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Mijnheer de Rector Magnificus, zeer gewaardeerde toehoorders, dear 
colleagues and guests, 
 
machine learning and in particular the search for a theory of machine learning 
are currently considered as one of the biggest trends in science. In my talk, I will 
survey the state of the art and describe the challenges that we face in the 
current development of a mathematical foundation of machine learning. But 
before I come to that, I want to go back to the origins of mathematics to 
highlight why we need mathematics and theoretical foundations. 
 
One of the beginnings of mathematics is the Babylonian period (around 1700 
BC). Driven by real-world problems, a lot of mathematical formulae were found 
during this time. However, there was no concept of a mathematical proof yet on 
how to relate and derive results from each other. Essentially, Babylonian 
mathematics is a pile of disconnected formulae. Some results are only 
approximately correct, for instance, the number pi is set to 3. 
 
In the old testament there is this story about the tower of Babel. The story is 
that people wanted to build a tower to the sky. During the construction work, 
they started to talk in different languages leading to an enormous confusion and 
because of this they had to give up and the tower was never completed. Maybe 
this story can also be viewed as a metaphor for the less rigorous scientific style 
during the Babylonian period. If science only creates a pile of disconnected 
results, without a common structure such as a proper scientific reasoning, then 
different terminologies, different scientific languages will emerge and errors are 
introduced that are hard to detect and to get rid of, leading to considerable 
confusion and potentially causing the collapse of a field.  
 
The proper way to structure mathematics -as it is done until today- was 
subsequently developed during the ancient Greek period. One of the important 
inventions is that mathematical objects get rigorous definitions. Instead of 
disconnected results, mathematical statements  are connected by logical 
arguments, more advanced results being derived from simpler statements. We 
can think of the structure of modern mathematics as a reversed tower where 
we start with the top representing the simplest possible statements that cannot 
be reduced any further; axioms, in the mathematical language. From the axioms, 
we then derive subsequently more and more complex statements until we 
arrive at the mathematics that can be used to solve complex real-world 
problems.  
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With my research interests, I sit somewhere in the middle of this tower, well 
separated from the applications. One might still call it the ivory tower of science, 
where more abstract mathematical theory is developed. Although the ivory 
tower of science has a negative connotation it fulfils an important role namely 
to provide a high level understanding that can be subsequently used to design 
methods to tackle real world problems.  
 
 

                       
 
                    xkcd.com                                                                                                  [2], page xi 
 
Figure 1: A cartoon on machine learning and a small dictionary from a standard statistics textbook translating 
between computer science and statistics terminology. 

 
1.Background 
 
Let me now discuss the current state of machine learning. Nowadays most 
scientific disciplines are quantitative and draw conclusions from data. To deal 
with the enormous amount of available data and all the new data structures, 
various new data analysis tools have been proposed. Machine learning denotes 
a number of methods that have been derived to analyze large dataset with a 
complicated latent structure. These methods are designed based on intuition, 
imitating processes in nature and by empirical search over many possible 
configurations. Most of the newly developed data analysis tools  are essentially 
just combinations of complicated formulae or algorithms. This is also what is 
highlighted in the cartoon above. We often do not understand how these 
methods work and why they work. Most experts would probably agree that at 
this moment machine learning rather resembles the Babylonian mathematics.  
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And similar as in the metaphor with the tower of Babel, that I was alluding to 
earlier, we speak different languages. Different scientific communities have 
developed their own languages, their own scientific terminologies. Although we 
all work on the same problems we have trouble understanding researchers from 
other scientific communities. As an example, the small dictionary in Figure 1, 
taken from a standard statistics textbook, shows that even the most elementary 
scientific terms are denoted differently by different communities or the same 
word (for instance hypothesis) can have different meanings. Having different 
languages obviously causes considerable confusion and contributes to the fact 
that machine learning -which is mostly formulated in computer science 
terminology - is an extremely chaotic field. Another factor that makes machine 
learning very hard to oversee is that it is so rapidly growing, with tens of 
thousands of articles being uploaded on the internet every year. Most of the 
claims in these preprints are never checked by a proper scientific peer review 
process. The major hope is that a mathematical theory would unify different 
approaches reducing methods to key concepts and presenting the whole field in 
a coherent way. Moreover, it should lead to a more high-level understanding on 
how and why these methods work and provide a common ground on which we 
can compare different procedures theoretically. 
 
 
2. Prediction 
 
Machine learning is an umbrella term for a collection of methods that have been 
developed by computer scientists and that all have one goal: to make 
predictions. Prediction essentially means that we have to make a guess. To come 
up with such a guess is exactly what machine learning can do. These methods 
are often extremely complex with many  parameters and hyperparameters and 
perform surprisingly well if enough data are available. Machine learning is now 
implemented for a variety of complex tasks that all can be cast into a prediction 
problem. To mention a few examples, this includes autonomous systems such 
as self-driving cars, speech recognition, machine translation, game playing and 
many others. Machine learning has therefore many relevant applications and if 
we think of mathematics as a reversed tower, it can be located at the upper end 
of the mathematics tower. But - as I mentioned before - it lacks the 
mathematical foundation. In my research, I want to fill the gap in the theory that 
is closest to my previous expertise.  My approach is to study machine learning 
from a more abstract point of view by interpreting machine learning methods 
as statistical methods. By doing so, we can build on many powerful results from 
mathematical statistics for a theoretical analysis.  
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Figure 2: Illustration of the mathematical formulation underlying object detection on images. The aim of a 
machine learning procedure is to recover the unknown function f. Images taken from @teenybiscuit 

 
What is now the mathematical problem that I then want to solve? To explain 
the idea, let us consider object detection of images. We want to train a machine 
to see. To see as the human eye can see things. This means if we give an image 
to a machine, it should be able to recognize the object on this image. We can 
simplify that if we give a machine images of two objects only, say muffins and 
chihuahuas, which look surprisingly similar. For humans this is very simple - if 
we look at the images in Figure 2, we immediately know which images display 
chihuahuas and which images display muffins. But for a computer to see what 
is on an image is an extremely hard problem and only because of machine 
learning there has been a lot of progress recently. In mathematical terms, we 
can state the problem as follows. On a computer a colored pixel is just a number 
and therefore an image is just a collection of numbers. We can now suppose 
that there exists a function - that is unknown to us - such that whenever we stick 
all the pixel values in it, it will return the true label- here muffin or chihuahua 
(see illustration in Figure 2).  
 
If we would know the function, we could write a computer program and running 
this program the computer could perfectly distinguish these two objects. Any 
method that teaches the computer to recognize objects on images needs to 
reconstruct the function f from data. To illustrate the problem, suppose that all 
these pictures would consist of one pixel only. The unknown function f would 
map then one pixel value to the label. Suppose that small pixel values are 
chihuahuas and large pixel values are muffins (see Figure 3 for an illustration).  
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Figure 3: An example of a unknown function f that maps pixel values into labels (top). Correctly labeled 
training data correspond to points on this function. This means that in practice we know the function f only 
at some points.  

 
 
The thing is that we do not know this function and all what we have are a few 
examples. This means, in practice we know the function values at some points. 
The problem is now that if someone gives us a new image for which the label is 
unknown. Then, we have to come up with a guess what the label is. This means 
we need to make a prediction of the function value at that point.  
 

 
 
Figure 4: The prediction problem is to predict the label corresponding to a newly observed pixel value (black 
triangle).  

 
Suppose we get to see the new pixel value in Figure 4. As there are examples in 
our dataset with slightly lower and a slightly larger pixel value which all resulted 
in a chihuahua, it is clear that the best guess would be to say that the 
corresponding label is also a chihuahua.  
 
 

 
 
Figure 5: A pixel value that is hard to classify.  
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But if we observe a new pixel value in the setup of Figure 5, the situation is less 
clear. Because there is a chihuahua image with a very similar pixel value we 
would say this is a chihuahua. But here we make a mistake because if we 
compare it to the true function f displayed in Figure 3, it displays in fact a muffin. 
From this example, one can see that it is particularly hard to come up with a 
good guess in regions where the function changes. It is also clear that we have 
to make mistakes because there is just not enough information in the available 
data. If we have more data though, we have more information about the 
unknown function and will make therefore less errors. For instance, for the same 
new pixel value  as in Figure 5, we would have it correctly classified if we would 
have had much more examples of correctly classified images (Figure 6). 
 

 
 
Figure 6: Same as Figure 5 but with more test images. Based on this data, any ad hoc prediction rule would 
predict that the label of the new pixel value (black triangle) would be muffin. This shows that the availability 
of more labeled images should lead to less mistakes of the method. 

 
 
 
 
 
 
 
 
 
 
 
One should also say that of course nobody is interested in distinguishing muffins 
from chihuahuas. As I mentioned before there are many highly relevant 
applications and for the image detection problem, there are numerous medical 
applications such as for instance automatic detection of cancer cells. Also for 
the self-driving car, object recognition is a crucial element as the car has to know 
what the objects are that surrounds it. As with any tool, one can of course also 
abuse it and there are also applications that are ethically problematic. 
Obviously, tracking and automatic surveillance of citizens is of course highly 
problematic. 

The mathematical problem that we ask is the following. Given that we have n 
examples (labeled images), what is the expected error that a given machine 
learning method will make. What we are mostly interested in the dependence 
of the error on the number of data points. We have just seen that more data 
means more information and should result in fewer errors. What I work on is 
to find the speed at which this error decreases as the sample size becomes 
large. If we can establish such a result, we have some theoretical guarantees 
for the performance of the considered method. 
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Figure 7: Poster for a talk on deep networks at the University of Darmstadt. On the left side, there is an artist 
impression of a deep network. Deep networks have, however, nothing to do with fishing. Instead they are 
inspired by the human brain.  

 
3. Deep Networks 
 
As mentioned before machine learning is a collection of many methods. The 
currently most important ones relate to so called deep networks. Deep 
networks are inspired by imitating the brain. Human brains are extremely good 
in distinguishing objects on images. It is natural that by building a method that 
has an underlying structure inspired by the brain and that learns to adapt all the 
free parameters in a similar way as a child learns that this machine will then also 
perform as good as the human brain. 
  

                            
 
Figure 8: Graph representation of a neural network and interpretation as a black box method. 

 
Deep networks are mathematical functions that can be represented by a graph, 
see Figure 8. In this graph representation we see the similarity with the brain – 
we see neurons and connections between neurons. In the deep network graph 
representation, the nodes are arranged in layers where every of these nodes 
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stands for a simple mathematical operation. A deep network just means that a 
neural network with many of these layers are used. A deeper network can 
compute more complex functions. On the contrary, the width of the network 
describes how many of the computational units are in one of the layers and it 
roughly means how much the network can memorize. As in the human brain 
there are many free parameters that are learned once some examples are 
provided. This is also called deep learning. 
 
The network drawn in Figure 8 only has a few neurons, but modern network 
architectures can have millions of neurons and free parameters. After the 
network is adjusted to the test images for which we know the labels, all these 
millions of parameters are assigned to some values. In contrast to classical 
statistical methods where the parameters have an interpretations as mean, 
variance or regression coefficient, these millions of numbers have no meaning 
to us, we do not know why they are assigned to these values. It just happens. 
Because we understand so little about the role of the parameters deep learning 
is commonly referred to as a black box method. 
 
The black box is often highlighted in the extensive public media news coverage 
about machine learning, see Figure 8. Then it is said that deep networks are 
scary because we build black box machines that we do not understand anymore 
ourselves. Although I agree in principle, the word black box is slightly 
exaggerating because we can look into the system, we see all these numbers. 
The problem is that they do not have any meaning to us.  It is maybe better to 
compare them to a Dutch croquet. As deep networks, Dutch croquet are great 
and nobody seems to know what is inside. If you want to know what a croquet 
consist of, you can open them and look inside. It is therefore not a black box. 
But opening doesn't help because if one looks inside, the filling is something that 
is very hard to tell what it is and also real Dutch people do not really know. 
 
When I started to think about a theoretical foundation some years ago, there 
was a general belief that modern machine learning is too complex that one can 
still prove theorems. One argument is that in order to understand the outcome 
of such a Dutch croquette method, you first need to understand what all these 
millions of individual parameters mean and which values they are assigned to 
for a given dataset. If you do not understand the complex interior behavior, 
nothing can be said about the theoretical properties of the outcome.  
 
This seems to be a very logical argumentation, but it is not true. Here the 
translation into a statistics problem becomes crucial since there is some 
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machinery in theoretical statistics that one can use and that can lead to 
theoretical bounds on the error rates of what we have identified as a croquette 
method. To apply this machinery, instead of a full understanding of what 
happens in the interior, one only needs to know two things. The first one is that 
there should be one parameter assignment that gives a good outcome. This part 
of the proof is completely independent of the data. Secondly, one needs to know 
something about the space of functions that can be generated by deep network 
functions. Both of these properties are not easy to show but they still can be 
derived for deep networks. 
 
What can we now prove about deep networks? Actually we can give a rigorous 
prove that deep neural networks can have the smallest possible error rate that 
is in an information theoretic sense achievable by any method. To show you how 
such a mathematical theorem looks like, the full statement is reproduced below. 
For more information we refer to the article [1]. 
 

 
 
 
Something that is also hidden in this statement is that deep networks perform 
particularly well if the underlying relationship has some hierarchical structure. 
What do we mean with that? This is best explained with a heuristic. Text has for 
instance a hierarchical structure. To generate text, we can first generate letters, 
then we combine letters into words, then words into sentences and so on. With 
this example one can well see how an object decomposes into several 
abstraction layers. The visual cortex in the human brain works in a very similar 
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way by extracting more and more abstract information before we finally know 
what we see. Such composition structures occur everywhere and seem also to 
be present in the cases where deep networks outperform other methods.   
 
What is maybe even more interesting is that we can give a mathematical proof 
which shows that so called wavelet methods – which are typically performing 
very well – will have a much larger error than deep networks under such a 
hierarchical composition structure.  
 
These results are not the end of the story. As some restrictive assumptions are 
needed, it is rather a starting point and I hope to extend the theory with my 
group in Twente over the coming years.  
 
4. Challenges for a theory of machine learning 
 
At the end of my talk, I want to outline some challenges that have to be 
addressed by any serious attempt to build an exhaustive theory of machine 
learning.  
 

 
 
Figure 9: Classical bias/variance trade-off (left) and double descent phenomenon (right). 

 
One thing that fascinates me about this field is that completely new phenomena 
are observed empirically that contradict our classical understanding. For 
instance, something that we cover in all statistics courses is the so called bias-
variance trade-off. This says that if one plots the performance of a method in 
dependence on the number of parameters, we obtain a curve that looks a bit 
like a “U” according to the classical theory. Methods with too few parameters 
are not flexible enough and lead to large error rates of the methods. Increasing 
the number of parameters improves the method first. But at some point the 
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method becomes worse again and as we add additional parameters the error 
explodes. This yields then this U curve and one conclusion from that is that too 
many parameters lead to poor performance. This is how we teach the bias-
variance trade-off and how it is explained in the textbooks. 
 
For machine learning method, a new phenomenon occurs. For extremely large 
number of parameters, the error decreases again contradicting our intuition. 
Figure 9 shows an example of this behavior. On the left side of the plot, we 
recover this U-shaped curve, but then instead of going up, as predicted by the 
classical theory, the performance improves again. When the first articles on the 
double descent phenomenon appeared a year ago, the setups were quite 
artificial. During this summer, the community met during a two month meeting 
in Berkeley and we had a lot of intense discussion. My point was that this 
phenomenon is very specific and the authors argued that it occurs in much more 
generality. At some point we agreed on a setting where they believed double 
descent occurs and I was convinced the phenomenon will not be present. We 
then run a simulation study and the plot on the right of Figure 9 is what we got. 
It clearly shows the double descent and thus, I was completely wrong. Although 
I still do not have a good intuition yet I am now convinced that the double-
descent is indeed a much more general phenomenon. 
 
This new regime is an instance for a phenomenon that challenges the classical 
statistical theory. Because of such new phenomena, one might be tempted to 
compare the current situation in machine learning with physics at the beginning 
of the 20th century. This was a period where several new phenomena were 
observed in experiments that could not be explained anymore by classical 
mechanics and finally led to a much more profound understanding of the 
physical world.  
 
As explained before, for the results so far, we can make a mathematical 
statement about the outcome without understanding of what happens in the 
deep network. To give an explanation of the output of a machine learning 
method, we need, however, to be able to say more about what happens in the 
interior. The European data protection guideline ensures that everyone has the 
"right to explanation". This means that if a machine learning method is used to 
determine whether someone goes to jail or not or to determine the credit score 
of a customer, this customer has the right to know how the machine came to 
the conclusion. This makes many powerful machine learning methods such as 
deep networks useless because we do not know how they come to their 
conclusion. There is a conjecture that there could be a trade-off between 
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interpretability and performance of a method. This conjecture states that the 
output of very accurate methods are hard to interpret and methods that allow 
for better interpretation necessarily have to give up a bit on performance. To 
prove or disprove such a conjecture requires of course that we can formalize 
what interpretability means in mathematical terms. This seems to be already a 
hard problem.   
 
Another challenge is to develop a mathematical theory of human learning. I have 
mentioned before that deep networks are inspired by the brain and deep 
learning tries to mimic the way a brain learns. Although deep networks and 
brains differ in important aspects there is still the hope that a theoretical 
foundation of deep learning translates into a mathematical theory of the human 
brain with the potential to lead to a more profound understanding of 
psychological phenomena. 
 
One of the biggest challenges is to predict the development of machine learning 
over the coming years. In 2019, we live in a world were machine learning is 
believed to have unlimited potential, were countries and companies invest 
billions into its developments and were everyone is driven by the fear of missing 
out what is believed to be a technological revolution. At the moment everyone 
seems to be euphoric. I think that there are many warning signs that are 
overlooked and that lead to the fact that I am more pessimistic. 
 
Historically, there have been already two artificial intelligence hypes in the past, 
in the 50ies/60ies and in the 80ies. Both of them started with some 
breakthroughs and ended because of a large gap between the outrageous 
expectations concerning the development of the field and the much more 
modest real progress.  
Even the highly tuned, state of the art machine learning procedures have many 
drawbacks, which limit their applicability. Known issues are that these methods 
are very instable and easy to fool. For instance they perform typically poorly 
under a slight change of the underlying scenario, a problem that could not be 
resolved yet, despite tremendous efforts. If a method cannot cope with changes 
in the input, this can have severe effects. The financial crisis ten years ago 
brought the world economy close to a collapse because major banks applied 
mathematical formulae for asset pricing which did not work anymore under the 
scenario of falling house prices. Since machine learning performs poorly if a new 
situation arises, there is the real danger that these methods would also fail 
spectacularly under a similar change of the underlying scenario.  
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After the financial crisis, mathematics was criticized for inventing all these new 
financial products that were so complicated that no one would understand them 
anymore, [3]. As a consequence, financial mathematics experienced a sharp 
decline. Machine learning is even more extreme as we understand less.  As 
researchers working in this field, we have the duty to mention the risks. This 
year, I was invited to participate in the advisory board for the Dutch AI agenda, 
where a lot of expertise was gathered. During the discussions, I pushed for more 
emphasis on the risks and warning signs. The Dutch AI agenda will be released 
soon, but the latest version that I have seen is, does unfortunately not contain 
anything on this and sketches a future that I believe is far too optimistic. 
 
So far I have been working on results that show that in certain scenarios deep 
networks are in a sense optimal. One of the main challenges for my future 
research is to find a more complete theoretical description of the strength and 
weaknesses of these methods. For that one needs of course to prove theorems 
in cases where deep networks work but also for scenarios where deep networks 
fail. To show when a statistical method does not work is mathematically even 
more demanding. It is worth mentioning that the first neural network hype in 
the 50ies/60ies ended because of a negative mathematical result, which showed 
that an important function was not representable by the back then considered 
network structures. This shows again the importance which mathematics plays 
in this field. 
 
5. Conclusions 
 
For the next years, I plan to continue to work along these challenges. The math 
department at the University of Twente is a perfect environment to conduct this 
research and it is a privilege to work here. Among others, there are already 
strong groups in optimization and computer science on the campus providing a 
perfect academic embedding of my research. With my research area, I hope to 
bring in something new and to contribute to the flourishing of the university. In 
the first months after my appointment, we have already started to revive the 
statistics group and to contribute to the statistics education on the campus.  
 
As it is common for such an inaugural speech, I would like to thank the people 
who have supported me throughout my professional life. First and most 
importantly, there is my wife Maria and our families – some of them living not 
far from here. I also want to thank the math department and the faculty in 
particular the head of our department Stephan van Gils and our dean Joost Kok 
for investing a lot of their time and energy in the new statistics group. I owe a 
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lot of thanks to my many collaborators as well as all my current and previous 
colleagues. In particular, I want to thank my PhD advisor and mentor Axel Munk 
who introduced me to mathematical statistics during my undergraduate studies. 
Finally, I have to thank the statistics community in the Netherlands. Instead of 
competing, we closely collaborate via many joint initiatives. This is what makes 
us strong and also attracts many foreigners - such as myself – to work in the 
Netherlands and to join the community.  
 
One of the main points in my talk was to compare machine learning methods to 
Dutch croquettes. But then, I talked only about demystifying machine learning 
methods and never mentioned what we know about the content of a croquette. 
I have spent hours trying to unravel this mystery. There is a book on croquettes 
but it is not very helpful. In fact, it is incomplete and got published only after the 
author -who tried to finish it for many years – passed away. Even Wikipedia only 
provides a very vague and lengthy description. We know very little about the 
functioning of deep networks and machine learning. But it seems that we even 
know less about croquettes.  
 
Thank you very much for your attention. Ik heb gezegd. 
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