
VERIFICATION OF
CONCURRENT AND DISTRIBUTED SOFTWARE

MARIEKE HUISMAN
UNIVERSITY OF TWENTE, NETHERLANDS

§ How to ensure software quality?
§ Classical program logic
§ VerCors exercise
§ The next challenge: concurrent software

§ Permission-based separation logic
§ VerCors exercise

§ Reasoning about parallel blocks
§ Verification of GPU kernels
§ VerCors exercise
§ Advanced verification features

OUTLINE OF THIS LECTURE

Verification of Concurrent and Distributed Software 2

HETEROGENEOUS VS HOMOGENEOUS THREADING

Verification of Concurrent and Distributed Software 3

§ Every thread executes its own program
§ Threads share data
§ Efficiency achieved by smart division of tasks

HETEROGENEOUS THREADING

Verification of Concurrent and Distributed Software 4

§ Each thread executes same sequence of instructions
§ Threads share data
§ Typically, each thread accesses it own part of the data (otherwise:

data race)
§ Efficiency achieved by parallel execution of same job

HOMOGENEOUS THREADING

Verification of Concurrent and Distributed Software 5

Graphics in 1980
14

GPU PROGRAMMING

Verification of Concurrent and Distributed Software 6

§ Wikipedia:
A graphics processing unit (GPU),
also occasionally called visual processing unit (VPU),
is a specialized electronic circuit designed to rapidly manipulate and
alter memory to accelerate the building of images in a frame buffer
intended for output to a display.

§ SIMD architecture: built-in support for homogeneous threading
§ Also useful for general purpose applications

GPU ARCHITECTURE

Verification of Concurrent and Distributed Software 7

§ Cuda
§ NVIDIA-only
§ First
§ Widely-used

§ OpenCL
§ Platform-independent
§ Can even run on CPU

§ Gaining interest

Essentially: an extended subset of C

GPU PROGRAMMING MODELS

Verification of Concurrent and Distributed Software 8

Sequential program:
void vector_add(int size, float* a, float* b, float* c {

for(int index = 0; index < size; index++) {
c[index] = a[index] + b[index];

}
}

EXAMPLE: ADDITION OF TWO VECTORS

Verification of Concurrent and Distributed Software 9

__kernel void vectorAdd(__global float* a,
__global float* b,
__global float* c) {

int index = get_global_id(0);

c[index] = a[index] + b[index];
}

VECTOR ADDITION AS OPENCL KERNEL

Verification of Concurrent and Distributed Software 10

__global
Where are the
arrays stored

§ Per-thread private memory
§ Per-workgroup shared

memory
§ Low latency

§ Global device memory (and
constant memory)

§ Slower access
§ Can be accessed by any

thread in any workgroup

MULTIPLE MEMORY SCOPES

Verification of Concurrent and Distributed Software 11

Explicit copying between
local and global memory

cute concurrently within a compute unit (NVIDIA streaming
multiprocessor or ATI SIMD engines) and will share some lo-
cal memory (more later). These work-groups are placed onto
a work-queue.

3. The hardware will then load DRAM memory into the global
GPU RAM and execute each work-group on the work-queue.

4. On NVIDIA hardware the multiprocessor will execute 32
threads at once (which they call a “warp group”), if the work-
group contains more threads than this they will be serialized,
which has obvious implications on the consistency of local
memory.

Each processing element executes purely sequential code. There
is no branch prediction and no speculative execution, so that all in-
structions in a thread are executed in order. Furthermore, some con-
ditional branch code will actually require execution of both branch
paths, which are then data-multiplexed to produce a final result. I
will refer the reader to the Khronos OpenCL, ATI and NVIDIA
documentations for further details since the details are often com-
plicated. For instance, a “warp” in NVIDIA hardware executes only
one common instruction at a time on all threads in the work-group
(since access to individual threads is through global SIMT instruc-
tions), so full efficiency is only realized when all 32 threads in the
warp agree on their execution path.

There are some important limitations on work-groups to always
keep in mind. Firstly, the global work size must be a multiple of
the work-group size, or another way of saying that is that the work-
groups must fit evenly into the entire data structure. Secondly, the
work-group size (which of a 2D array would be the size2) must be
less than or equal to the CL KERNEL WORK GROUP SIZE flag.
This is a hardware flag stating the limitation on the maximum con-
current threads within a work-group. OpenCL will return an error
code if either of these conditions are violated 6.

2.3 OpenCL Memory Model

The OpenCL memory hierarchy (shown in Figure 4) is structured
in order to “loosely” resemble the physical memory configura-
tions in ATI and NVIDIA hardware. The mapping is not 1 to 1
since NVIDIA and ATI define their memory hierarchies differently.
However the basic structure of top global memory vs local memory
per work-group is consistent across both platforms. Furthermore,
the lowest level execution unit has a small private memory space
for program registers.

These work-groups can communicate through shared memory and
synchronization primitives, however their memory access is inde-
pendent of other work-groups (as depicted in Figure 5). This is
essentially a data-parallel execution model, where the domain of
independent execution units is closely tied and defined by the un-
derlining memory access patterns. For these groups, OpenCL im-
plements a relaxed consistency, shared memory model. There are
exceptions, and some compute devices (notably CPUs) can execute
task-parallel compute Kernels, however the bulk of OpenCL ap-
plications on GPGPU hardware will execute strictly data-parallel
workers.

An important issue to keep in mind when programming OpenCL
Kernels is that memory access on the DRAM global and local mem-
ory blocks is not protected in any way. This means that segfaults are
not reported when work-items dereference memory outside their
own global storage. As a result, GPU memory set aside for the
OS can be clobbered unintentionally, which can result in behaviors

6In general, if you don‘t check the return conditions for all the API func-
tions then the Kernel will either cause the host program to crash or crash
your OS. Always check error flags!

Figure 4: OpenCL Memory Model (from [Khronos 2011])

Figure 5: OpenCL Work-group / Work-unit structure

ranging from benign screen flickering up to frustrating blue screens
of death and OS level crashes.

Another important issue is that mode-switches may result in GPU
memory allocated to OpenCL to be cannibalized by the operating
system. Typically the OS allocates some portion of the GPU mem-
ory to the “primary-surface”, which is a frame buffer store for the
rendering of the OS. If the resolution is changed during OpenCL
execution, and the size of this primary-surface needs to grow, it
will use OpenCL memory space to do so. Luckily these events are
caught at the driver level and will cause any call to the OpenCL
runtime to fail and return an invalid context error.

Memory fences are possible within threads in a work-group as well
as synchronization barriers for threads at the work-item level (be-
tween individual threads in a processing element) as well as at
the work-group level (for coarse synchronization between work-
groups). On the host side, blocking API functions can perform
waits for certain events to complete, such as all events in the queue
to finish, specific events to finish, etc. Using this coarse event con-
trol the host can decide to run work in parallel across different de-
vices or sequentially, depending on how markers are placed in the
work-queue (as depicted in Figure 6).

Finally, you should also be careful when statically allocating local
data (per work-group). You should check the return conditions from
the host API for flags indicating that you‘re allocating too much per
work-group, however you should also be aware that sometimes the

Beware for terminology:
- Local memory is shared

by multiple work items
(threads)

- Private memory is private
to a single thread

§ Parallel kernels composed of many threads
§ All threads execute the same sequential program
§ Called the kernel

§ Threads (work items) are grouped into thread blocks (working group)

§ Threads in the same block can cooperate
§ Threads in different blocks cannot!

§ Each thread has:
§ Local identifier: thread number in thread block
§ Global identifier: thread number in kernel

Derived from local identifier and working group identifier

HIERARCHY OF CONCURRENT THREADS

Verification of Concurrent and Distributed Software 12

Thread identifiers typically
determine which data is
accessed

__kernel bla (__global float* a) {
int tid = get_global_id(0);
if (tid > 0) {

a[tid] = a[tid] + a[tid – 1];

}
}

REASONING ABOUT KERNEL CODE

Verification of Concurrent and Distributed Software 13

What will happen here?

Data races should be avoided
Synchronisation needed
Solution: insert a barrier between
the two assignments

__kernel bla (__global float* a) {
int tid = get_global_id(0);
int tmp = a[tid];
if (tid > 0) {

tmp = a[tid] + a[tid – 1];
}
BARRIER(CLK_GLOBAL_MEM_FENCE);

a[tid] = tmp;
}

REASONING ABOUT KERNEL CODE

Verification of Concurrent and Distributed Software 14

§ Barrier: all threads within a work group block until all threads have
reached (the same) barrier

§ This is the only moment where you can make an assumption about
the state of another thread

§ Barriers can be flagged with empty, local, global or local & global
§ Flag indicates which memory is synchronised when all threads

reach the barrier

SYNCHRONISATION WITHIN A KERNEL

Verification of Concurrent and Distributed Software 15

Could we turn this into a kernel?
for (i=0; i<n; i++)

sum += a[i];

We need a way to ensure that each thread does an atomic update
__kernel(__global float∗ a, __global int sum) {

int tid = get_global_id(0);

atomic_add(sum,a[tid]);
}

REDUCTION PATTERS AS KERNELS

Verification of Concurrent and Distributed Software 16

§ Kernel specification
§ All permissions that a kernel needs for its

execution
§ Separated in permissions for

§ Global Memory – given up by host code
§ Shared Memory – local to the GPU

§ Thread specification

§ Permissions needed by single thread
§ Should be a subset of kernel permissions

§ Barrier specification
§ Each barrier allows redistribution of permissions

A LOGIC FOR GPU KERNELS

Verification of Concurrent and Distributed Software 17

Actually:
Group specification
in between kernel
and thread
specification

Plus: functional
specifications (pre-
and postconditions)

Kernel Specification:

Global Memory Resources:

(forallà int i; 0 <= i < output.length; Perm(output[i], 1)

(forallà int i; 0 <= i < input.length; Perm(input[i], ½)

Shared Memory Resources: -

Thread Specification:

Precondition:

Perm(output[tid], 1) à

Perm(input[tid], ½)

Postcondition:

Perm(output[(tid + 1) % wg_size], 1) à

Perm(input[tid], ¼) à Perm(input[(tid + 1) % wg_size], ¼) à

output[(tid + 1) % wg_size] = input[tid] à input[(tid + 1) %
wg_size]^2

Verification of Concurrent and Distributed Software 18

EXAMPLE SPECIFICATION

_kernel void bla(_global float* input,
_global float* output) {

int i = get_global_id(0);
output[i] = input[i] * input[i];
barrier(CLK_GLOBAL_MEM_FENCE);
output[(i+1)%wg_size]=

output[(i+1)%wg_size] * input[i];
}

Provided by host

Global proof obligation:
All threads together use no
more resources than
available in the kernel

Barrier Specification:
Precondition:

Perm(output[tid], 1) à Perm(input[tid], ½) à

output[tid] = input[tid] à input[tid]
Postcondition:

Perm(output[(tid + 1) % wg_size], 1) à

Perm(input[tid], ¼) à Perm(input[(tid + 1) % wg_size], ¼) à
output[(tid + 1)% wg_size] = input[(tid + 1)% wg_size]^2

Verification of Concurrent and Distributed Software 19

EXAMPLE
BARRIER SPECIFICATION

Global proof obligation:
All permissions
available in kernel

Global proof obligation:
Barriers correctly transfer
knowledge about state

_kernel void bla(_global float* input,
_global float* output) {

int i = get_global_id(0);
output[i] = input[i] * input[i];
barrier(CLK_GLOBAL_MEM_FENCE);
output[(i+1)%wg_size]=

output[(i+1)%wg_size] * input[i];
}

§ Threads respect their thread specification
§ Kernel resources are sufficient to provide each thread necessary

global resources
§ Local resources are properly distributed over threads
§ Kernel precondition implies universal quantification of thread

precondition

§ Barriers only redistribute permissions that are in the kernel
§ Universal quantification of barrier precondition implies universal

quantification of barrier postcondition
§ Universal quantification of thread postcondition implies kernel

postcondition

PROOF OBLIGATIONS

Verification of Concurrent and Distributed Software 20

Extra layer:
workinggroup specifications

• OpenCL kernels encoded as sequences of parallel blocks

par (int tid = 0 .. A.length)

{

A[tid] = 0;

}

• Each parallel block ends with an implicit barrier

• For more complicated patterns, also explicit barrier statement

• Each iteration in parallel block should be specified by pre- and

postcondition

• Atomic operations:

atomic(inv) { critical section code }

where inv is the resource invariant that gives access to this code

Verification of Concurrent and Distributed Software 21

PARALLEL BLOCK: VERCORS ENCODING

EXERCISES

Verification of Concurrent and Distributed Software 22

Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA

§ Abstract predicates: encapsulate state
§ Ghost variables: verification-only state
§ Abstract models to reason about functional behavior of concurrent

programs

TOWARDS THE FULL POWER OF VERIFICATION

Verification of Concurrent and Distributed Software 23

ABSTRACT PREDICATES

Verification of Concurrent and Distributed Software 24

Matthew Parkinson

§ Abstract predicates represent and encapsulate state, with appropriate
operations

§ Abstract predicates are scoped
§ Code verified in scope can use name and body
§ Code verified out of scope can only use name

§ Explicit open/close axiom to open definition of abstract predicate,
provided it is in scope

α(x1, ..,xn) = P in scope |- α(e1, .., en) Þ P[x1 := e1,.. xn := en]

SPECIFYING DATA STRUCTURES

Þ

Verification of Concurrent and Distributed Software 25

§ Predicate list
§ pred list (i)= (i = null) Ú ∃ Node j, int a. i.val ® a à i.next ® j à list j
recognises list structure

§ Predicate list:

§ pred list (ϵ, i) = (i = null)
§ pred list ((a.α), i) = ∃Node j. i.val ® a à i.next ® j à list α j

relates list content with abstract list value

§ Operations like append and reverse in specifications can be defined
on abstract type

ABSTRACT PREDICATES ON LIST

Verification of Concurrent and Distributed Software

class Node {
int val;
Node next;

}

26

class Node {

int value;
Node next;

resource list(frac p) =
p != none ** Perm(value, p) ** Perm(next, p) **

(next != null ==> next.list(p));

}

LIST PREDICATE IN VERCORS

Verification of Concurrent and Distributed Software 27

§ Sometimes verification requires to maintain extra state: ghost state
§ Examples:

§ Keep track of original variables
§ Keep track how variables evolve

§ Compute additional properties over state

§ VerCors approach:

§ given T v : pass extra ghost parameter v of type T to method
§ yields T v: method returns an extra ghost return value
§ m() with {givenvar = E} then {z = yieldsvar}

GHOST VARIABLES

Verification of Concurrent and Distributed Software 28

function up-sweep(int H, int N, seq<int[]> Tree, seq<int> Input, int tid) {

int lvl=1;

while (lvl ≤ H) {
if (lvl < N/2) {

a[tid] = a[2 * tid] + a[2 * tid + 1];

Tree[lvl][tid] = Tree[lvl - 1][2 * tid] + Tree[lvl - 1][2 * tid + 1];
barrier(tid);

lvl = lvl + 1;

}

}

}

EXAMPLE GHOST TRACE

Verification of Concurrent and Distributed Software 29

FUNCTIONAL VERIFICATION OF CONCURRENT
PROGRAMS

Verification of Concurrent and Distributed Software 30

Marina Zaharieva –
Stojanovski

Wytse Oortwijn

How to prove:
{x == 0}

<x := x + 1;> || <x := x + 1;>
{x == 2}

Problem:
{x == 0}

< x := x + 1;>
{x == 1}
unstable: assertions can be made invalid by other threads

EXAMPLE: PARALLEL INCREASE

Verification of Concurrent and Distributed Software 31

Ghost code solution:
{x = a + b & a == 0 & b == 0}

{x == a + b & a == 0} || {x == a + b & b == 0}
<x := x + 1;> || <x := x + 1;>
<a := 1;> // ghost || <b :=1;> //ghost
{x == a + b & a == 1} || {x == a + b & b == 1}

{x == a + b & a == 1 & b == 1}
{x == 2}

Our approach:
Maintain abstract model of updates

class Counter{
int data;
Lock l;
resource_inv = exists v. PointsTo(x, 1, v);

requires true;
ensures true;
void increase(){

l.lock(); // obtain PointsTo(x, 1, v);
x++;
l.unlock(); // loose PointsTo(x, 1, v + 1);
// now we don’t know anything about x anymore
}

} Verification of Concurrent and Distributed Software

AS A JAVA-LIKE PROGRAM

Client:

c = new Counter(0);
fork t1; //t1 calls c.increase();
fork t2; //t2 calls c.increase();
join t1;
join t2;

// Is c.x == 2 ?

Permission to
read and
update x

Needed:
A specification of
increase that
indicates what
behavior of
increase is

32

Abstract model is process algebra term composed of user-defined
actions (use ACP)

Examples

action a<int x>(int k) = \old(x) + k;

action b<list l>(int e) = cons(\old(l), e);

action c<int k>(int w) = w;

Verification of Concurrent and Distributed Software

A HISTORY OF ACTIONS

33

class Counter {
int data;
Lock l;
//resource_inv = Perm(x, 1);

//action a<int x> () = \old(x) + 1;

requires Model(x, p, M.a);
ensures Model(x, p, M);
void increase(){

l.lock(); /* start a */ x++; /* record a */ l.unlock();
}

}
Verification of Concurrent and Distributed Software

COUNTER SPECIFICATION

Record LOCAL
changes in the history

34

class Future {
int x;

modifies x;
ensures x == \old(x) + 2;
process incr();

modifies x;
ensures x == \old(x) + 4;
process OG() = incr() || incr();

}

Verification of Concurrent and Distributed Software 35

EXAMPLE: OWICKI GRIES

ensures \result == x + 4;
int main(int x) {

model.x = x;
invariant inv(HPerm(model.x, 1)) //;
{

par Thread1()
{ atomic (inv) { model.x = model.x + 2; } }
and Thread2()
{ atomic (inv) { model.x = model.x + 2; } }

return model.x;
}

Verification of Concurrent and Distributed Software 36

OWICKI GRIES PROGRAM

For the annotations,
we go to my editor

ACKNOWLEDGEMENTS

Verification of Concurrent and Distributed Software 37

Saeed Darabi, Wojciech Mostowski,
Marina Zaharieva-Stojanovski,
Stefan Blom, Afshin Amighi, Wytse Oortwijn,
Sebastiaan Joosten, Mohsen Safari, Fauzia Ehsan,
Raul Monti, Henk Mulder, Pieter Bos, Jelte Zeilstra

EXERCISES

Verification of Concurrent and Distributed Software 38

Code voor exercises and some examples available from
https://wwwhome.ewi.utwente.nl/~marieke/VTSA

