Compressed sensing, sparsity and p-values

Sara van de Geer

April 16, 2015
Basis Pursuit
[Chen, Donoho and Saunders (1998)]

\(X \): given \(n \times p \) (sensing) matrix and

\(f^0 \): given \(n \)-vector of measurements.

We know \(f^0 = X\beta^0 \).

We want to recover \(\beta^0 \in \mathbb{R}^p \).

There are \(n \) equations and \(p \) unknowns.

High-dimensional case: \(p \gg n \).

Notation The \(\ell_1 \)-norm is

\[
\| \beta \|_1 := \sum_{j=1}^{p} |\beta_j|, \ \beta \in \mathbb{R}^p.
\]

Basis pursuit solution \(\beta^* := \text{arg min}\{ \| \beta \|_1 : X\beta = f^0 \} \).
Let $S \subset \{1, \ldots, p\}$.

Notation

\[\beta_S := \{\beta_j | j \in S\}, \quad \beta_-S := \beta_{S^c} = \beta - \beta_S. \]

\[
\begin{pmatrix}
\beta_1 \\
\vdots \\
0 \\
\beta_j \\
\vdots \\
0 \\
\end{pmatrix}
\begin{array}{ccc}
\leftarrow 1 \in S \\
\vdots \\
\leftarrow j - 1 \notin S, \ \beta_-S = \\
\leftarrow j \in S \\
\vdots \\
\leftarrow p \notin S
\end{array}
\begin{pmatrix}
0 \\
\vdots \\
\beta_{j-1} \\
0 \\
\beta_p
\end{pmatrix}
\]

Definition

The matrix X satisfies the **null-space property** at S if for all $\beta \neq 0$ in $\text{null}(X)$ it holds that $\|\beta_-S\|_1 > \|\beta_S\|_1$.
Basis pursuit solution

\[\beta^* := \text{arg min}\{\|\beta\|_1 : X\beta = f^0\} \].

Let \(S_0 := \{j : \beta_j^0 \neq 0\} \) be the active set of \(\beta^0 \).

Loose definition The vector \(\beta^0 \) is called sparse if \(S_0 \) is small.

Theorem

Suppose \(X \) has the null-space property at \(S_0 \). Then we have exact recovery:

\[\beta^* = \beta^0. \]
Proof. Suppose $\beta^* \neq \beta^0$. Since $X\beta^* = X\beta^0 = f^0$ we have $\beta^* - \beta^0 \in \text{null}(X)$. By the null-space property

$$\|\beta^*_{S_0}\|_1 > \|\beta^*_S - \beta^0\|_1.$$

Since β^* minimizes $\| \cdot \|_1$ we have

$$\|\beta^*_S\|_1 \leq \|\beta^0\|_1.$$

We can decompose the ℓ_1-norm as

$$\|\beta^*\|_1 = \|\beta^*_{S_0}\|_1 + \|\beta^*_{-S_0}\|_1.$$

Hence

$$\|\beta^*_{S_0}\|_1 + \|\beta^*_{-S_0}\|_1 \leq \|\beta^0\|_1.$$

But then by the triangle inequality

$$\|\beta^*_{-S_0}\|_1 \leq \|\beta^*_{S_0} - \beta^0\|_1.$$

Thus we arrived at a contradiction. \(\square\)
Definition [vdG (2007)]

The **compatibility constant** for the set S and the stretching constant $L > 0$ is

$$
\hat{\phi}^2(L, S) = \min \left\{ \frac{|S|}{n} \| X_{\beta_S} - X_{\beta_S} \|_2^2 : \| \beta_{-S} \|_1 \leq L, \| \beta_S \|_1 = 1 \right\}.
$$

We have:

X satisfies the null-space property at $S \Leftrightarrow \hat{\phi}(1, S) > 0.$
The compatibility constant $\hat{\phi}(1, S)$ for the case $S = \{1\}$.
Regularized formulation

$$\beta_\lambda := \arg \min \left\{ \| X \beta - f^0 \|^2_2 / n + 2\lambda \| \beta \|_1 \right\}.$$

Lemma

We have

$$\| X(\beta_\lambda - \beta^0) \|^2_2 / n \leq \frac{\lambda^2 |S_0|}{\hat{\phi}^2(1, S_0)}.$$
Adding noise

Let

\[Y = f^0 + \epsilon \]

with \(\epsilon \) unobservable noise.

Let \(\beta^0 \) be a solution of \(f^0 = X\beta^0 \).

Definition The **Lasso** is

\[\hat{\beta} := \hat{\beta}_\lambda := \arg\min_{\beta} \left\{ \| Y - X\beta \|_2^2/n + 2\lambda\|\beta\|_1 \right\}. \]
Theorem (prediction error of the Lasso) Let

\[\lambda_\epsilon \geq \| X^T \epsilon \|_\infty / n. \]

Take \(\lambda > \lambda_\epsilon \). Then for

\[\underline{\lambda} := \lambda - \lambda_\epsilon, \quad \bar{\lambda} := \lambda + \lambda_\epsilon, \quad L := \frac{\bar{\lambda}}{\underline{\lambda}} \]

we have

\[\| X(\hat{\beta} - \beta^0) \|_2^2 / n \leq \frac{\bar{\lambda}^2 |S_0|}{\hat{\phi}^2(L, S_0)}. \]
Note 1 $\| \cdot \|_\infty$ is the dual norm of $\| \cdot \|_1$.

Note 2 Suppose $\epsilon \sim \mathcal{N}_n(0, \sigma_0^2 I)$ and $\text{diag}(X^T X)/n = I$. Then

$$\mathbb{P} \left(\| X^T \epsilon \|_\infty / n \geq \sigma_0 \sqrt{\frac{2 \log(2p/\alpha)}{n}} \right) \leq \alpha.$$

Note 3 Under compatibility conditions Lasso thus has prediction error

$$\| X(\hat{\beta} - \beta^0) \|_2^2 / n \sim \sigma_0^2 \log p \times \frac{|S_0|}{n}$$

$$= \sigma_0^2 \log p \times \frac{\text{number of active parameters}}{\text{number of observations}}.$$

= oracle inequality

= adaptation
Note 1 $\| \cdot \|_\infty$ is the dual norm of $\| \cdot \|_1$.

Note 2 Suppose $\epsilon \sim \mathcal{N}_n(0, \sigma_0^2 I)$ and $\text{diag}(X^T X)/n = I$.

Then

$$
P\left(\frac{\|X^T \epsilon\|_\infty}{n} \geq \sigma_0 \sqrt{\frac{2 \log(2p/\alpha)}{n}} \right) \leq \alpha.
$$

Note 3 Under compatibility conditions Lasso thus has prediction error

$$
\|X(\hat{\beta} - \beta^0)\|_2^2/n \sim \sigma_0^2 \log p \times \frac{|S_0|}{n}
$$

$$
= \sigma_0^2 \log p \times \frac{\text{number of active parameters}}{\text{number of observations}}.
$$

= oracle inequality

= adaptation
Note 1 \(\| \cdot \|_\infty \) is the dual norm of \(\| \cdot \|_1 \).

Note 2 Suppose \(\epsilon \sim \mathcal{N}_n(0, \sigma_0^2 I) \) and \(\text{diag}(X^T X)/n = I \).

Then
\[
P \left(\| X^T \epsilon \|_\infty / n \geq \sigma_0 \sqrt{\frac{2 \log(2p/\alpha)}{n}} \right) \leq \alpha.
\]

Note 3 Under compatibility conditions Lasso thus has prediction error
\[
\| X(\hat{\beta} - \beta^0) \|_2^2 / n \sim \sigma_0^2 \log p \times \frac{|S_0|}{n}
\]
\[
= \sigma_0^2 \log p \times \frac{\text{number of active parameters}}{\text{number of observations}}.
\]

= oracle inequality

= adaptation
What if β^0 is only approximately sparse?

Theorem (trade-off approximation error and sparsity) Let

$$\lambda_\epsilon \geq \|X^T\epsilon\|_\infty / n.$$

Take $\lambda > \lambda_\epsilon$. Then for

$$\underline{\lambda} := \lambda - \lambda_\epsilon, \quad \bar{\lambda} := \lambda + \lambda_\epsilon, \quad L := \frac{\bar{\lambda}}{\underline{\lambda}}$$

we have for all β and S

$$\|X(\hat{\beta} - \beta^0)\|_2^2 / n \leq \|X(\beta - \beta^0)\|_2^2 / n + 4\lambda \|\beta - S\|_1 + \frac{\bar{\lambda}^2 |S|}{\hat{\phi}^2(L, S)}.$$

“approximation error”

“effective sparsity”
Corollary

Let $S \subset \{1, \ldots, p\}$ be arbitrary. Let f_S be the projection of f^0 on the space spanned by $\{X_j\}_{j \in S}$. Then

$$\|X(\hat{\beta} - \beta^0)\|^2_2/n \leq \|f_S - f^0\|^2_2/n + \frac{\bar{\lambda}^2 |S|}{\hat{\phi}^2(L, S)}.$$

So

$$\|X(\hat{\beta} - \beta^0)\|^2_2/n \leq \min_S \left\{ \|f_S - f^0\|^2_2/n + \frac{\bar{\lambda}^2 |S|}{\hat{\phi}^2(L, S)} \right\}.$$
What about the ℓ_1-estimation error?

Theorem (including the ℓ_1-error) Let

$$\lambda_\varepsilon \geq \|X^T \varepsilon\|_\infty / n.$$

Take $\lambda > \lambda_\varepsilon$. Then for

$$\underline{\lambda} := \lambda - \lambda_\varepsilon, \quad \bar{\lambda} := \lambda + \lambda_\varepsilon + \delta \lambda, \quad L := \frac{\bar{\lambda}}{(1 - \delta) \lambda}$$

we have for all β and S

$$2\delta \underline{\lambda} \|\hat{\beta} - \beta\|_1 + \|X(\hat{\beta} - \beta^0)\|_2^2 / n \leq \|X(\beta - \beta^0)\|_2^2 / n + \frac{\bar{\lambda}^2 |S|}{\phi^2(L, S)} + 4\lambda \|\beta_S\|_1.$$
Corollary (weak sparsity)

Let

\[\rho_r^r := \sum_{j=1}^{p} |\beta_0^j|^r, \quad 0 < r < 1, \]

\[S_* := \{ j : |\beta_0^j| > 3\lambda \epsilon \}. \]

We have \((with \delta = 1/5, \lambda = 2\lambda \epsilon)\)

\[\|\hat{\beta} - \beta^0\|_1 \leq 2^8 \lambda_{\epsilon}^{1-r} \frac{\rho_r^r}{\hat{\phi}^2(4, S_*)}. \]

Asymptopia

Suppose \(1/\hat{\phi}^2(4, S_*) = O(1)\).

Let \(\lambda_{\epsilon} \asymp \sqrt{\log p/n}\).

When \(\rho_r^r = o((n/\log p)^{1-r/2})\) we have \(\|\hat{\beta} - \beta^0\|_1 = o_P(1)\).
Question
What is so special about the ℓ_1-norm?
Why does it lead to exact recovery and oracle inequalities?

Answer
Its decomposability:

$$\|\beta\|_1 = \|\beta_S\|_1 + \|\beta_{-S}\|_1.$$
Question
What is so special about the ℓ_1-norm?
Why does it lead to exact recovery and oracle inequalities?

Answer
Its decomposability:

$$\|\beta\|_1 = \|\beta_S\|_1 + \|\beta_{-S}\|_1.$$
Question
What is so special about the ℓ_1-norm?
Why does it lead to exact recovery and oracle inequalities?

Answer
Its decomposability:

$$\|\beta\|_1 = \|\beta_S\|_1 + \|\beta_{-S}\|_1.$$
Definition The sub-differential of $\beta \mapsto \|\beta\|_1$ is

$$\partial \|\beta\|_1 = \{ z : \|z\|_\infty = 1, \ z^T \beta = \|\beta\|_1 \}.$$
We invoke decomposability actually as the *triangle property*

\[
\max_{z \in \partial \| \beta^0 \|_1} z^T \beta \geq \| \beta - s_0 \|_1 - \| \beta s_0 \|_1.
\]
Other norms

Let Ω be a norm on \mathbb{R}^p.

Definition *The dual norm of Ω is*

$$
\Omega^*(z) := \max_{\Omega(\beta) \leq 1} z^T \beta, \ z \in \mathbb{R}^p.
$$

Definition *The sub-differential of $\beta \mapsto \Omega(\beta)$ is*

$$
\partial \Omega(\beta) := \{ z : \Omega^*(z) = 1, \ z^T \beta = \Omega(\beta) \}.
$$
Other norms

Let Ω be a norm on \mathbb{R}^p.

Definition The dual norm of Ω is

$$\Omega^*(z) := \max_{\Omega(\beta) \leq 1} z^T \beta, \ z \in \mathbb{R}^p.$$

Definition The sub-differential of $\beta \mapsto \Omega(\beta)$ is

$$\partial \Omega(\beta) := \{z : \Omega^*(z) = 1, \ z^T \beta = \Omega(\beta)\}.$$
Definition We say that Ω is weakly decomposable at β^0 if there exists semi-norms Ω^+ and Ω^- (depending on β^0) with $\Omega^-(\beta^0) = 0$ such that for all β

$$\Omega(\beta) \geq \Omega^+(\beta) + \Omega^-(\beta).$$

Definition We say that Ω satisfies the triangle property at β^0 if there exists semi-norms Ω^+ and Ω^- (depending on β^0) such that for all β

$$\max_{z_0 \in \partial \Omega(\beta^0)} z^T(\beta - \beta^0) \geq \Omega^-(\beta) - \Omega^+(\beta - \beta^0).$$
Definition We say that Ω is weakly decomposable at β^0 if there exists semi-norms Ω^+ and Ω^- (depending on β^0) with $\Omega^-(\beta^0) = 0$ such that for all β

$$\Omega(\beta) \geq \Omega^+(\beta) + \Omega^-(\beta).$$

Definition We say that Ω satisfies the triangle property at β^0 if there exists semi-norms Ω^+ and Ω^- (depending on β^0) such that for all β

$$\max_{z_0 \in \partial \Omega(\beta^0)} z^T(\beta - \beta^0) \geq \Omega^-(\beta) - \Omega^+(\beta - \beta^0).$$
Example 1: group penalty

\[\Omega(\beta) := \sum_{k=1}^{m} \| \beta_{G_k} \|_2. \]

\[\Omega^*(z) = \max_k \| z_{G_k} \|_2. \]

Let \(S_0 \subset \bigcup_{k \in T_0} G_k. \)

Then

\[\Omega^+(\beta) = \sum_{k \in T_0} \| \beta_{G_k} \|_2, \]

\[\Omega^-(\beta) = \sum_{k \notin T_0} \| \beta_{G_k} \|_2. \]
4.3. PENALTY FUNCTIONS

Figure 4.4: Unit ball of the group LASSO with groups \{1, 2\}, \{3\}

\[
\text{Z}(i,1)=\begin{cases}
2; & \text{if } |A(i,2)| \leq |A(i,3)| \land A(i,1)^2 > \frac{A(i,2)^2 + A(i,3)^2}{2} \\
3; & \text{else} \\
4; & \text{end}
\end{cases}
\]

end

\[
\text{fprintf('sum(Z==1)= %g.
'),sum(Z==1)}
\]

\[
\text{fprintf('sum(Z==2)= %g.
'),sum(Z==2)}
\]

\[
\text{fprintf('sum(Z==3)= %g.
'),sum(Z==3)}
\]

\[
\text{fprintf('sum(Z==4)= %g.
'),sum(Z==4)}
\]

for i=1:s*6

\[
\text{if Z(i,1)==1} \\
\text{&& } |A(i,1)| + |A(i,2)| + |A(i,3)| < (1+e) \\
\text{&& } |A(i,1)| + |A(i,2)| + |A(i,3)| > (1-e)
\]

\[
\text{R(i,1)=10;}
\]

\[
\text{elseif Z(i,1)==2} \\
\text{&& } \sqrt{2(A(i,1)^2 + A(i,2)^2)} + |A(i,3)| < (1+e)
\]

Unit ball of the group penalty
Norms generated from cones
Let $\mathcal{A} \subset \mathbb{R}^p_+$ be a convex cone and

$$\Omega(\beta) := \min_{a \in \mathcal{A}, \|a\|_1 = 1} \sqrt{\sum_{j=1}^p \frac{\beta_j^2}{a_j}}.$$

Then

$$\Omega^*(z) = \max_{a \in \mathcal{A}, \|a\|_1 = 1} \sqrt{\sum_{j=1}^p a_j z_j^2}.$$

Suppose $a_{S_0} \in \mathcal{A}$ for all $a \in \mathcal{A}$. Then Ω is weakly decomposable at β^0, with

$$\Omega^+(\beta) = \min_{a_{S_0} \in \mathcal{A}_{S_0}, \|a_{S_0}\|_1 = 1} \sqrt{\sum_{j \in S_0} \frac{\beta_j^2}{a_j}},$$

and

$$\Omega^-(\beta) = \min_{a_{-S_0} \in \mathcal{A}_{-S_0}, \|a_{-S_0}\|_1 = 1} \sqrt{\sum_{j \notin S_0} \frac{\beta_j^2}{a_j}}.$$
Example 2: wedge penalty

\[A := \{ a_1 \geq a_2 \geq \cdots \} \]

Then \(\Omega \) is decomposable at
\[\beta^0 = (\beta_1^0, \cdots, \beta_{s_0}^0, 0, \cdots, 0)^T. \]
Unit ball of the wedge penalty
Example 3: nuclear norm penalty
Let $\beta^0 = \text{vec}(B^0)$ and
\[\Omega(\beta) = \|B\|_{\text{nuclear}}. \]
Then
\[\Omega^*(z) = \Lambda_{\text{max}}(Z), \]
where $\Lambda_{\text{max}}^2(Z)$ is the largest eigenvalue of $Z^T Z$.
Write the SVD of B^0 as
\[B^0 = P_0 \Lambda^0 Q_0^T, \quad P_0^T P_0 = I, \quad Q_0^T Q_0 = I, \quad \Lambda^0 = \begin{pmatrix} \Lambda^0_1 & \cdots \\ \vdots \\ \Lambda^0_{s_0} \end{pmatrix}. \]
Then
\[\partial \Omega(\beta^0) = \{ Z = P_0 Q_0^T + (I - P_0 P_0^T) W (I - Q_0 Q_0^T) : \Lambda_{\text{max}}(W) \leq 1 \}. \]
We have the triangle property with
\[\Omega^+(B) = \| P_0 P_0^T B Q_0 Q_0^T \|_{\text{nuclear}}, \quad \Omega^-(B) = \|(I - P_0 P_0^T) B (I - Q_0 Q_0^T)\|_{\text{nuclear}}. \]
Definition
Suppose Ω is weakly decomposable at β^0
- or alternatively has the triangle property at β^0 -
The effective sparsity with stretching constant $L > 0$ is

$$\hat{\Gamma}(L, \beta^0) := \left(\min \left\{ \| X\beta \|_2^2 / n : \Omega^- (\beta) \leq L, \Omega^+ (\beta) = 1 \right\} \right)^{-1}$$
\[\beta^*_\Omega := \arg \min \{ \Omega(\beta) : \ X\beta = f^0 \} . \]

Lemma

Suppose \(\Omega \) is weakly decomposable at \(\beta^0 \).

If \(\Gamma(1, \beta^0) < \infty \) we have \(\beta^*_\Omega = \beta^0 \).
\[\beta_{\Omega, \lambda} := \arg \min \left\{ \| X\beta - f^0 \|^2_2 / n + 2\lambda \Omega(\beta) \right\}. \]

Lemma

Suppose \(\Omega \) is weakly decomposable at \(\beta^0 \) - or alternatively has the triangle property at \(\beta^0 \) - then

\[\| X(\beta_{\Omega, \lambda} - \beta^0) \|^2_2 / n \leq \hat{\Gamma}(1, \beta^0)^2 \lambda^2. \]
Adding noise leads the requirement \(\lambda > \Omega^*(X^T \epsilon)/n \) where \(\Omega^* \) is the dual norm of \(\Omega := \Omega^+ + \Omega^- \).

For approximately decomposable \(\beta^0 \) we have sharp oracle inequalities.

Increasing the stretching constant further leads to bounds for the \(\Omega \)-estimation error.

everything as for the Lasso
Adding noise leads the requirement $\lambda > \Omega^* (X^T \epsilon)/n$ where Ω^* is the dual norm of $\Omega := \Omega^+ + \Omega^-$.

For approximately decomposable β^0 we have sharp oracle inequalities.

Increasing the stretching constant further leads to bounds for the Ω-estimation error.

everything as for the Lasso
Adding noise leads the requirement $\lambda > \Omega_* (X^T \epsilon)/n$ where Ω_* is the dual norm of $\Omega := \Omega^+ + \Omega^-$.

For approximately decomposable β^0 we have sharp oracle inequalities. Increasing the stretching constant further leads to bounds for the Ω-estimation error.

everything as for the Lasso
Adding noise leads the requirement $\lambda > \Omega_*(X^T \epsilon)/n$ where Ω_* is the dual norm of $\Omega := \Omega^+ + \Omega^-$.

For approximately decomposable β^0 we have sharp oracle inequalities. Increasing the stretching constant further leads to bounds for the Ω-estimation error.

`everything as for the Lasso`
General loss and norms

Let $R_n(\beta), \beta \in \mathbb{R}^p$ be some (observable) empirical risk. Let $R(\beta), \beta \in \mathbb{R}^p$ be (unobservable) theoretical risk.

We assume R_n and R to be differentiable w.r.t. β. Denote their derivatives as \dot{R}_n and \dot{R}.

Ω-penalized empirical risk minimizer

$$\hat{\beta} := \arg\min \left\{ R_n(\beta) + \lambda \Omega(\beta) \right\}.$$
Two point margin condition

There is a strictly convex function G with $G(0) = 0$ and a semi-norm τ on \mathbb{R}^p such that for all β and β' we have

$$R(\beta) - R(\beta') \geq \dot{R}(\beta')^T(\beta - \beta') + G(\tau(\beta - \beta')).$$

Definition The convex conjugate of G is

$$H(v) = \sup_{u \geq 0} \left\{ uv - G(u) \right\}, \quad v \geq 0.$$

Example

$$G(u) = \frac{u^2}{2} \Rightarrow H(v) = \frac{v^2}{2}.$$
Two point margin condition

There is a strictly convex function G with $G(0) = 0$ and a semi-norm τ on \mathbb{R}^p such that for all β and β' we have

$$R(\beta) - R(\beta') \geq \dot{R}(\beta')^T(\beta - \beta') + G(\tau(\beta - \beta')).$$

Definition The convex conjugate of G is

$$H(v) = \sup_{u \geq 0} \left\{ uv - G(u) \right\}, \quad v \geq 0.$$

Example

$$G(u) = \frac{u^2}{2} \Rightarrow H(v) = \frac{v^2}{2}.$$
Definition Let τ be a semi-norm, Ω be a norm and $L > 0$ a stretching constant. Assume Ω is weakly decomposable - or has the triangle property - at β. The effective sparsity at β is

$$\Gamma_{\Omega}(L, \beta, \tau) := \left(\min \{ \tau(\beta') : \Omega^-_{\beta}(\beta') \leq L, \ \Omega^+_{\beta}(\beta') = 1 \} \right)^{-1}.$$
Let be given some “target”

\[\beta = \beta^+ + \beta^- \]

with

1. \(\Omega \) weakly decomposable - or having the triangle property - at \(\beta^+ \)
2. with \(\Omega_{\beta^+}^+(\beta^-) = 0 \).

Let

\[\Omega^+ := \Omega_{\beta^+}^+, \quad \Omega^- := \Omega_{\beta^+}^-, \quad \Omega := \Omega^+ + \Omega^- . \]

Write the dual norm of \(\Omega \) as \(\Omega^* \).
Theorem (sharp oracle inequality) Let

\[\lambda_\epsilon \geq \Omega_*(\dot{R}_n(\hat{\beta}) - \dot{R}(\hat{\beta})). \]

Take \(\lambda > \lambda_\epsilon \) and define

\[\lambda := \lambda - \lambda_\epsilon, \bar{\lambda} := \lambda + \lambda_\epsilon + \delta \lambda, \quad L := \frac{\bar{\lambda}}{(1 - \delta)\lambda}. \]

Then

\[\delta \lambda \Omega(\hat{\beta} - \beta) + R(\hat{\beta}) \leq R(\beta) + H(\bar{\lambda} \Gamma_\Omega(L, \beta, \tau)) + 2\lambda \Omega(\beta^-). \]
Example: matrix completion

Let

\[Y_i = \text{trace}(X_i^T B^0) + \epsilon_i, \quad i = 1, \ldots, n, \]

where \(X_1, \ldots, X_n \) are i.i.d. \(p \times q \) matrices with

\[\mathbb{P}(X_i = e_j e_k^T) = \frac{1}{pq} \quad (i = 1, \ldots, n). \]

Let \(\| \cdot \|_2 \) be the Frobenius norm, and

\[R_n(B) := -pq \sum_{i=1}^{n} Y_i \text{trace}(X_i^T B) / n + \frac{1}{2} \| B \|_2^2. \]

Let

\[R(B) := \mathbb{E} R_n(B) = -\text{trace}(B^T B^0) + \frac{1}{2} \| B \|_2^2 = \frac{1}{2} \| B - B^0 \|_2^2 - \frac{1}{2} \| B^0 \|_2^2. \]

Then

\[\dot{R}(B) = (B - B^0). \]
Checking the two point margin condition

We have

\[R(B) - R(B') = \frac{1}{2} \| B - B^0 \|_2^2 - \frac{1}{2} \| B' - B^0 \|_2^2 \]

\[= \frac{1}{2} \| B - B' \|_2^2 + \frac{1}{2} \| B' - B^0 \|_2^2 + \text{trace}\left((B - B')^T (B' - B^0)\right) - \frac{1}{2} \| B' - B^0 \|_2^2 \]

\[= \text{trace}\left(\dot{R}(B')^T (B - B')\right) + \frac{1}{2} \| B - B' \|_2^2. \]
So we may take
\[\tau(B) := \|B\|_2, \ G(u) = \frac{u^2}{2} \]

Hence
\[H(v) = \frac{v^2}{2}. \]

We moreover find
\[\Gamma^2(L, B, \|\cdot\|_2) \leq \text{rank}(B). \]

Let
\[W_{j,k} := \left(\sqrt{\frac{pq}{n}} \sum_{i=1}^{n} X_{i,j,k} \epsilon_i \right), \ 1 \leq j \leq p, \ 1 \leq k \leq q. \]
Theorem [Koltchinskii et al. (2011)] Let
\[\lambda_{\epsilon} \geq \Lambda_{\text{max}}(W). \]

Take \(\lambda > \lambda_{\epsilon} \) and define
\[\lambda := \lambda_{\epsilon}, \quad \bar{\lambda} := \lambda + \lambda_{\epsilon} + \delta \lambda, \quad L := \frac{\bar{\lambda}}{(1 - \delta) \lambda}. \]

Then
\[\delta \lambda \| \hat{B} - B \|_{\text{nuclear}} + \frac{1}{2} \| \hat{B} - B^0 \|_2^2 \leq \frac{1}{2} \| B - B^0 \|_2^2 + \bar{\lambda}^2 \text{rank}(B^+) + 2 \lambda \| B^- \|_{\text{nuclear}}. \]

Note Inequality for random matrix \(\sim \) \(\lambda_{\epsilon} \sim \sqrt{pq \log(pq)/n}. \)
p-values

As before we consider some empirical risk R_n. We use the one step estimator

$$\hat{b} = \hat{\beta} - \hat{\Theta}^T \hat{R}_n(\hat{\beta})$$

where $\hat{\Theta}$ is some approximation of the inverse Fisher information matrix.

Let $\hat{\mathcal{W}}$ be a diagonal matrix of weights.
We have

\[\hat{W}(\hat{b} - \beta^0) = \hat{W}(\hat{\beta} - \beta^0) - \hat{W} \hat{\Theta}^T \dot{R}_n(\hat{\beta}) \]

\[= - \hat{W} \hat{\Theta}^T \dot{R}_n(\beta^0) + \hat{W} \left(I - \hat{\Theta}^T \ddot{R}_n(\tilde{\beta}) \right) (\hat{\beta} - \beta^0) \]

Hence to show: for some surrogate inverse \(\hat{\Theta} \) and matrix of weights \(\hat{W} \):

\(\hat{W}(I - \hat{\Theta}^T \ddot{R}_n(\tilde{\beta})) \) is “small”.

In addition, we want studentization:

\[\text{diag} \left(\hat{W} \hat{\Theta}^T \text{Cov}(\dot{R}_n(\beta^0)) \hat{\Theta} \hat{W} \right) \approx I. \]
P-values using the Lasso

\[Y = X\beta^0 + \epsilon. \]

\[R_n(\beta) := \frac{1}{2n} \| Y - X\beta \|_2^2. \]

\[\dot{R}_n(\beta) = -X^T(Y - X\beta)/n, \quad \dot{R}_n(\beta^0) = -X^T\epsilon/n \]

\[\ddot{R}_n(\beta) = X^TX/n =: \hat{\Sigma}. \]

So we need a surrogate inverse for \(\hat{\Sigma} \).
Inverting a matrix Σ_0

Suppose $\Theta_0 := \Sigma_0^{-1}$ exists.
Then

$$\Theta_0 = \begin{pmatrix} \theta_0^1 & \theta_0^2 & \cdots & \theta_0^p \end{pmatrix}$$

where

$$\theta_j^0 = \frac{1}{\tau_j^2} \begin{pmatrix} -\gamma_{1,j} \\ \vdots \\ 1 \\ \vdots \\ -\gamma_{p,j} \end{pmatrix} \leftarrow j^{th} \text{ row}$$

with

$\{\gamma_{k,j}\}_{k\neq j}$: coefficients of the projection of the j^{th} variable on all others,
τ_j: the length of the residual.
\[\hat{\beta} := \arg \min_{\beta \in \mathbb{R}^p} \left\{ \| Y - X \beta \|_2 / \sqrt{n} + \lambda_0 \| \beta \|_1 \right\}. \]
The surrogate inverse

Let $\hat{\gamma}_j$ be the square-root Lasso with tuning parameter $\lambda_\#$ for the regression of X_j on X_{-j}.

Define the residuals

$$\hat{\tau}_j := \|X_j - X_{-j} \hat{\gamma}_j\|_2 / \sqrt{n} = \|X \hat{C}_j\|_2 / \sqrt{n}.$$

Let $\tilde{\tau}_j^2 := \hat{\tau}_j (\hat{\tau}_j + \lambda_\# \|\hat{\gamma}\|_1)$.

Define $\hat{\theta}_j := \hat{C}_j / \tilde{\tau}_j^2$.

Surrogate inverse of the Gram matrix $\hat{\Sigma} := X^T X / n$:

$$\hat{\Theta} := (\hat{\theta}_1, \ldots, \hat{\theta}_p)$$

Let

$$\hat{W} := \sqrt{n} \hat{\sigma} \begin{pmatrix} \hat{\tau}_1 + \lambda_\# \|\hat{\gamma}_1\|_1 \\ \vdots \\ \hat{\tau}_1 + \lambda_\# \|\hat{\gamma}_1\|_1 \end{pmatrix}$$
Then

\[\left\| \hat{W} (I - \hat{\Theta}^T \hat{\Sigma})(\hat{\beta} - \beta^0) \right\|_\infty \leq \left\| \hat{W} (I - \hat{\Theta}^T \hat{\Sigma}) \right\|_\infty \left\| \hat{\beta} - \beta^0 \right\|_1 \leq \sqrt{n} \lambda_\# \left\| \hat{\beta} - \beta^0 \right\|_1 \hat{\sigma}. \]

Moreover

\[\text{diag}(\hat{W} \hat{\Theta}^T \text{Cov}(X^T \epsilon/n) \hat{\Theta} \hat{W}) = \frac{\sigma_0^2}{\hat{\sigma}^2} I. \]
Let the \textit{de-sparsified Lasso} be the one step estimator

$$\hat{b} := \hat{\beta} + \hat{\Theta}^T X^T (Y - X \hat{\beta}) / n$$

Asymptotic linearity \textit{We have}

$$\hat{W}(\hat{b} - \beta^0) = \hat{W} \hat{\Theta}^T X^T \epsilon / n \quad + \text{rem},$$

\textit{studentized linear term}

\textit{where} \(\|\text{rem}\|_{\infty} \leq \sqrt{n} \lambda_{\#} \|\hat{\beta} - \beta^0\|_1 / \hat{\sigma} \).
Conclusion

- One can derive **sharp oracle inequalities** for empirical risk minimizers penalized by an appropriate norm.
- The choice of the norm depends on the **sparsity structure** one has in mind.
- Examples include exponential families, support vector machines, trace regression, graphical models, ...
- For certain cases these oracle estimators can serve as **initial estimators** in a **one step procedure**.
- The one-step procedure removes the asymptotic **bias** but yields non-sparse estimators....
- which serve as pivot for asymptotic **p-values**.
THANK YOU!