
Statistical theory for deep neural networks

Lecture series

Johannes Schmidt-Hieber

1 / 101

The problem

general belief that no or little theory can be developed for modern
deep network architectures

complex data structures no available statistical models

combination of intricate network architectures with various
regularization methods

fitting a network is a non-linear problem in the network
parameters

non-convex function class

. . .

2 / 101

Why theory?

What is the use of theoretical results in a field that is (successfully)
driven by trial and error?

understand why deep learning works

deep learning is a chaotic field (thousands of publications)
 mathematical theory can be useful to extract key concepts

comparison with other methods

selection of tuning parameters

detecting limitations of deep learning

improvements

hybrid methods

3 / 101

organization of the course

Lectures:

Theory for shallow networks

Advantages of additional layers

Statistical theory for deep ReLU networks

Overparametrization

4 / 101

Perceptron

5 / 101

Shallow networks

−
1

0
1

−6 −3 0 3 6

sigmoidal
tanh

0
2

4

−4 −2 0 2 4

ReLU
leaky ReLU
softplus

shallow neural network with one output is a function
f : Rd → R of the form

f (x) =
m∑
j=1

cjσ
(
w>j x + vj

)
, wj ∈ Rd , vj , cj ∈ R.

activation function σ : R→ R
6 / 101

Feedforward neural networks

for v = (v1, . . . , vr)>, y = (y1, . . . , yr)> ∈ Rr , define the
shifted activation function σv : Rr → Rr as

σv = (σ(y1 − v1), . . . , σ(yr − vr))>.

network architecture (L,p)

positive integer L called number of hidden layers/depth
width vector p = (p0, . . . , pL+1) ∈ NL+2

Neural network with architecture (L,p) is

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

Wi is a pi × pi+1 weight matrix

vi ∈ Rpi is a shift vector

7 / 101

Feedforward neural networks

Neural network:

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

Comments:

feedforward information is passed in one direction through
the network

network functions are build by alternating matrix-vector
multiplications with the action of the non-linear activation
function σ

network architecture is given

parameters generating the underlying function class are the
matrices W0, . . . ,WL and the shift vectors v1, . . . , vL

8 / 101

Graph representation

in CS, neural networks are introduced via graph representation

nodes in the graph (also called units) are arranged in layers

input layer is the first layer and the output layer the last layer

layers that lie in between are called hidden layers

number of hidden layers corresponds to L and the number of
units in each layer generates the width vector p

Each node/unit in the graph representation stands for
operation σ(at ·+b)

9 / 101

Special types

Neural network:

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

Comments:

network is called sparse if Wi are sparse matrices

i-th layer is fully connected Wi is dense

for L = 1 network coincides with shallow networks

if L > 1, network is called deep

10 / 101

Depth

Source: Kaiming He, Deep Residual Networks

Networks are deep

version of ResNet with 152 hidden layers
networks become deeper

11 / 101

High-dimensionality

Source: arxiv.org/pdf/1605.07678.pdf

Number of network parameters is larger than sample size

AlexNet uses 60 million parameters for 1.2 million training
samples

12 / 101

deep learning

deep learning denotes gradient based methods to fit neural
networks to data

Neural network:

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

cross-entropy loss (= −log-likelihood)

e.g. for regression problems, we observe n i.i.d. pairs
(Xi ,Yi) ∈ Rd × R and consider least squares loss

n∑
i=1

(
Yi − f (Xi)

)2

(stochastic) gradient descent based method

neural network class is non-convex and deep learning will in
general not find the global minimum

13 / 101

initialization

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

good initialization schemes of the network parameters is
crucial for success of DL

draw weight parameters independently such that the weight
matrices are nearly orthogonal (in case they are square
matrices)

extra factors to compensate effect of the activation function

14 / 101

random initialization for wide shallow networks
A shallow network with m units and without biases can be written
as

fm(x) =
m∑
i=1

ciσ(w>i x), i = 1, . . . ,m

with parameters ci ∈ R and wi ∈ Rd

random initialization: ci i.i.d. and wi i.i.d., such that E [ci] = 0,
Var(ci) = 1/m

Cov
(
fm(x), fm(x′)

)
=

m∑
i=1

Cov
(
ciσ(w>i x), ciσ(w>i x′)

)
=

m∑
i=1

E
[
c2
i σ(w>i x)σ(w>i x′)

]
= E

[
σ(w>1 x)σ(w>1 x′)

]
15 / 101

random initialization for wide shallow networks (ctd.)

A wide, randomly initialized shallow neural network is
approximately a Gaussian process with covariance

K (x, x′) = E
[
σ(w>x)σ(w>x′)

]

expectation with respect to distribution of w

covariance depends on activation function

For ReLU with d = 1, the limiting Gaussian process on [0,∞)
is

x 7→ ξx

for ξ ∼ N (0,E [(w)2
+])

16 / 101

random initialization for deep neural networks

what is the limit for a wide deep neural network?

depends on how the limit is taken

if the number of units in all hidden layers is m and m→∞,
then, proper initialization converges again to a Gaussian
process (Theorem 4 in Matthews et al. 2018)

convergence of finite dimensional distributions can be proved
using CLT for exchangeable sequences

covariance structure of limiting process can be expressed via
recursion formula on the layers

edge of chaos phenomenon: if depth increases, correlation of
f (x) and f (x′) does almost not depend on (x, x′) anymore

17 / 101

random initialization for deep neural networks (ctd.)

also non-Gaussian limits are possible for deep networks

if the width of some of the hidden layers is fixed and the
number of units in all the other hidden layers tends to infinity,
then, the limit will be a composition of Gaussian processes
(deep Gaussian process)

a lot of probability theory missing to understand properties of the
process x 7→ f (x)

18 / 101

functions generated by shallow networks

Consider function class

Fm,σ :=
{
f =

m∑
j=1

cjσ
(
w>j ·+vj

)
: wj ∈ Rd , vj , cj ∈ R

}
.

problems:

how large is this class?

how well can we approximate functions of a specific
smoothness?

or the function f (x1, x2) = x1x2?

19 / 101

universal approximation

Fm,σ :=
{
f =

m∑
j=1

cjσ
(
w>j ·+vj

)
: wj ∈ Rd , vj , cj ∈ R

}
.

functions in the class Fm,σ have m(d + 2) real parameters

nested spaces, e.g. Fm,σ ⊆ Fm′,σ whenever m′ ≥ m.

Universal approximation property: Shallow networks with
activation function σ have the universal approximation property if
for any ε > 0 and any continuous function f on [0, 1]d , there exists
an integer m = m(f , ε), such that

inf
g∈Fm,σ

‖f − g‖L∞([0,1]d) ≤ ε.

20 / 101

reduction to ridge functions

many proofs first show universal approximation in dimension
one

univariate functions {σ(w ·+v) : w , v ∈ R} span the space of
continuous functions

statement does not involve scalar products anymore

afterwards, it is enough to show that the function space spanned
by so called ridge functions

f =
m∑
j=1

gj(w>j ·)

with gj univariate and continuous has the universal approximation
property

21 / 101

universal approximation for univariate functions

Theorem: Shallow networks with smooth activation function that
is not a polynomial have universal approximation property for
d = 1.

Proof:

∆1
hσ(t) := (σ(t + xh)− σ(t))/h

∆k
hσ(t) := ∆1

h(∆k−1
h σ)(t)

definition of the k-th derivative ∣∣∣∆k
hσ(t)

xk
− σ(k)(t)

∣∣∣→ 0, as h→ 0

22 / 101

universal approximation for univariate functions (ctd.)

σ not a polynomial there exists for each k a real number tk
with σ(k)(tk) 6= 0

multiplying with xk and division by σ(k)(tk) yields∣∣∣∆k
hσ(tk)

σ(k)(tk)
− xk

∣∣∣→ 0, as h→ 0.

for any h > 0, (σ(k)(tk))−1∆k
hσ(tk) can be realized by a

shallow network with k + 1 units

 build networks approximating the function x 7→ xk

arbitrarily well in sup-norm

apply Weierstrass approximation theorem

23 / 101

some comments on the proof

proof provides explicit construction of networks that closely
resemble polynomials

construction requires that some parameters are extremely
small and others are very large

uses only one point of the activation function to generate a
specific power

 small perturbations of the activation function can lead to
completely different properties

networks can ”zoom in” at local features of the activation
function

the universal approximation theorem can be extended to
continuous activation functions using local smoothing

universal approximation theorem does not hold if σ is a
polynomial

24 / 101

universal approximation via Fourier transform

Fourier transform F f (ξ) =
∫
e−iξ

>xf (x) dx

inverse Fourier transform F−1f (x) = (2π)−d
∫
e ix
>ξf (ξ) dξ

f = F−1F f
for any complex number z , z = |z |e iφ for some real number
φ = φ(z)

 there exists a real valued function φ(w) such that
F f (w) = e iφ(w)|F f (w)|
Fourier inversion

f (x) =
1

(2π)d
Re

∫
e iw
>xe iφ(w)|F f (w)|dw

=
1

(2π)d

∫
cos
(
w>x + φ(w)

)
|F f (w)|dw

discretization of the integral on the right hand side gives the
structure of a shallow network with activation function cos()

 will be used later for approximation rates

25 / 101

Approximation rates for shallow networks

How well can we approximate a function in dependence on
smoothness etc. ?

smooth activation functions

approximation rates using multivariate polynomials

Barron’s class

26 / 101

approximation rates for smooth activation function

Mhaskar ’96

smooth activation function

β-smooth function (in L2-Sobolev sense)

rate of approximation over all shallow networks with m units
is m−β/d with d the dimension

proof first approximates polynomials of ridge functions and
then continues with polynomial approximation

27 / 101

approximation rates for arbitrary activation function

Petrushev ’99

good approximation rates can be obtained for functions that
are smoother than the activation function

Theorem: if activation function is s-smooth (Sobolev), optimal
approximation rates are obtained for s + (d − 1)/2-smooth
functions

 effect becomes better as input dimension increases

proof: reduce to ridge functions + approximation of Radon
inversion + polynomial eigenbasis

proof is constructive several interesting conclusions

28 / 101

Barron’s approximation theorem

for any sigmoidal activation function

any m ≥ 1,

any function f

define Cf :=
∫
|w|1F(f)(w)dw

there exist shallow network such that

∥∥∥f (·)− f (0)−
m∑
j=1

cjσ(w>j ·+vj)
∥∥∥ ≤ 2Cf

(2π)d
√
m
,

Remarks:

proof is based on Maurey’s theorem

rate m−1/2 does not depend on the dimension d

do neural networks avoid curse of dimensionality?

29 / 101

On the rate

Recall: Cf =
∫
|w|1|F f (w)|dw

indeed there is nothing special about neural networks here

Candes ’02 shows that truncated Fourier series achieves faster
approximation rate

m−1/2−1/d

for the same function class {f : Cf <∞}
gain is related to loss in Maurey’s theorem

Up to now, no approximation problem has been found where
shallow networks outperform Fourier series or polynomial

approximation

30 / 101

statistical model

combine approximation theory with statistical analysis

given an i.i.d. sample (Xi ,Yi) ∈ Rd × R, i = 1, . . . , n with
bounded responses |Yi | ≤ 1,

want to recover the regression function

f (x) = E
[
Yi |Xi = x

]
covers binary classification
 Yi ∈ {0, 1} and f (x) = P(Yi = 1|Xi = x)

31 / 101

oracle inequality

f̂ be the empirical risk minimizer

f̂ ∈ argminfθ :θ∈Θ

n∑
i=1

(
Yi − fθ(Xi)

)2
.

standard exponential inequalities
 if Θ is a discrete set with cardinality |Θ|, then

Ef

[
‖f̂ − f ‖2

2

]
≤ C inf

θ∈Θ
‖f − fθ‖2

2 + C
log |Θ|

n

32 / 101

statistical bounds for shallow networks

Barron ’94

discretizes network parameters

study empirical risk minimizer

number of parameters is m(d + 2)

log |Θ| . m(d + 2) log n

oracle inequality + approximation theory

Ef

[
‖f̂ − f ‖2

2

]
. m−1 +

m log n

n
.

if Cf =
∫
|w|1|F f (w)|dw <∞.

bias variance trade-off m =
√
n/ log n

yields the rate √
log n

n

33 / 101

summary

shallow networks:

universal approximation

approximation rates

estimation risk bounds

no gain in terms of rates with respect to series estimators

34 / 101

advantages of additional layers

localization

approximation of polynomials with deep networks

Kolmogorov-Arnold representation theorem

advantages of deep ReLU networks

35 / 101

localization with Heaviside activation function

no localization for shallow networks in dimension d > 1 (?)

for commonly used activation functions, taking two hidden
layers allows us to localize in arbitrary dimensions

Heaviside activation function σ0 = 1(· ≥ 0),

1(x ∈ [−1, 1]d) = σ0

(d∑
i=1

σ0(xi + 1) + σ0(−xi + 1)− 2d +
1

2

)

 outer neuron only gets activated iff all the inner neurons
output one

this is the case iff −1 ≤ xi ≤ 1 for all i = 1, . . . , d

36 / 101

localization by other activation functions

for sigmoidal activation function

σ(αx) ≈ σ0(x), for large α.

for the ReLU σ(x) = (x)+,

σ(αx)− σ(αx − 1) ≈ σ0(x), for large α.

approximation quality depends on α

 results using neural networks with sigmoidal activation
often have conditions on the speed at which |σ(x)| → 0 for
x → −∞, and |1− σ(x)| → 0 for x → +∞
localization might be a useful property for approximation,
being non-local might be helpful for the (stochastic) gradient
descent

37 / 101

approximation of x2k

with deep networks

for a smooth activation function, the function x 7→ x2k lies in
the closure of a shallow network with 2k + 1 units
(↗ proof of universal approximation theorem)

stacking layers on top of each other, this can be reduced to
O(k) units in k layers

rescaled finite second order differences

σ(t + 2xh)− 2σ(t + xh) + σ(t)

σ′′(t)h2
≈ x2.

38 / 101

a graphical proof

39 / 101

advantages of additional layers

localization

approximation of polynomials with deep networks

Kolmogorov-Arnold representation theorem

advantages of deep ReLU networks

40 / 101

KA representation theorem

for any continuous function f : [0, 1]d → R,
there exist univariate continuous functions gq, ψp,q such that

f (x1, . . . , xd) =
2d∑
q=0

gq
(d∑

p=1

ψp,q(xp)
)
.

used to prove Hilbert’s 13th problem

very different from other representation/approximation
schemes, e.g. wavelets, splines, . . .

41 / 101

modern KA representation theorem

Theorem 2.14 in Braun ’09: There are real numbers a, bp, cq
and a continuous and monotone function ψ : R→ R, such that for
any continuous function f : [0, 1]d → R, there exists a continuous
function g : R→ R with

f (x1, . . . , xd) =
2d∑
q=0

g

(d∑
p=1

bpψ(xp + qa) + cq

)
.

42 / 101

comparison with two hidden layer neural networks

A two hidden layer neural network is a function of the form

x 7→
m2∑
`=1

e` σ

(m1∑
j=1

c`jσ(a>j x + bj) + d`

)
, aj ∈ Rd , bj , c`,j , d`, e` ∈ R

this has a similar structure as the KA representation

f (x1, . . . , xd) =
2d∑
`=0

g
(d∑

j=1

cjψ(xj + `b) + d`

)
.

interior function is independent of f pre-training

43 / 101

44 / 101

45 / 101

approximation theory based on KA representation

f (x1, . . . , xd) =
2d∑
`=0

g
(d∑

j=1

cjψ(xj + `b) + d`

)
.

for approximation theory it is sufficient to approximate outer
function g

unfortunately, g does not have good smoothness properties

best bound so far derived in Kurkova ’92 requires m4+d

network parameters to approximate β-Hölder function up to
an error m−β

the 4 in the exponent seems to be suboptimal

46 / 101

a simple KA representation

There exists a monotone function ψ : R→ R such that for any
function f : [0, 1]d → R, we can find a function g : R→ R with

f (x1, . . . , xd) = g
(d∑

p=1

2−pψ(xp)
)
.

proof sketch for d = 2:

dyadic expansion x1 = [0.a1a2a3 . . .]2 and x2 = [0.b1b2b3 . . .]2

set Ψ(x1, x2) = [0.a1b1a2b2a3b3 . . .]2

Ψ(x1, x2) =
∑2

p=1 2−pψ(xp) for suitable ψ

f (x1, x2) = f ◦Ψ−1︸ ︷︷ ︸
=:g

◦Ψ(x1, x2) = g
(2∑

p=1

2−pψ(xp)
)

47 / 101

Morton order

Source: Bader, Space-Filling Curves, Springer 2013

the inverse Ψ−1 : [0, 1]→ [0, 1]2 is a space-filling curve, called
the Morton order

the outer function g is much rougher than f

48 / 101

generalization

Source: wikipedia

what we need:

Ψ−1 : [0, 1]→ [0, 1]d is a space-filling curve

Ψ : [0, 1]d → [0, 1] must be an additive function

we can also replace [0, 1] by a subset

the Lebesgue curve:

x1 = [0.a1a2a3 . . .]2 and x2 = [0.b1b2b3 . . .]2

Ψ(x1, x2) =
[
0.(2a1)(2b1)(2a2)(2b2) . . .

]
3

Ψ : [0, 1]2 → C (Cantor set), Ψ is invertible and additive
49 / 101

smoothness of the outer function

For x = [0.a1a2 . . .]2, set

φ(x) :=
∞∑
j=1

2aj
3d(j−1)

Lemma: for any function f : [0, 1]d → R, we can find a function
g : C → R such that

f (x1, . . . , xd) = g
(d∑

p=1

3−pφ(xp)
)

;

50 / 101

smoothness of the outer function

f (x1, . . . , xd) = g
(d∑

p=1

3−pφ(xp)
)

;

Lemma: If for β ≤ 1, |f (x)− f (y)| ≤ Q|x− y|β∞, for all
x, y ∈ [0, 1]d , then,

|g(x)− g(y)| ≤ 2βQ|x − y |
β log 2
d log 3 , for all x , y ∈ C;

If f is piecewise constant on dyadic intervals, then, g is Lipschitz

log 2/ log 3 is the Hausdorff dimension of the Cantor set C

51 / 101

approximation theory

based on the previous result we can build an approximation
theory

truncate interior function: for x = [0.a1a2 . . .]2 set

φK (x) :=
K∑
j=1

2aj
3d(j−1)

because of the smoothness of the outer function we can
control the induced error∣∣∣f (x)− g

(d∑
p=1

3−pφK (xp)
)∣∣∣ ≤ Q2−β(K−4)

the result can be used to build a neural network
approximating f with the optimal rate

52 / 101

implementation of the interior function

the interior function

φK (x) :=
K∑
j=1

2aj
3d(j−1)

can be represented by a deep network with

K hidden layers

linear σ(x) = x and threshold activation function
σ(x) = 1(x ≥ 1/2)

3 units in each hidden layer doing bit extraction

this can be well approximated by a deep ReLU network with the
same architecture

53 / 101

deep ReLU approximation

add one hidden layer to construct a deep ReLU network computing
approximately

g
(d∑

q=1

3−qφK (xq)
)
≈ f (x)

54 / 101

approximation by deep ReLU networks

if β ≤ 1, there exists a deep ReLU network f̃ with

K + 3 hidden layers

O(2Kd) network parameters (fully connected)

such that the approximation error is bounded by

. 2−βK .

differently speaking we need md parameters to achieve
approximation error m−β

55 / 101

improved representation theorems

Kolmogorov-Arnold approximation theorem shows that every
continuous function can be represented by a specific two-layer
network

very different structure if compared with the universal
approximation theorem for shallow networks

indicates that additional layers can lead to new features of
network functions

Theorem (Braun ’09): Fix d ≥ 2. There are real numbers a, bp, cq
and a continuous and monotone function ψ : R→ R, such that for
any continuous function f : [0, 1]d → R, there exists a continuous
function g : R→ R with

f (x1, . . . , xd) =
2d∑
q=0

g
(d∑

p=1

bpψ(xp + qa) + cq
)
.

56 / 101

remarks

f (x1, . . . , xd) =
2d∑
q=0

g
(d∑

p=1

bpψ(xp + qa) + cq
)
.

one inner function ψ and one outer function g

inner function is independent of f

q-dependence in the first layer comes through the shifts qa.

right hand side can be realized by a network with two hidden
layers, architecture p = (d , d , 2d + 1, 1), and ψ being the
activation function in the first layer.

57 / 101

link to pre-training

inner function in the Kolmogorov-Arnold representation
theorem is independent of the represented function f

in deep learning it has been observed that the first layers build
function systems which can be used for other classification
problems

exploited in pre-training where a trained deep network from a
possibly completely different classification problem is taken
and only the last layer is learned by the new dataset

fact that pre-training works shows that deep networks build
generic function systems in the first layers.

58 / 101

deep ReLU networks

we discuss several advantages of deep ReLU networks

representation of identity

growth of number of linear pieces

approximation by ReLU networks with small parameters

59 / 101

deep ReLU networks can learn skip connections

σ(x) = max(x , 0)

projection property

σ ◦ σ = σ

 pass a signal without change through several layers in the
network

 network synchronization by adding hidden layers

related to skip connections and ResNets

for other activation functions it is much harder to approximate
the identity

60 / 101

number of linear pieces of deep ReLU networks

deep ReLU networks are piecewise linear functions of the input

adding layers highly oscillating functions with few
parameters

consider ReLU network with two hidden layers and width
vector (1,m, 1, 1) of the form(m∑

j=1

cj(wjx + vj)+

)
+

 number of added pieces by outer ReLU is proportional to
number of zero crossings of inner function

any ReLU network with width vector (1, p1, . . . , pL, 1) has at
most (3

2

)L L∏
j=1

(pj + 1)

pieces

61 / 101

an open problem

Problem: Show that the function

(x1, . . . , x2k) 7→ max(0, x1, . . . , x2k)

can be exactly represented by a ReLU network with k + 1 hidden
layers.

Conjecture: The same function cannot be represented by any
ReLU network with less than k + 1 hidden layers.

Except for k = 1, no prove yet.

62 / 101

example of a highly oscillating function

Functions:

let T : [0, 1]→ [0, 1],

T (x) := (2x) ∧ (2− 2x) = (2x)+ − (4x − 2)+

can be realized by shallow network with two units

Rk : [0, 1]→ [0, 1],

Rk := T ◦ T ◦ . . .T︸ ︷︷ ︸
k times

63 / 101

network representation

64 / 101

multiplication

how can we (approximately) multiply two inputs with a network?

crucial problem for approximation theory

for deep networks this can be reduced to approximation of
square function x 7→ x2 via

xy =
(x + y

2

)2
−
(x − y

2

)2

has a surprising answer for ReLU networks

65 / 101

approach from Lecture 2

network approximation of the function x 7→ x2 is very important!

for twice differentiable activation function, we used

σ(t + 2xh)− 2σ(t + xh) + σ(xh)

h2σ′′(t)
→ x2 for h→ 0

 network parameters become large

for deep ReLU networks we use a different construction

66 / 101

ReLU approximation of the square function

Functions:

let T k : [0, 22−2k]→ [0, 2−2k],

T k(x) := (x/2) ∧ (21−2k − x/2) = (x/2)+ − (x − 21−2k)+

Rk : [0, 1]→ [0, 2−2k],

Rk := T k ◦ T k−1 ◦ . . .T 1.

Lemma (Telgarsky ’16, Yarotski ’18, SH ’17):

∣∣∣x(1− x)−
m∑

k=1

Rk(x)
∣∣∣ ≤ 2−m.

67 / 101

ReLU approximation of the square function

0
1
/4

0 1/4 1/2 3/4 1

0
1
/4

0 1/4 1/2 3/4 1

(Left plot) The functions R1 (red), R2 (orange), R3 (yellow).

(Right plot) Approximation of x(1− x) (blue) by R1 (red)
and R1 + R2 (orange).

68 / 101

rewriting approximation as network

∣∣∣x(1− x)−
m∑

k=1

Rk(x)
∣∣∣ ≤ 2−m.

deep ReLU approximation:

m hidden layers

O(m) network parameters

bounded parameters

approximation 2−m

shallow ReLU network

for x(1− x) a shallow ReLU network needs at least O(2m/2)
parameters to achieve approximation error 2−m

69 / 101

multiplication with deep ReLU networks

Lemma: There exists a network Multm with m + 4 hidden layers,
width vector (2, 6, 6, . . . , 6, 1) and all network parameters bounded
by one, such that∣∣Multm(x , y)− xy

∣∣ ≤ 2−m, for all x , y ∈ [0, 1].

Proof:

use polarization identity

xy =
(x + y

2

)2
−
(x − y

2

)2

separation of positive and negative part

compute (x + y)/2 and (x − y)/2 in first layer
(non-negativity!)

square network has to be incorporated twice (inefficient)

70 / 101

a step in the proof

71 / 101

localization and approximation

we have seen that with two hidden layers we can localize

how can this be done for ReLU networks?

goes back to Yarotsky ’18

define D(M) as all grid points on the grid{
(`j/M)j=1,...,r : ` = (`1, . . . , `r) ∈ {0, 1, . . . ,M}r

}
partition of unity on unit cube

∑
x`∈D(M)

r∏
j=1

(1−M|xj − x`j |)+︸ ︷︷ ︸
localized functions

=
r∏

j=1

M∑
`=0

(1−M|xj − `/M|)+ = 1,

72 / 101

local Taylor approximation

on each localized bit (a ∈ D(M)) do a Taylor approximation

f (x) ≈ Pβa f (x) :=
∑

0≤|α|<β

(∂αf)(a)
(x− a)α

α!
=

∑
0≤|γ|<β

xγcγ

this can be approximately realized by a deep ReLU network

many technicalities occur (see the article SH ’17)

73 / 101

approximation rate

Theorem: For any β-smooth function f : [0, 1]r → R and any
integers m,N ≥ 1, there exists a ReLU network with

depth L � m

width in each layer bounded by . N

number of non-zero network parameters s . Nm

such that

‖f̃ − f ‖L∞([0,1]r) . N2−m︸ ︷︷ ︸
small for deep networks

+ N−
β
r︸︷︷︸

approx. rate

.

74 / 101

remarks

‖f̃ − f ‖L∞([0,1]r) . N2−m︸ ︷︷ ︸
small for deep networks

+ N−
β
r︸︷︷︸

approx. rate

.

for deep networks first term is of smaller order

second term becomes suboptimal for large depth

trade-off

sparse networks

75 / 101

risk bounds for deep ReLU networks

Framework:

we now study a statistical problem

requires that we first need to specify a statistical model

we study nonparametric regression

76 / 101

mathematical problem

The data are used to fit a network, i.e. estimate the network
parameters.

How fast does the estimated network
converge to the truth f as sample size increases?

77 / 101

statistical analysis

we observe n i.i.d. copies (X1,Y1), . . . , (Xn,Yn),

Yi = f (Xi) + εi , εi ∼ N (0, 1)

Xi ∈ Rd , Yi ∈ R,
goal is to reconstruct the function f : Rd → R

has been studied extensively
(kernel smoothing, wavelets, splines, . . .)

78 / 101

the estimator

choose network architecture (L,p) and sparsity s

denote by F(L,p, s) the class of all networks with

architecture (L,p)
number of active (e.g. non-zero) parameters is s

our theory applies to any estimator f̂n taking values in
F(L,p, s)

prediction error

R(f̂n, f) := Ef

[(
f̂n(X)− f (X)

)2]
,

with X
D
= X1 being independent of the sample

study the dependence of n on R(f̂n, f)

79 / 101

function class

classical idea: assume that regression function is β-smooth

optimal nonparametric estimation rate is n−2β/(2β+d)

suffers from curse of dimensionality

to understand deep learning this setting is therefore useless

 make a good structural assumption on f

80 / 101

hierarchical structure

Important: Only few objects are combined on deeper
abstraction level

few letters in one word
few words in one sentence

81 / 101

function class
We assume that

f = gq ◦ . . . ◦ g0

with
gi : Rdi → Rdi+1 .
each of the di+1 components of gi is βi -smooth and depends
only on ti variables
ti can be much smaller than di
effective smoothness

β∗
i := βi

q∏
`=i+1

(β` ∧ 1).

we show that the rate depends on the pairs

(ti , β
∗
i), i = 0, . . . , q.

similar conditions have been proposed by Horowitz & Mammen
(2007), Kohler & Kryzak (2017), Bauer & Kohler (2017),
Kohler & Langer (2018)

82 / 101

example

f0(x1, x2, x3) = g11

(
g01(x3), g02(x2)

)

f0 = g1 ◦ g0

d0 = 3, t0 = 1, d1 = t1 = 2, d2 = 1

83 / 101

main result
Theorem: If

(i) depth � log n

(ii) width ≥ network sparsity � maxi=0,...,q n
ti

2β∗
i

+ti log n

Then, for any network reconstruction method f̂n,

prediction error � φn + ∆n

(up to log n-factors) with

∆n := E
[1

n

n∑
i=1

(Yi − f̂n(Xi))2 − inf
f ∈F(L,p,s)

1

n

n∑
i=1

(Yi − f (Xi))2
]

and

φn := max
i=0,...,q

n
− 2β∗i

2β∗
i

+ti .

84 / 101

consequences

empirical risk minimizer is optimal in this class

fitted neural networks are high-dimensional (no upper bound
on the width)

network sparsity induces regularization

the assumption that depth � log n appears naturally

in particular the depth scales with the sample size

important for statistical performance is not the size of
the network but the amount of regularization

85 / 101

consequences (ctd.)

paradox:

good rate for all smoothness indices

existing piecewise linear methods only give good rates up to
smoothness two

Here the non-linearity of the function class helps

 non-linearity is essential!!!

86 / 101

additive models

functions are of the form

f (x1, . . . , xd) = f1(x1) + . . .+ fd(xd)

fi are β-smooth

f = g1 ◦ g0 with

g0(x) = (f1(x1), . . . , fd(xd))> and g1(y) =
d∑

j=1

yj

 d0 = d , t0 = 1, d1 = t1 = d , d2 = 1

rate achieved by a neural network

R(f̂n, f0) . n−
2β

2β+1 log3 n + ∆(f̂n, f0).

87 / 101

on the proof

oracle inequality (roughly)

R(f̂ , f) . inf
f ∗∈F(L,p,s)

∥∥f ∗ − f
∥∥2

∞ +
logNn

n
.

logNn denotes the covering entropy
shows the trade-off between approximation and model size

for networks we obtain a bound of the type

logNn . sL log(n)

 trade-off between approximation and network sparsity

88 / 101

lower bounds on the network sparsity

the convergence theorem implies a deterministic lower bound on
the network sparsity required to approximate β-smooth functions

on [0, 1]d

Result:

if for ε > 0,

s .
ε−d/β

L log(1/ε)

then

sup
f0 is β−Hölder

inf
f a s−sparse network

‖f − f0‖∞ ≥ ε.

has been proved via a different technique in Bölcskei et al. ’17

89 / 101

sparsely connected networks

Network sparsity is crucial in the proof but classical deep learning
produces dense networks. Recently many new methods have been

proposed generating sparsely connected networks.

sparsifying as post-processing step compression

starting with sparse network topology

evolutionary methods inspired by human brain

90 / 101

other statistical results

piecewise smooth functions, Imaizumi and Fukumizu ’18

binary classification with hinge loss, Kim, Ohn, Kim ’18

causal models, Farell, Liang, Misra ’18

deep Q-learning, Fan et al. ’20

and others ...

91 / 101

suboptimality of wavelet estimators

f (x) = h(x1 + . . .+ xd)

for some α-smooth function h

Rate for DNNs . n−α/(2α+1) (up to logarithmic factors)

Rate for best wavelet thresholding estimator & n−α/(2α+d)

Reason: Low-dimensional structure does not affect the decay
of the wavelet coefficients

92 / 101

double descent and implicit regularization

overparametrization generalizes well implicit regularization

93 / 101

overfitting

training error = 0 implies that ∆n = 0

∆n does not fully characterize the statistical properties
anymore

because of implicit regularization, SGD will pick interpolant
with good statistical properties

can implicit regularization avoid sparsity?

we conjecture the answer is no for the regression problem!

94 / 101

interpolation properties

consider continuous activation function that is not a
polynomial

given data (Xk ,Yk) ∈ Rd × R with distinct design vectors Xk

shallow networks: one can perfectly interpolate n data points
with n units in the hidden layer

related to the universal approximation theorem (therefore
same condition appears)

95 / 101

theory for vanishing training error

smooth activation function

Du et al. ’18 consider highly over-parametrized setting

number of units in each layer has to be of some (unspecified
?) polynomial order in the sample size

setup is regression with least-squares loss

show that gradient descent with randomly initialization
converges to zero training error

ReLU networks

Allen-Zhu et al. ’18 shows a similar result

one assumptions is that the network width scales at least with
the 30-th power of the sample size

96 / 101

does data interpolation contradict statistical optimality?

Source: Belkin, Rakhlin, Tsybakov, 2018

in principle it is possible to interpolate and to denoise
simultaneously

97 / 101

more details

we can show that for a simplified model and properly chosen
learning rate, SGD converges to natural cubic spline interpolant

 inconsistent estimator

98 / 101

main idea

A shallow network (L = 1) can be written as

x 7→
m∑
j=1

aj(bjx − cj)+, aj , bj , cj ∈ R.

Taylor expansion in one dimension

g(x) = g(0) + xg ′(0) +

∫
g ′′(u)(x − u)+du

If, say g(0) = g ′(0) = 0, we have that approximately

g(x) ≈ 1

m

m∑
j=1

g ′′
(j

m

)(
x − j

m

)
+
.

99 / 101

denoising vs. interpolation

implicit regularization is not sufficient to do denoising

it still works in practice because standard datasets have a lot
of structure in common (classification with few misclassified
data points)

All statements that start with ”In deep learning . . . ” are wrong,
what matters is the structure of the data. To describe for which

data structures such claims are true is a major challenge for
research in statistics.

100 / 101

outlook

deep networks are an exciting field with many open
problems

new phenomena, . . .

network types: CNNs, RNNs, autoencoders, . . .

generative adversarial networks (GANs)

Thank you for your attention!

101 / 101

