Inference and Optimalities
in Estimation of Gaussian Graphical Model

Harrison H. Zhou
Department of Statistics
Yale University

Jointly with Zhao Ren, Tingni Sun and Cun-Hui Zhang
Outline

• Introduction

• Main Results
 – Asymptotic Efficiency
 – Rate-optimal Estimation of Each Entry

• Applications
 – Adaptive Support Recovery
 – Estimation Under the Spectral Norm
 – Latent Variable Graphical Model

• Summary
Introduction

Gaussian Graphical Model:

Let $G = (V, E)$ be a graph. $V = \{Z_1, \ldots, Z_p\}$ is the vertex set and E is the edge set representing conditional dependence relations between the variables.

Consider

$$Z = (Z_1, Z_2, \ldots, Z_p)^T \sim \mathcal{N} \left(0, \Omega^{-1}\right),$$

where $\Omega = (\omega_{ij})_{1 \leq i, j \leq p}$.

Question:

Are Z_i and Z_j conditionally independent given $Z_{\{i,j\}^c}$?
Conditional Independence

Property:

The conditional distribution of Z_A given Z_{Ac} is

$$Z_A|Z_{Ac} = \mathcal{N} \left(-\Omega^{-1}_{A,A} \Omega_{A,Ac} Z_{Ac}, \Omega^{-1}_{A,A} \right),$$

where $A \subset \{1, 2, \ldots, p\}$.

Example:

Let $A = \{1, 2\}$. The precision matrix of $(Z_1, Z_2)^T$ given $Z_{\{1,2\}^c}$ is

$$\Omega_{A,A} = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix}.$$

Hence

$$Z_1 \perp Z_2|Z_{\{1,2\}^c} \iff \omega_{12} = 0.$$
An Old Example

Remark \(\{ \text{Analysis, Stats} \} \perp \{ \text{Mech, Vectors} \} \mid \text{Algebra} \).
What to do when p is very large?
Assumptions

Consider a class of sparse precision matrices $\mathcal{G}_0(M, k_{n,p})$:

- For $\Omega = (\omega_{ij})_{1 \leq i, j \leq p}$,

 $$\max_{1 \leq j \leq p} \sum_{i \neq j} 1 \{\omega_{ij} \neq 0\} \leq k_{n,p},$$

 where $1 \{\cdot\}$ is the indicator function.

- In addition, we assume $1/M \leq \lambda_{\min}(\Omega) \leq \lambda_{\max}(\Omega) \leq M$, for some constant $M > 1$.
GLASSO

Penalized Estimation:

\[\hat{\Omega}_{\text{Glasso}} := \arg \min_{\Omega > 0} \{ \langle \Omega, \Sigma_n \rangle - \log \det(\Omega) + \lambda_n |\Omega|_{1,\text{off}} \} \]

where \(\Sigma_n \) is the sample covariance of sample size \(n \), and \(|\Omega|_{1,\text{off}} = \sum_{i \neq j} |\omega_{ij}| \) is the vector \(\ell_1 \) norm of off-diagonal elements.
GLASSO

Assumptions:

- **Irrepresentable Condition**: There exists some $\alpha \in (0, 1]$ such that
 \[\| \Gamma_{S^cS}(\Gamma_{SS})^{-1} \|_\infty \leq 1 - \alpha, \]
 where $\Gamma = \Omega_0^{-1} \otimes \Omega_0^{-1}$ and $S = \text{supp}(\Omega_0)$. $\|A\|_\infty$ is the maximum row absolute sum of A.

- For **support recovery**, the nonzero entry needs to be at least at an order of
 \[\| (\Gamma_{SS})^{-1} \|_\infty \left(\frac{\log p}{n} \right)^{1/2}, \]
 under the assumption that $k_{n,p} = o\left(\sqrt{n}/\log p \right)$.

Remarks:

Main Results
Basic Property:

Let $A = \{1, 2\}$. The conditional distribution of Z_A given Z_{A^c} is

$$Z_A|Z_{A^c} = \mathcal{N} \left(-\Omega_{A,A}^{-1}\Omega_{A,A^c}Z_{A^c}, \Omega_{A,A}^{-1} \right),$$

where

$$\Omega_{A,A} = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix},$$

and Ω_{A,A^c} is the first two rows of the precision matrix Ω.

Remark:

More generally we may consider $A = \{i, j\}$ or a finite subset.
Methodology

Let $X^{(i)} \overset{i.i.d.}{\sim} N_p(0, \Sigma)$, $i = 1, 2, \ldots, n$.

Let X be the data matrix of size n by p.

Let X_A be the columns indexed by $A = \{1, 2\}$ of size n by 2.

Regression

\[
X_A = X_{A^c} \beta + \epsilon_A,
\]

where $\beta^T = -\Omega^{-1}_{A,A} \Omega_{A,A^c}$, and ϵ_A is an n by 2 matrix.
Methodology

Since

$$Z_A | Z_{Ac} = \mathcal{N} \left(-\Omega_{A,A}^{-1} \Omega_{A,Ac} Z_{Ac}, \Omega_{A,A}^{-1} \right),$$

we have

$$\mathbb{E} \epsilon_A^T \epsilon_A / n = \Omega_{A,A}^{-1}.$$

Efficiency

If you know β, an asymptotically efficient estimator is

$$\hat{\Omega}_{A,A} = \left(\epsilon_A^T \epsilon_A / n \right)^{-1}.$$
Methodology

Penalized Estimation

\[
\{ \hat{\beta}_m, \hat{\theta}_{mm} \} = \arg \min_{b \in \mathbb{R}^{p-2}, \sigma \in \mathbb{R}} \left\{ \frac{\|X_m - X_{Ac} b\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \sum_{k \in Ac} \frac{\|X_k\|}{\sqrt{n}} |b_k| \right\},
\]

where \(\lambda = \sqrt{\frac{2\log p}{n}} \).

Residuals

\[
\hat{\epsilon}_A = X_A - X_{Ac} \hat{\beta}.
\]

Estimation

\[
\hat{\Omega}_{A,A} = \left(\hat{\epsilon}_A^T \hat{\epsilon}_A / n \right)^{-1}.
\]
Assumptions

Consider a class of sparse precision matrices $\mathcal{G}_0(M, k_{n,p})$:

- For $\Omega = (\omega_{ij})_{1 \leq i, j \leq p}$,

$$\max_{1 \leq j \leq p} \sum_{i \neq j} 1 \left\{ \omega_{ij} \neq 0 \right\} \leq k_{n,p},$$

where $1 \{ \cdot \}$ is the indicator function.

- In addition, we assume $1/M \leq \lambda_{\min}(\Omega) \leq \lambda_{\max}(\Omega) \leq M$, for some constant $M > 1$.

Remark

We actually consider a slightly more general definition of sparseness

$$\max \sum_{i \neq j} \min \left\{ 1, \left| \omega_{ij} \right| / \sqrt{\frac{2 \log p}{n}} \right\} \leq k_{n,p}.$$
Asymptotic Efficiency

Theorem

Under the assumption that $k_{n,p} = o\left(\sqrt{n}/\log p\right)$ we have

$$\sqrt{nF_{ij}} (\hat{\omega}_{ij} - \omega_{ij}) \xrightarrow{D} \mathcal{N}(0,1),$$

where $F_{ij}^{-1} = \omega_{ii}\omega_{jj} + \omega_{ij}^2$.

Remark

We have a moderate deviation tail bound for $\hat{\omega}_{ij}$.
Optimality

Theorem

Under the assumption that $k_{n,p} = O\left(\frac{n}{\log p}\right)$ we have

$$\inf_{\hat{\omega}_{ij}} \sup_{\omega_{ij} \in \mathcal{G}_0(M,k_{n,p})} \mathbb{E} |\hat{\omega}_{ij} - \omega_{ij}| \asymp \max \left\{ k_{n,p} \frac{\log p}{n}, \sqrt{\frac{1}{n}} \right\},$$

under the assumption that $p \geq k_{n,p}^\nu$ with some $\nu > 2$.

Remark

- The upper bound is attained by our procedure.
- A necessary condition for estimating ω_{ij} consistently is $k_{n,p} = o\left(\frac{n}{\log p}\right)$.
- A necessary condition to obtain a parametric rate is, $k_{n,p} \frac{\log p}{n} = O\left(\sqrt{1/n}\right)$, i.e., $k_{n,p} = O\left(\sqrt{n}/\log p\right)$.
Applications
Adaptive Support Recovery

Procedure

Let \(\hat{\Omega}_{\text{thr}} = (\hat{\omega}_{ij}^{\text{thr}})_{p \times p} \) with

\[
\hat{\omega}_{ij}^{\text{thr}} = \hat{\omega}_{ij} 1 \left\{ |\hat{\omega}_{ij}| \geq \delta \sqrt{ (\hat{\omega}_{ii} \hat{\omega}_{jj} + \hat{\omega}_{ij}^2) \log p \over n} \right\}, \quad \delta > 2
\]

Assumption

\[
|\omega_{ij}| \geq 2\delta \sqrt{ (\omega_{ii} \omega_{jj} + \omega_{ij}^2) \log p \over n}, \quad \delta > 2, \text{ for } \omega_{ij} \neq 0
\]

Theorem

Let \(S(\Omega) = \{\text{sgn}(\omega_{ij}), \quad 1 \leq i, j \leq p\} \). We have

\[
\lim_{n \to \infty} P \left(S(\hat{\Omega}_{\text{thr}}) = S(\Omega) \right) = 1,
\]

provided that \(k_{n,p} = o \left(\sqrt{n} / \log p \right) \).
Estimation Under the Spectral Norm

Procedure

Let $\hat{\Omega}_{thr} = (\hat{\omega}_{ij}^{thr})_{p \times p}$ with

$$\hat{\omega}_{ij}^{thr} = \hat{\omega}_{ij} 1 \left\{ |\hat{\omega}_{ij}| \geq \delta \sqrt{\frac{(\hat{\omega}_{ii}\hat{\omega}_{jj} + \hat{\omega}_{ij}^2) \log p}{n}} \right\}, \delta > 2.$$

Theorem

The estimator $\hat{\Omega}_{thr}$ satisfied

$$\left\| \hat{\Omega}_{thr} - \Omega \right\|_{\text{spectral}}^2 = O_P \left(k_{n,p}^2 \frac{\log p}{n} \right),$$

uniformly over $\Omega \in \mathcal{G}_0(M, k_{n,p})$, provided that $k_{n,p} = o(\sqrt{n}/\log p)$.

Remark

Cai, Liu and Z. (2012) showed the rate is optimal.
Latent Variable Graphical Model

- Let $G = (V, E)$ be a graph. $V = \{Z_1, \ldots, Z_{p+r}\}$ is the vertex set and E is the edge set. Assume that the graph is sparse.

- But we only observe $X = (Z_1, \ldots, Z_p)$ is multivariate normal with a precision matrix Ω.

- It can be shown that Ω can be decomposed as the sum of a sparse matrix and a rank r matrix by the Schur complement.

Question:

How to estimate Ω based on $\{X_i\}$, when $\Omega = (\omega_{ij})$ can be decomposed as the sum of a sparse matrix S and a rank r matrix L, i.e., $\Omega = S + L$?
Sparse + Low Rank

- Sparse

\[G(k_{n,p}) = \left\{ S = (s_{ij}) : S \succ 0, \max_{1 \leq i \leq p} \sum_{j=1}^{p} 1 \{ s_{ij} \neq 0 \} \leq k_{n,p} \right\} \]

- Low Rank

\[L = \sum_{i=1}^{r} \lambda_i u_i u_i^T , \]

where there exists a universal constant \(c_0 \) such that \(\|u_i\|_\infty \leq \sqrt{\frac{c_0}{p}} \) for all \(i \), and \(\lambda_i \) is bounded for all \(i \) by \(M \). See Candès, Li, Ma, and Wright (2009).

- In addition, we assume \(1/M \leq \lambda_{\min}(\Omega) \leq \lambda_{\max}(\Omega) \leq M \), for some constant \(M > 1 \).
Penalized Maximum Likelihood

Chandrasekaran, Parrilo and Willsky (2012, AoS)

Algorithm:

\[\hat{\Omega}_\text{Glasso} := \arg\min_{\Omega \succ 0} \{ \langle \Omega, \Sigma_n \rangle - \log \det(\Omega) + \lambda_n |S|_1 + \gamma_n \|L\|_{\text{nuclear}} \} \]

Notations:

Minimum magnitude of nonzero entries of \(S \) by \(\theta \), i.e.,

\[\theta = \min_{i,j} |s_{ij}| \mathbf{1} \{s_{ij} \neq 0\}. \]

Minimum nonzero singular values of \(L \) by \(\sigma \), i.e.,

\[\sigma = \min_{1 \leq i \leq r} \lambda_i. \]
Chandrasekaran, Parrilo and Willsky (2012, AoS)

To estimate the support and rank \textit{consistently}, assuming that the authors can pick the tuning parameters “wisely” (as they wish), they still require:

- \[\theta \gtrsim \sqrt{p/n} \]
- \[\sigma \gtrsim k_{n,p}^3 \sqrt{p/n} \]

in addition to the strong \textit{irrepresentability} condition and assumptions on the Fisher information matrix, and possibly other assumptions

Remark

Ren and Z. (2012) showed conditions can be significantly improved.
Optimality

Theorem

Assume that $p \geq \sqrt{n}$. We have

$$|\hat{\Omega} - \Omega|_\infty = O_P \left(\sqrt{\frac{\log p}{n}} \right),$$

provided that $k_{n,p} = o(\sqrt{n/\log p})$.

Remark

- We can do adaptive support recovery similar to the sparse case. Improve the order of θ from $\sqrt{p/n}$ to $\sqrt{\log(p)/n}$ (optimal).
- To estimate the rank consistently we improve the order of σ from $k_{n,p}^3 \sqrt{p/n}$ to $\sqrt{p/n}$ (optimal).
Summary

- A methodology to do inference.
- A necessary sparseness condition for inference.
- Applications to adaptive support recovery, optimal estimation under the spectral norm and latent variable graphical model.