Van Dantzig Seminar

nationwide series of lectures in statistics

Home      David van Dantzig      About the seminar      Upcoming seminars      Previous seminars      Slides      Contact    

Van Dantzig Seminar: 24 June 2016

Programme: (click names or scroll down for titles and abstracts)

14:00 - 14:05 Opening
14:05 - 15:05 Axel Munk (Göttingen University and Max Planck Institute for Biophysical Chemistry, Göttingen)
15:05 - 15:25 Break
15:25 - 16:25 Gilles Blanchard (University of Potsdam)
16:30 - 17:30 Reception
Location: University of Amsterdam, Science Park 904, Room C1.112 (Directions)

Titles and abstracts

  • Axel Munk

    Nanoscale Statistics

    Conventional light microscopes have been used for centuries for the study of small length scales down to approximately 250 nm. Images from such a microscope are blurred and noisy, and the measurement error in such images can often be well approximated by Gaussian or Poisson noise. In the past, this approximation has been the focus of a multitude of deconvolution techniques in imaging. However, conventional microscopes have an intrinsic physical limit of resolution. Although this limit remained unchallenged for a century, it was broken for the first time in the 1990s with the advent of modern superresolution fluorescence microscopy techniques. Since then, superresolution fluorescence microscopy has become an indispensable tool for studying the structure and dynamics of living organisms. Current experimental advances go to the physical limits of imaging, where discrete quantum effects are predominant. Consequently, this technique is inherently of a non-Gaussian statistical nature, and we argue that recent technological progress also challenges the long-standing Poisson assumption. Thus, analysis and exploitation of the discrete physical mechanisms of fluorescent molecules and light, as well as their distributions in time and space, have become necessary to achieve the highest resolution possible. We will discuss some modern fluorescence microscopy techniques from a statistical modeling and analysis perspective. Several statistical imaging issues are discussed in more detail, including variational multiscale methods for stimulated emission depletion (STED) microscopy, and drift correction for single marker switching (SMS) microscopy. We address then the issue of providing information on number and size of molecules in a specimen from these techniques with statistical evidence. To this end, we develop a prototypical model for fluorophore dynamics.

    We illustrate that such methods benefit from advances in large-scale computing, for example, from recent tools from convex optimization. We argue that in the future, even higher resolutions will require more sophisticated models, and further development of nanoscale statistical evaluation methods that delve further into sub-Poissonian worlds becomes indispensable.

  • Gilles Blanchard

    Spectral regularization methods for statistical inverse learning problems

    We consider a statistical inverse learning (or inverse regression) problem, where we observe the image of a function \(f\) through a linear operator \(A\) at i.i.d. random design points \(X_i\), superposed with an additive noise.

    This setting has a long history in statistics: existing references generally assume observation point designs to be either deterministic regular, or random with a sampling distribution which is known or comparable to Lebesgue; and consider regularity of the target function in terms of usual differentiability properties. More recently, in particular in the statistical learning literature, emphasis has been put on obtaining distribution-free results that can apply to a broader class of problems. From this "learning" point of view, we stress that the sampling distribution of the design points can be very general and is in particular unknown to the statistician.

    We will present some results concerning optimal convergence rates that extend and complete previously known ones. In particular, we will consider the optimality, from a statistical point of view, of a general class of linear spectral methods over regularity classes known as source conditions; this necessitates to take into account carefully the discretization error resulting from sampling.

    Download the slides

Supported by

BTK, Amsterdam 2016