

fieldSetFlags()[7] = true;

@ Declaration 23

Writable Smart Insert 307:28

Realising this dream requires substantial research

» Enlarge class of properties that can be established
= Automatic feedback

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

» Dates back

to the 60-ies
~ = SPECIFYING PROGRAM BEHAVIOUR

4 Use logic to describe behaviour of program components

= Precondition: what do you know in advance? |

= Postcondition: what holds afterwards

Example: increaseBy(int n)
requires n >=0
ensures X == old(x) + n

s.

)

Y Hoare triples + logic
- Notation: {P}S{Q}
v 33 / Syntactic ﬁerificatioMprograms

N

| precondition postcondition
', UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software

p
¥ e

4

Tony Hoare

i

HISTORY OF PROGRAM VERIFICATION

FI d - Hoare

2

UNIVERSITY OF TWENTE.

My thesis
(around 2000)

State-of-the-art

LOWP

FOREVER
KR

i /“:‘; .':“1‘\
4 ‘:/'i;‘;t ;

Krakatoa

-

:> JML

Dafny [\

Verification of Concurrent and Distributed Software

7

UNIVERSITEIT TWENTE.

Bob Floyd
1936 - 2001

Verification of Concurrent and Distributed Software

PRE- AND POSTCONDITIONS

= Precondition: property that should be satisfied when method is called —
otherwise correct functioning of method is not guaranteed

= Postcondition: property that method establishes — caller can assume
this upon return of method

= Method specification is contract between implementer and caller of
method.
= Caller promises to call method only in states
in which precondition holds

» [mplementer guarantees postcondition will
be established

/

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

HOARE TRIPLES

= {PIS{Q}

* Due to Tony Hoare (1969)

» Meaning: if P holds in initial state s, and execution of S in s terminates
in state s’ then Q holds in s’

= Formally:
{P}S{Q} = Vs.P(s) A (S,s) =2 s’= Q(s)

UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 10

HOARE LOGIC

» Hoare triples: specify behaviour of methods

» How to guarantee that methods indeed respect this behaviour?
= Collection of derivation rules to reason about Hoare triples
» Rules defined by induction on the program structure

= Proven sound w.r.t. program semantics

» Here: a very simple language, but exists for more complicated
languages

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

11

AXIOMS

Skip

AssS.

UNIVERSITEIT TWENTE.

{P}Skip{F}

{P[v:= e]}v := e{P}

Verification of Concurrent and Distributed Software

12

STATEMENT DECOMPOSITION

{PISTH{QE {QS2{R}

Seq
{P}S1;S2{R}

PABISTHQ} {P A -b}S2Q)
[P}if (b) ST else S2 {Q)

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

13

(*): precondition strengthening

EXAMPLE

az0Anz20Ak=0nz=1[z:=1] =
az20An20Ak=0A1=1

Ass
{az20Anz20Ak=0A1=1}z:=1{a=20An20Ak=0nAz=1}

az20AnNn20Ak=0=a=20An=20Ak=0A1=1

az0An20Ak=0[k:=0]=
az0An=20A0=0

Ass

{az0Anz=20A0=0}ki=0{a=z0An=20Ak=0}
az0Anz20=az2z0Anz=20A0=0 .

{az0An20tk=0{a20An20Ak=0} ()

{faz0An20Ak=0}z:=1{a20An=20Ak=0nrz=1}
{az0Anz20}k=0;z:=1{a=z0An=20Ak=0nrz=1}
Seq {az0An=20Ak=0Anz=1}while(k<n){z:=z"a;k:=k+1;}{z=2a"n}
{az0Anz=z0}k=0;z:=1;while(k<n){z:=z"a;k:=k+ 1;} {z=2a"n}

UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 14

Seq

RULES OF CONSEQUENCE

Pre. Str.

Post. Weak.

UNIVERSITEIT TWENTE.

P=FP {P}S{Q}

{PYS{Q}

{PIS{Q} Q=Q

{PrS{Q}

Verification of Concurrent and Distributed Software

15

LOOPS

{I n b}S{I}

Loop

= [called loop invariant

{Mwhile (b) S {I A b}

» Preserved by every iteration of the loop

= Can in general not be found automatically

UNIVERSITEIT TWENTE.

Verification of Concurrent and Distributed Software

16

EXAMPLE: METHOD POWER

{
k:=0;
z:=1;

{az20Anz=20Ak=0Az=1}

z=a*kAksnaraz0Ak=0

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

17

EXAMPLE CONTINUED

Ass
{zfa=aMk+1)Ak+1<naraz20}z:=z*a{z=aMk+1)Ak+1< nAraz=0}

z=a*karksnaraz0aAllk=n)=za=ark+1)ra=z0Ak+1=<n
Pre. Str.

Ass

{z=aMk+1)Ak+1<naraz0}k:=k+1{z=a*kaksnanaz0}
{z=a*kAaksnarnaz0aAllk=n)}z=z*a{z=ark+1)Ak+1=<nAra=0}
e
Loop? {z=a*kAksnaraz0allk=n)}z=z*a;k:=k+1{z=a*krk=snnaaz=0}
{z=a*kAksnaraz0}while({(k=n)){z:==z*a;k:=k+1;}{z=a*kak=snaraz0Ak=n}
z=akAaksnaaz0ark=n=2z=a’n
{z=a*kAaksnanaz0}while ((k=n)){z:=z"a;k:=k+ 1;} {z=2a"n}

a20Anz20Ak=0Az=1=>z=akAksnaraz=z0
Pre. Str.

Post. Weak.

{az0Anz0Ak=0Az=1}while((k=n)){z:=z*a;k:=k+1;} {z=a"n}
UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 18

CA

~ =TOOL SUPPORT FOR PROGRAM VERIFICATION

Rustan Leino

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

19

A CALCULATIONAL APPROACH

Many intermediate predicates can be computed

= \Weakest liberal precondition wp(S,Q)
» The weakest predicate such that {wp(S, Q)}S{Q}
» Due to Edsger Dijkstra (1975)

» Calculus allows to compute weakest
preconditions of sequential code

= Proof obligations: preconditions imply weakest
liberal preconditions 2002

= Loop invariants still given explicitly

UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 20

AUTOMATION

Program e Apply weakest Prqof : : Automatic
desired " obligations in :

: precondition : : first-order
properties first-order logic

rules logic provers

4 4

Preferably also counter example: why does program not have desired
behaviour

UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 21

VERCORS TOOL ARCHITECTURE

VerCors
{} Tool

Transformations

OpenCL ::>
OpenMP I::>
PVL —>
Java |::>
See iFM 2017

UNIVERSITEIT TWENTE.

Viper

Silver

v

Silicon

Z3

Developed at

ETH Zurich

Verification of Concurrent and Distributed Software

PROGRAM CORRECTNESS IN VERCORS

» PVL syntax: https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax
= Two kinds of verification:

= Memory safety (postcondition true), method will terminate without
exceptions

= Functional correctness: postcondition expresses something about
poststate of the method

= Two useful abbreviations

= Context: pre- and postcondition

» |nvariant: pre- and postcondition, and at loop entry and exit

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

23

CA

EXERCISES

\"8’ Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA

|| UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software

LIMITATIONS OF CLASSICAL PROGRAM LOGIC

|dealised language

No side-effects in conditions

No pointers

No multi-threading

Separation logic -

= Reasoning about pointers

= Natural extension to multi-threading

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software 25

UNIVERSITEIT TWENTE.

John Reynolds
1935 - 2013

Verification of Concurrent and Distributed Software

26

THE CHALLENGE OF POINTER PROGRAMS

class C {

Df
D g;
}

class D {
int x;
D() {
x =0;

}

UNIVERSITEIT TWENTE.

ensures c.g.x == 0; | This should not

’ . '
void m(C c) { be verified!

d = new D;

cf=d;

c.g=d;

update x(c.f, 3);
}

ensures d.x ==v;

void update x(D d, int v) {
d.x=v;

}

}

Verification of Concurrent and Distributed Software 27

SEPARATION LOGIC

» State distinguishes heap and store

» Heap contains dynamically allocated data that exists during run-time of
program

(Object-oriented program: the objects are stored on the heap)

= Store (or call stack) contains data related to method call (parameters,
local variables)

» Heap accessed by pointers
= |ocations on heap can be aliased

= Main idea: assertions about state can be decomposed into assertions
about disjoint substates

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software 28

INTUITIONISTIC SEPARATION LOGIC

Syntax extension of predicate logic:
p:=efoe|loX olo—% o] ..

where e is an expression, and 1 a field

Meaning:

= e.f— e’—heap contains location pointed to by e.f, containing the
value given by the meaning e’

= @1 % @2 -heap can be split in disjoint parts, satisfying ¢1 and ¢2,
respectively

= @1 —% @2 —if heap extended with part that satisfies ¢1,

composition satisfies ¢2 Magic wand
Monotone w.r.t. extensions of the heap not frequently
used

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

29

ADVANTAGES OF SEPARATION LOGIC

= Reasoning about programs with pointers
= Two interpretations e.f — v

= Fjeld e.f contains value v
= Permission to access field e.f

A field can only be accessed or written if e.f — holds!

= Implicit disjointness of parts of the heap allows reasoning about
(absence) of aliasing

x.f— ¥ y.f— _ implicitly says that x and y are not aliases
» Local reasoning

= only reason about heap that is actually accessed by code fragment

= rest of heap is implicitly unaffected: frame rule

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software 30

PROOF RULE FOR UPDATES OF THE HEAP

{e.f—> }ef=vi{e.f- v}
» For simplicity v is typically assumed to be a simple (unqualified)

expression

= Any assignment e.f=e’.gcan be splitupin x=e’.g, e.f=x

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

31

EXAMPLE: CLASS BOX

class Box {
int cnts;
requires this.cnts —» _; requires this.cnts — X;
ensures this.cnts — 0; ensures this.cnts - X A result = X;
void set (int 0) { int get() {
this.cnts = o; return this.cnts;
return null; }
}

} | Compare with specifications
in classical Hoare logic
requires true;

ensures this.cnts == o;

UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 32

FRAME RULE

{PyS{Q}

[P * R}S{Q * R}

where R does not contain any variable that is modified by S.

UNIVERSITEIT TWENTE.

Verification of Concurrent and Distributed Software

33

THE CHALLENGE OF POINTER PROGRAMS

class C {
D f;
D g;

}

class D {
int x;

UNIVERSITEIT TWENTE.

ensures c.g.x ==
void m(C c) {

d = new D;

c.f=d;

c.g=d;

update x(c.f, 3);
}

ensures d.x ==v;

H

cf—»> *cg—o
does not hold

Empty frame

void update x(D d, int v) {

dx=v;

}

Verification of Concurrent and Distributed Software

34

SEPARATION LOGIC VS IMPLICIT DYNAMIC FRAMES

» Classical separation logic: this.cnts — X
» Implicit dynamic frames: Perm(this.cnts) * this.cnts ==

= VerCors: Perm(this.cnts, write) ** this.cnts ==

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

35

BOX IN VERCORS

class Box {
int cnts;

requires Perm(this.cnts, write);
ensures Perm(this.cnts, write);
void setCnts (int 0) {

this.cnts = o;

}

given int x;
requires Perm(this.cnts, write)
this.cnts == x;
ensures Perm(this.cnts, write) **
\result == x;
int getCnts () {
return this.cnts;

}
}

**

Given: ghost parameter

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

36

| CONCURRENCY: THE NEXT CHALLENGE

Doug Lea

—

-
-

UN|VERS|TE|T TWENTE, Verification of Concurrent and Distributed Software

37

THE FUTURE OF COMPUTING IS MULTICORE

Single core processors:
The end of Moore’s law

10
1965 Actual Data
9 m MOS Arrays A& MOS Logic 1975 Actual Data
1975 Projection
Memory 16M
A Microprocessor

128M
64M

aMm _u” Pentium® I
Pentium® Il

1K
-

™ S ol
256K {a86™ entium
64K 386™
2 0286
K K ik

080

1960 1965 1970 1975 1980 1985

Solution:
Multi-core processors

UNIVERSITEIT TWENTE.

1
2560 S12M

1990 1995 2000 2005 2010

/ AN

/

/ Cell & Daté\l{emorv

q 11 1A

/
[

Cckie 1) [gefaz] [eoma

N

\ Task Hans&er

¢

Multicorg Cell
Procegsor

\

Multiple threads of execution

Coordination problem shifts
from hardware to software

Verification of Concurrent and Distributed Software

38

MULTIPLE THREADS CAUSE PROBLEMS

read v

write v,

= QOrder?
= More threads?

Possible consequences:
errors such as data races caused

lethal bugs as in Therac-25

shared memory

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

39

VERIFICATION OF MULTITHREADED PROGRAMS

FOREVER

Cokn;:urren‘cy
(multithreading)
Owicki - Gries O’Hearn Krakatoa
, VerCors
- Viper
P | Verifast
| Iris
TaDa
; -f_;‘f Jones separation logic Flow
UNIVERSITEIT TWENTE.

Verification of Concurrent and Distributed Software 40

SPECIFICATIONS IN A CONCURRENT SETTING

requires true

Any other thread

might invalidate
ensures x is the last element in the list / this!

void addToList(Elem x) {

/l code

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can

) update the list

UNIVERSITEIT TWENTE.

Verification of Concurrent and Distributed Software

41

SOME HISTORY

: REASONING ABOUT THREADS

0 UNIVERSITEIT TWENTE.

Susan Owicki

Verification of Concurrent and Distributed Software

42

OWICKI-GRIES METHOD (1975)

» For each thread: give a complete proof outline
= Verify each thread w.r.t. the proof outline

* For each annotation in the proof outline, show that it cannot be
invalidated by any other thread: interference freedom

David Gries

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

43

RELY-GUARANTEE METHOD

= Jones (1980)
= Compositional

= For each thread, specify

= what it assumes from other threads

= what it guarantees to other threads

rely v guar1 = rely2

Rely: what transitions may rely v guar2 = rely1

other threads make guari v guar2 = guar
Guarantee: what transitions

may current thread make (relyi, guariy : {Pi} Si{Qi}, i=1,2

(rely, guar) : {P} S1 || S2 {Q}

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software 44

A

w ‘CONCURRENT SEPARATION LOGIC
Aﬂ“*

.@ UNIVERSITEIT TWENTE.

John Boyland

Verification of Concurrent and Distributed Software

45

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

PISTHQTY .. {Pn}Sn{Qn}
[P1% ... % Pn}yST||...|| Sn{Q1 * ... % Qn}

where no variable free in Pi or Qi is changed in Sj (if / = j)

UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software 46

EXAMPLE

x=0x=x+1;x=x+1{x=2} {y=0ty:=y+1y=y+1{y=2}
X=0%y=0x=x+1;x=x+1||ly=y+1,y=y+1{x=2x%xy=2}

No interference between the threads

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

47

WHY IS THIS NOT SUFFICIENT?

= Simultaneous reads not allowed

1. Distinguish between read and write accesses

= Number of parallel threads is fixed

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

48

PERMISSIONS

= Permission to access a variable

= Value between 0 and 1

= Full permission 1 allows to change the variable

* Fractional permission in (0, 1) allows to inspect a variable
» Points-to predicate decorated with a permission

= Global invariant: for each variable, the sum of all the permissions in
the system is never more than 1

= Permissions can be split and combined

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software 49

Permissions on n equally

distributed over threads
EXAMPLE

{PointsTo(x,1,0) % Perm(n, %)} {PointsTo(y,1,0) * Perm(n,)}
X:=X+n;Xx:=x+n y:=y+n,y:=y+n
{PointsTo(x,1,2*n) * Perm(n, %2)} {PointsTo(y,1,2*n) * Perm(n, %2)}
{PointsTo(x,1,0) * PointsTo(y,1,0) * Perm(n,1)}
X:=X+n,x:=x+n|ly=y+ny:=y+n

{PointsTo(x,1,2*n) * PointsTo(y,1,2*n) * Perm(n,1)}}

Perm(x,1) = Perm(x, V%) % Perm(x, 14) Shgred variable is only read
No interference between the threads

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software 50

WHY IS THIS NOT SUFFICIENT?

= Simultaneous reads not allowed

1. Distinguish between read and write accesses

= Number of parallel threads is fixed

2. Dynamic thread creation

Thread specifications indicate how
permissions should be distributed

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

51

class List {
int val; List next;

EXAMPLE)
class T {
t1 2 Listy;
void run() { ... }
X := new List;)
x.val ;= ...;
t2 :=new T, run(){
t2.y 1= x;
fork t2; read y.val t1.x.val
read x.val; 1/2
) t2.y.val
join t2;
x.val ;= ...;

v
UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

SPECIFICATION FOR RUN METHOD IN T2

requires Perm (y.val, V2);

ensures Perm(y.val, 73);
void run() {....}

» Forking thread has to give up required permissions

= Joining thread gains back ensured permissions

What happens if run is specified as follows:

requires Perm(y.val, 1);

ensures Perm(y.val, 1);;
void run() {....}

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

53

class List {
int val; List next;
EXAMPLE |
class T { B
void run() { ... }
X := new List; }
x.val ;= ...;
t2 :=newT; run(){
2.y = x;
fork t2(); read y.val t1.x.val
read x.val, «—_| NOT 1
ALLOWED! | ! {2 y.val
join t2; / Now Fhe_
read x.val: permissions
x.val ;= ... are back
UNK/ERSlTElT TWENTE, Verification of Concurrent and Distributed Software 54

RESOURCE INVARIANT - CLASSICAL APPROACH

» |Lock x acquired and released with lock x and unlock x

= Each lock has associated resource invariant

» Lock acquired === resource invariant lend to thread

= |Lock released === resource invariant taken back from thread

= Class Object contains predicate
resource lock invariant() = true;

* Inrules: if | is resource invariant of x
{true} lock x {/}
{unlock x{true}

» This is sound only for single-entrant locks

{true}
lock Xx;

i}

lock Xx;

U x 1}

Resource [has
been duplicated!

UN|VERS|TE|T TWENTE. Verification of Concurrent and Distributed Software

LOCKS IN PVL

class locktest {

resource lock_invariant() =
Perm(x, 1/2);

int x;
locktest(int y) {

X=Y,

}

UNIVERSITEIT TWENTE.

void m() {
lock this;
intv =Xx;
unlock this;
}
}

Perm(x, write) = Perm(x, 1)
Perm(x, read) = Perm(x, v) for some v

Verification of Concurrent and Distributed Software 56

CA

EXERCISES

\"8’ Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA

|| UNIVERSITEIT TWENTE. Verification of Concurrent and Distributed Software

