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Introduction

White-box testing is a verification technique that can be used to examine if code works as
expected. More precisely, according to IEEE (1990), the definition of white box testing
is testing that takes into account the internal mechanism of a system or component. So,
white box testing is performed based on knowledge of how the system is implemented.
To describe the degree to which the source code of a program has been tested, we use
different measures code coverage. In order to measure this code coverage and select
tests based on the structure of a graph, we will write programs as graphs. This graph
describes the logical structure of the program.
In a program, control flows arise from variables and procedures such as if- and while-
constructs in C language. However, it’s possible that some parts of the source code of a
program are unreachable. This problem is due to the semantic of the program. In fact,
there is two different approaches in the language which are the semantic which refers to
the meaning of the language, and the syntax which as opposed refers to the form of the
program. Since it’s undecidable to detect the semantic part of a program and since the
measure code coverage can be affected by it, we will describe two differents approach
for white box coverage: syntactic and semantic approach. The syntactic approach will
describe code coverage in a flow graph and the semantic approach will describe how
syntactic coverage has to be changed to only take into account all feasible information
flows.
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Part I

Syntactic approach

1 Preliminaries

In this section, we will present the principles about graphs and notions of coverage.

1.1 Graphs and flow graphs

Definition 1.1. A directed graph is a pair G = (N,E, I), where N is a set of nodes
and E ⊆ (N ×N) a set of ordered pair of nodes called edges and I ⊆ N a set of initial
states.

Definition 1.2. Given a graph G = (N,E, I), the preset and the postset of a node
n ∈ N are given by:

pre(n) = {n′ ∈ N | (n′, n) ∈ E}

post(n) = {n′ ∈ N | (n, n′) ∈ E}

The number of edges entering and leaving a node n ∈ N are denoted by:
in(n) = |pre(n)| and out(n) = |post(n)| .

Definition 1.3. Let G = (N,E, I) be a directed graph. An initial node of the graph is
node n ∈ I such that every node is reachable from n. A terminal node is a node n ∈ N
such that out(n) = 0.

Let TG be the set of all terminal nodes of the graph G.

Definition 1.4. Let G = (N,E, I) be a directed graph. A path is a finite sequence of
nodes π = n1 . . . nk in N such that ∀1 ≤ i ≤ k − 1 . (ni, ni+1) ∈ E. The first node and
the last node of π are: first(π) = n1 and last(π) = nk.

Let Π be a set of paths in graph G.We define N(Π) = |{n ∈ N | ∃π ∈ Π . n ∈ π}| as
the number of different nodes in Π and E(Π) = |{(n, n′) ∈ N ×N | ∃π ∈ Π . (n, n′) ∈ π}|
as the number of different edges in Π.
We define Γ(G) to be the set of all paths in G.

Definition 1.5. A directed graph is connected if there is a path from any node to any
other nodes in the graph.

Definition 1.6. A flow graph G = (N,E, ninit) is a connected directed graph such that
there exists an unique initial node ninit ∈ N and at least one terminal node in N .

In a flow graph, depending on the predicates of a node, we can define different kinds
of nodes.
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Definition 1.7. Given a graph G = (N,E, n1), a node is a statement node ( S-node) if
there is at most one edge leaving from it, otherwise it is a decision node ( D-node).

n ∈ N is an (S-node) if out(n) ≤ 1

n ∈ N is (D-node) if out(n) > 1

Let SG be the set of all (S-nodes) in the graph G and DG the set of all (D-nodes).
We represent S-nodes in graphical notations by rectangles and D-nodes by a diamonds.

Regarding a program, the flow graph is a representation of its possible control flows.
More precisely, nodes correspond to statements and decisions and edges represent the
possible flow of control between statements. For example, in C-functions, statements
are expressions with a semi-colon such as return-, continue-, if-, switch-, do-while-, for-,
while-.... An S-node represents a statement in the program such as modify an input and
a D-node corresponds to decision in the program such as if-, switch-, do-while-, for-,
while- statements.

In the program In the graph Notation

Statement S-node Rounded rectangle

Decision D-node Diamond

flow Edges Edges

If a path starts from the initial node to a terminal node of the graph G is called a
complete path.

Definition 1.8. Let G = (N,E, r) be a flow graph with r the initial node and let π =
n1n2 . . . nk be a path in G. Then π is a complete path if n1 = r and nk ∈ TG

Remark 1.9. It’s possible to have a program with loops and so the corresponding flow
graph of this program will have an infinite set of paths and complete paths. Because
we consider only the syntactic approach of a program. In order to have a finite set of
complete paths, we introduce a simple path which can only traverse a loop twice. Let Λ
be the set of all complete simple paths in a graph.

Example 1.10. Consider the following pseudo-code function and its corresponding flow
graph:

1. int someFunction(int a, int b) {

2. int result = 0; (*)

3. if (a < b) { (**)

4. System.exit(0); (*)

5. }

6. else {

7. int c = a + b; (*)

8. int i = 0; (*)

9. while (i < c) { (**)
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10. result = (result + a) / b; (*)

11. i++; (*)

12. }

13. }

14. return result; (*)

15. }

n1

n2n3

n4

n5

n6

n7

n8

n9

(1)

(2)

true

(3)false

(4)

(5)

(6)true

(7)

false

(8)

Figure 1: Control-flow graph for Example 1.10.

Note that this piece of code contains 7 statements (indicated by asterisks) represented
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by S-nodes in the graph and 2 decision points (indicated by double asterisks) represented
by D-nodes.

Because we only want to focus on the syntactic of the program, each label of a state-
ment is ignored in the flow graph and replace by ni where i corresponds to the position of
the statement in the code. Each edge is numberered. For instance the edge (3) represents
the edge (n2, n4). So, we will represent a edge by its number. Also, because a D-node
is a decision in the program, its two possible flows/ edges correspond to the TRUE or
FALSE value of the decision/condition. So, in the flow graph, the corresponding edges
will be note by false or true.

The flow graph that we obtain is G = (N,E, n1) with N = {n1, n2, n3, n4, n5, n6, n7, n8, n9}
and E = {(1), (2), (3), (4), (5), (6), (7), (8), (9)}. Note that TG = {n3, n9}.

We can notice that π1 = n4n5n6n7 is a path in the flow graph with n4 the first node
of the path and n7 the last one, and π2 = n1n2n3 or π3 = n1n2n4n5n8n6n9 are complete
paths in the flow graph.

1.2 Coverage measures

Because complete paths cover a certain number of nodes or edges, it’s possible to define
two percentages, representing the node coverage and edge coverage of a set of paths.

Definition 1.11. Let Π be a set of complete paths in the graph G = (N,E, n1). The
Node coverage of Π is the percentage of different nodes that is covered by at least one
path in Π:

NodeCov(G,Π) =
N(Π)

|N |
× 100%

Edge coverage is the percentage of different edges that is covered by at least one path in
Π:

EdgeCov(G,Π) =
E(Π)

|E|
× 100%

In a graph, many different complete paths exist. Two percentages called path coverage
and simple path coverage can be defined.

Definition 1.12. Let Π be a set of complete paths in the graph G = (N,E, n1) and Ω
be a set of complete simple paths in G. Path coverage corresponds to the percentage of
complete paths that are contained in Π

PathCov(G,Π) =
|Π|
|Γ(G)|

× 100%

Simple path coverage corresponds to the percentage of complete simple paths that are
contained in Ω

PathCovs(G,Ω) =
|Ω|
|Λ(G)|

× 100%
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• π1 = n1n2n3 • π2 = n1n2n4n5n6n7n8n9 • π3 = n1n2n4n5n6n9

Example 1.13. Consider the flow graph introduced in the example 1.10, and the fol-
lowings paths

The set of paths Π = {π1, π2, π3} traverses every statement node, every edge and every
complete path of the flow graph at least once. So NodeCov(G,Π) = EdgeCov(G,Π) =
100%. If we apply only the path π1, the nodes n1, n2 and n3 are the only nodes traversed
by the path. So, as the traversal of path π1 visits 3 out of the 9 nodes, the statement
coverage percentage is 3

9 · 100% = 33%. Also only edges (1) and (2) are traversed by π2.
So π2 visits 2 out of the 9 edges, the edge coverage percentage is 2

9 ·100% = 22%. Due to
the remark 1.9, the flow graph has 4 complete simple paths. The complete simple path
π1 only covers one possible path of the graph. So, the simple path coverage percentage is
1
4 · 100% = 25% and PathCovs(G,Π) = 75%

2 Statement Coverage

A set of complete paths achieves complete statement coverage if it executes each state-
ment in a flow graph at least once. For this purpose we only look at S-nodes. So we can
create a reduced graph of the flow graph in order to keep only the S-nodes. This graph
is called statement graph. By this reduction, complete node coverage in this new graph
correspond to statement coverage in the flow graph.
In this section, we will define what the statement graph is and then how to apply criteria
to the graph.

2.1 Statement Graph

A statement graph is a directed graph in which there are only statement nodes. So,
from a flow graph, we have to delete decision nodes and edges between these decision
nodes and other nodes. In order to maintain the connectivity of the graph, we have to
add edges where D-nodes have been deleted. The statement graph is therefore defined
as follows:

Definition 2.1. Given a flow graph G = (N,E, n1), the statement graph of G is a
graph G′ = (SG, E

′, I) with

E′ = {(n,m) ∈ (SG × SG) | (n,m) ∈ E}∪

{(n,m) ∈ (SG×SG) | ∃d1 . . . dk ∈ D+
G . (n, d1) ∈ E∧(dk, n

′) ∈ E∧∀1 ≤ i ≤ k : (di, di+1) ∈ E}

and I = {n1 | n1 ∈ SG} ∨ {ni, nj | n1 ∈ DG ∧ (n1, ni) ∈ E ∧ (n1, nj) ∈ E}

Example 2.2. Consider the flow graph introduced in Example 1.10. To obtain the
corresponding statement graph, we have to remove nodes n2 and n6 as well as, the edges
(1), (2), (3), (5), (6), (7), (9) and add the edges:(n1, n3), (n1, n4), (n5, n9), (n5, n7), (n8, n5).
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n1n3

n4

n5

n7

n8

n9

(1’)

(2’)

(4)

(5’)

(6’)

(8)

(9’)
(10’)

Figure 2: Statement graph for Example 2.2.

We obtain the graph Gs = (Ns, Es, n1) with Ns = n1, n3, n4, n5, n7, n8, n9 and
Es = (1′), (2′), (4), (5′), (6′), (9′), (10′).

Remark 2.3. As we can see in example 2.2, there still exist nodes with more than
one edge leaving such as n1 or n5. So, due to the definition 1.7, those nodes are D-
nodes. However, as we can see in the program or in the flow graph, those nodes are
not decision/condition nodes. In fact, The definition of D-nodes and S-nodes is only
available in a flow graph and not in a directed graph as the statement graph.

2.2 Statement Coverage

There is complete statement coverage of a set of complete paths if all nodes from the
statement graph are in a path of the set. It’s possible to define statement coverage (as
a percentage) for the flow graph because of the definition of the node coverage in the
statement graph.

Definition 2.4. Let G = (N,E, n) a flow graph. Let Gs = (SG, Es, I) be the statement
graph of G and let Π be a set of complete paths in G, then
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StatCov(G,Π) = NodeCov(Gs,Π
′)

with Π′ = Π|Ns
.

Remark 2.5. Let Gs = (Ns, Es, I) be the statement graph and Π be a set of complete
paths in Gs. There is the complete statement coverage for Π if for all nodes n ∈ Gs,
there exists a path π ∈ Π such that n ∈ π .

StatCov(Gs,Π) = 100%⇔ ∀n ∈ Ns∃π ∈ Π . n ∈ π

Example 2.6. Consider the flow graph G introduced in the example 1.10 and the corre-
sponding statement graph Gs introduced in the example 2.2 and consider the two complete
paths in G :

• π1 = n1n2n3 • π2 = n1n2n4n5n6n7n8n6n9

To obtain the correpsonding path in the statement graph, we have to remove all
decision nodes from these paths. So the corresponding complete paths in Gs are:

• π3 = n1n3 • π4 = n1n4n5n7n8n9

To achieve complete statement coverage, we could for instance apply the set of paths
Π = {π3, π4} in Gs, as it traverses every statement node of the statement graph at least
once. Moreover, the set Π′ = {π1, π2} also traverses all nodes in he flow graph, which
that confirms the complete statement coverage. If we apply only the path π4, the node
n3 would not be traversed anymore. So, as the traversal of path π1 visits 6 out of the 7
nodes, the statement coverage percentage for the path π1 is 6

7 · 100% = 85%.

3 Segment Coverage

A segment is a set of consecutive S-nodes that can be replaced by a single node. The
graph that we obtain when replacing all segments by single nodes and changing the
appropiate edges is called a segment graph. Based on this directed graph we can define
segment coverage. In this section we will first define a segment graph and then define
how to apply segment coverage to this graph.
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3.1 Segment graph

First of all, in order to define a segment graph, we have to define what a segment is. A
segment is a block of consecutives S-nodes, i.e., a sequence in which all nodes are the
head and the tail of only one edge, except for the first node in the segment that can be
the tail of more than one edge.

Definition 3.1. In a flow graph G = (N,E, n1), a segment is a path S = ni . . . nj in G
such that ∀i ≤ k ≤ j . ni ∈ SG

ni ni+1 . . . nj
(1) (...) (...)

Figure 3: Example of a Segment in a flow graph

A segment S is a maximal segment if there is no other segment S′ such that S ⊂ S′.
So a segment ni . . . nj is a maximal segment if there exists a path π = nd1ni . . . njnd2
with nd1 and nd2 are D-nodes and ni . . . nj are S-nodes. Let MG be the set of all maximal
segment in the flow graph.

Proposition 3.2. Let G = (N,E, n1) be a flow graph. Each S-node exists in exactly
one maximal segment.

Proof. Let S and S′ be two maximal segments. It follows that S′ ⊂ S or S′ ∩ S = ∅. If
S′ ⊂ S, then S′ is not maximal. Therefore, S′ = S or S′ ∩ S = ∅. This means that two
different maximal segments are disjoint. Let n ∈ N .
If S = S′ and n ∈ S so n ∈ S′. But the maximal segments are equals, so n exists in one
maximal segment.
If S ∩ S′ = ∅ and n ∈ S so n /∈ S′ and vice versa.
So a node exists in exactly one maximal segment.

To create the segment graph of a flow graph, we have to replace all maximal segments
S in the flow graph by single node nS and changing some edges. We obtain the following
definition:

Definition 3.3. Let G = (N,E, n1) be a flow graph. G′ = (N ′, E′, I) is the segment
graph of G if:

N ′ = {nS | S ∈MG}

E′ = {(nS , n′S) | {(last(S),first(S′)) ∈ E}∨

{∃d1 . . . dk ∈ D+
Gwith(di, di+1) ∈ E | (last(S), d1) ∈ E ∧ (dk, first(S

′)) ∈ E)}}

and I = {n1 | n1 ∈ SG} ∨ {ni, nj | n1 ∈ DG ∧ (n1, ni) ∈ E ∧ (n1, nj) ∈ E}

Example 3.4. Consider the flow graph introduced in example 1.10
The segment graph is G = (Sg, Eg, n1) with Eg = {a, b, c, d, e, f}.
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n1n3

n′ = n4n5

n′′ = n7, n8 n9

(a)

(b)

(c)
(d)

(e)
(f)

Figure 4: Segment graph for Example 3.4.

3.2 Segment coverage

Regarding the flow graph, segment coverage consists in: all segments of the graph have
to be covered by a path, this criterion is also called all-block coverage. Because nodes
in a segment graph correpsond to a segment in the flow graph, segment coverage in the
segment graph corresponds to execute all nodes of this graph. So segment coverage for
a flow graph corresponds to node coverage on the segment graph.

Definition 3.5. Let G = (N,E, n1) be a flow graph and Gs = (Ns, Es, I) be the corre-
sponding segment graph. Let Π be a set of paths in Gs.

SegCov(G,Π) = NodeCov(Gs,Π
′)

with Π′ = Π|MG

Proposition 3.6. Let Gs = (Ns, Es, I) be a the segment graph.Let Π be a set of paths
in Gs.
Π implies segment coverage in Gs if all nodes n ∈ Ns exist in a path in Π.

SegCov(Gs,Π) = 100%⇔ ∀n ∈ Ns∃π ∈ Π . n ∈ π

Example 3.7. Consider the flow graph introduced in example 1.10 and the segment
graph introduced in example 3.4 and consider the two complete paths π1, π2 introduced
in example 2.6. To obtain the corresponding paths in the statement graph, we have
to restrict these paths to maximal segments. The corresponding complete paths in the
segment graph are:

• π5 = n1n
′n′′n′′n9 • π6 = n1n3

To achieve complete segment coverage, we could for instance apply the set of paths
Π = {π5, π6}, as it traverses every segment node of the segment graph at least once.
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If we apply only the path π5, the node n3 would not be traversed anymore. So, as the
traversal of path π5 visits 3 out of the 4 nodes, the statement coverage percentage is
2
3 · 100% = 66%.

4 Decision Coverage

It’s also possible to define a new reduction of a flow graph so as to facilitate the definition
of branch/decision coverage. In fact, we can create a graph that contains only D-nodes
and terminal nodes. This new graph is called decision graph in which only decisions are
kept.
In this section we will first define the decision graph and then define the criterion of
decision coverage for the white box.

4.1 Decision graph

We define a DD-path (Decision-Decision path) to be a path ni . . . nj where the start
node ni is a D-node and the last node nj is D-nodes or a terminal node and all the other
nodes {ni+1, . . . , nj−1} in the path are S-nodes.
We assume the following proposition:

Proposition 4.1. Let G = (N,E, n1) be a flow graph.
1. If n, n′ ∈ DG, then n can be the start node of out(n) DD-paths from n to n′

2. If a S-node exists in a DD-path then this S-node exists in exactly one DD-path.

Proof. Let G = (N,E, n1) be a flow graph.
1. Let b = |post(n)| and assume that there are b + 1 different DD-paths that start in n
and end in n′. Then two DD-paths d1, d2 have the same first edge since there are only b
possibilities to start a path from n. Let d1 = n11n12 . . . n1k and d2 = n21n22 . . . n2x. Then
n11 = n21 = n, n12 = n22 and n1k = n2x = n′. Since n12, . . . , n1k−1 and n22, ..., n1x−1 are
S-nodes, they have only one egde leaving from them, so postsets with only one element.
It follows that n13 = n23, . . . , n1k−1 = n1h−1andk − 1 = h − 1. This means that both
paths are equal.
2. Let d1 and d2 be two DD-paths of the graph. Because the first node and the last
node of both d1, d2 are D-nodes and all the others in the DD-paths are S-nodes, if we
remove these nodes, paths become segments as the definition in the previous section.
We define also in the previous section, with the proposition 3.2 that each S segment, so
by adding one start D-node and one final D-node to a segment, a S-node still exists in
exactly one DD-path.

Let DDG be the set of all DD-paths in a graph G.
To create the Decision graph we replace all S-nodes in all DD-path by one single

edge and keep only D-nodes and terminal nodes.
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n2n3

n6 n9

(2)

true

false,(g)

(7)

false(h)

Figure 5: Decision graph for Example 4.3.

Definition 4.2. Let G = (N,E, n1) be a flow graph. Then Gd = (Nd, Ed, i) is the
decision graph of G with:

Nd = DG ∪ TG ∪ n1
Ed = {(n, n′) ∈ E . ∃p1, p2 ∈ DDG | first(p1) = n ∧ last(p2) = n′}

and I = {n1 | n1 ∈ DG} ∨ {d ∈ Dg | n1 ∈ SG ∧ ∃n1 . . . nkd ∈ Γ(G) . n1 . . . nk ∈ SG}

Example 4.3. Consider the flow graph introduced in the example 1.10. The DD-paths
in the flow graph are: n2n4n5n6 and n6n7n8n6. So we replace all S-nodes in thoses paths
by single edges to obtain the decision graph Gd = (Nd, E, d, n2) with Nd = {n2, n3, n6, n9}
and Ed = {(2), (g), (h), (7)}.

4.2 Decision coverage

Decision coverage or branch coverage consists in traverse every branch of a graph due
to a set of complete paths, i.e, each possible outcome of each decision has to occur at
least once on a path. Because in a decision graph, each edge corresponds to a branch
of flow graph, and because in this graph there are only decision statements, each edge
only corresponds to a possible outcome for a decision statement.

We can define the percentage of decision coverage for a flow graph based on edge
coverage in the decision graph.

Definition 4.4. Let G = (N,E, ni) be a flow graph and Gd = (Nd, Ed, I) be the corre-
sponding decision graph. Let Π be a set of paths in G

DecCov(G,Π) = EdgeCov(Gd,Π
′)

with Π′ = Π|Nd

Definition 4.5. Let G = (N,E, I) be the decision graph. Let Π be a set of paths of G.
Π satisfies the criteria of decision coverage if for all edges e ∈ Ed, there exists a path
pk ∈ Π such that e is in pk.

∀e ∈ Ed,∃pk ∈ Π . e ∈ pk
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Example 4.6. Consider the flow graph and decision graph introcuded in example 4.3
and consider the two complete paths π1 and π2 introduced in example 2.6. To obtain
the corresponding paths in the decision graph, we have to remove all S-nodes, except for
terminal nodes. The two complete paths are:

• π7 = n2n6n6n9 • π8 = n2n3

To achieve complete decision coverage, we could for instance apply the set of complete
paths Π = {π7, π8}, as it traverses every edge of the decision graph at least once. If we
apply the test suite π7, the edge (2) would not be executed anymore. So, as the traversal
of test case π7 visits 3 out of the 4 statements, the statement coverage percentage is
3
4 · 100% = 75%.

5 Relations between coverage measures.

The first relation that we can establish is the one between the coverage measures.

Proposition 5.1. Let G = (N,E, n1) be a flow graph and Π be a set of complete paths
of G.

PathCov(G,Π) = 100%⇒ EdgeCov(G,Π) = 100%⇒ NodeCov(G,Π) = 100%

Proof. We assume that PathCov(G,Π) = 100%.
If Π covers all paths of the graph G, that means all edges of the graph are covered.
Because edges are links between nodes, if all edges are covered by Π , Π contains all
possibles nodes of G.

Equivalences in the other direction are not always true as we can see it in the following
example.

Example 5.2. Consider the flow graph introduced in the example 1.10 and consider the
set of complete paths Π composed of the four following complete paths:

• π1 = n1n2n3 • π2 = n1n2n4n5n6n9

• π3 = n1n2n4n5n6n7n8n6n9 • π4 = n1n2n4n5n6n7n8n6n7n8n9

This set of path corresponds to all possible paths in the flow graph. So PathCov(G,Π) =
100%. We notice that N(Π) = {n1, n2, n3, n4, n5, n6, n7, n8, n9} = N and E(Π) = E. So
the set Π covers all nodes and all edges of the flow graph. So NodeCov(G,Π) = 100%
and EdgeCov(G,Π) = 100%.

If we consider the example 1.13, we notice that there is no relation possible between
path coverage, node coverage and edge coverage if there is no complete path coverage.

Statement coverage and Segment coverage both define a node coverage in different
graphs. However, there exist a relation between these two coverages.
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Proposition 5.3. Let G = (N,E, n1) be a flow graph and Π be a set of complete paths
of G.

StatCov(G,Π) = 100%⇔ SegCov(G,Π) = 100%

Proof. Let G = (N,E, n1) be a flow graph and Gs = (Ns, Es, Is) and Gg = (Ng, Eg, Ig)
be respectivelly the statement graph and the segment graph of G
’⇒’: We assume StatCov(G,Π) = 100%. Let n ∈ Gg Then there exists a maximal
segment S in the control flow graph and the statement graph with n = nS . Let S =
n1, n2, . . . , nk be the path of S-nodes. So there exists π ∈ Π such that S ⊂ π. So there
exists in Gs π

′ such as n ∈ π′ and π′ = π|Ng
. Because it’s true for all nodes is Gs, so all

nodes of the segment graph are covered. So SegCov(G,Π) = 100%
’⇐’:We assume SegCov(G,Π) = 100%. Let n ∈ Ns and let S be the maximal segment

that contains n. Then there exists a path d in Π such that n ∈ d.

This proposition is true only is we considere 100 % of coverage. In fact,because one
segment can define more than one statement, for a same path, the statement coverage
can be different to the segment coverage.

Example 5.4. Consider the flow graph G, statement graph Gs and segment graph Gg

introduced before. Consider the following set of complete paths Π in G:

• π1 = n1n2n4n5n6n7n8n6n9 • π2 = n1n2n3

The corresponding set of paths in the statement graph is: Πs = {n1n4n5n7n8n9, n1n3}
which covers all nodes in the graph. So NodeCov(Gs,Πs) = 100% = StatCov(G,Π)

The corresponding set of paths in the segment graph is: Πg = {n1n′n′′n9, n1n3} which
covers all nodes in the graph. So NodeCov(Gg,Πg) = 100% = StatCov(G,Π).

However, if we consider the flow graph in the figure 5.4, we notice that if there is
50 % of segment coverage with the path n1n2n3 there is no 50 % of statement coverage
by 25 %. Vice vera, if there is 75 % of statement coverage with the path n1n2n4n5n6,
there is only 50 % of segment coverage.
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Figure 6: flow grpah for the example 5.4

It’s also possible to define relations between decision coverage and statement cover-
age.

Proposition 5.5. Let G = (N,E, n1) be a flow graph and Π be a set of complete paths
of G.

DecCov(G,Π) = 100%⇒ StatCov(G,Π) = 100%

Proof. We assume that DecCov(G,Π) = 100%
Decision coverage or branch coverage corresponds in the decision graph as in the control
flow graph, to cover all edges by paths. So E(Π) = E. So if Π covers all edges of G, it
covers all nodes of G. So N(Π) = N . So Stat(G,Π) = 100%

Example 5.6. Consider the flow graph G in the the figure and consider the set of
complete paths:

• π1 = n1n2n4n5n6 • π2 = n1n2n3

The following figure represents the decision graph of G. In this graph, Π is equivalent
to Πd = {n2n6, n2n3} which covers all edges. So DecCov(G,Π) = 100%. The following
figure represents the statement graph of G. In this graph, Π is equivalent to Πd =
{n1n4n5n6, n1n3} which covers all segments. So StatCov(G,Π) = 100%.

However, if we only apply the path π1, DecCov(G, π1) = 50% and StatCov(G, π1) =
80%

The following example proves that there is no equivalence.
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Table 1: the decision graph

n1 n3

n4

n5
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Table 2: The statement graph

If we consider the flow graph in the next figure 7, we notice that if there is 100 %
statement coverage with the path n1n2n4n5n6 there is only 50 % of decision coverage
(the edge False of the decision node is not covered).

n1

n2

n3

n4

n5

n6

(1)

(3)

(4)

(5)

(6)

(2)

Figure 7: flow graph for the example 5.6
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However, in some particular case, the proposition is true in the other direction. In
fact, Segment coverage can imply decision coverage if there are segments in all possible
branch of the graph.

Proposition 5.7. Let G = (N,E, n1) be a flow graph without empty branches i.e there
exist at least one node between two D-nodes or a D-node and a terminal node in G. Let
Π be a set of complete paths of G.

SegCov(G,Π) = 100%⇔ DecCov(G,Π) = 100%

Example 5.8. In order to prove the condition, we need to consider the following flow
graph.

In this flow graph in figure 8, we notice that this flow graph has no empty branch:
there is at least one S-node between a decision node and a terminal node. If we apply
the set of complete paths Π = n1n2n3, n1n2n4n5n6, StatCov(G,Π) = 100%. Because this
path travers all edges of the graph there is also DecCov(G,Π) = 100%.
The condition that there must have no empty branch is present in the example 5.6.

n1

n2

n3

n4

n5

n6

(1)

(3)

(4)

(6)

(2)

(7)

Figure 8: Flow graph for the example 5.8
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To sum up, the figure 9 represents the relations between the coverage measures.

Path

Coverage

Decision

Coverage

Statement

coverage

Segment

coverage

imply imply

equivalent

Figure 9: Representation of the relations between coverage measures
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Part II

Semantic approach

6 From flow graph to control flow graph

This section will describe the relation between flow graphs defined in the previous part,
control flow graphs and programs.

A control flow graph is a flow graph representing the possible control flow of a program
and taking into account the label of each statement. So, a node in the control flow graph
corresponds to a statement with its label in the program and edges represent the possible
transfer of control flow between statements. The difference with the flow graph is that
for the control flow graph we consider only the possible paths regarding inputs of the
program. We define the Label function in order to associate each node to each label:

Definition 6.1. Given a directed graph G = (N,E, I) of a program p, the Label function
is given by:

L : N → Stat+

Where N is a set of nodes and Stat+ is a set of statements of p.

In the previous part, to apply white box coverages to a flow graph, we were only
using a set of complete paths. Because in this part we have to consider the semantic
of the program, we have to define what is a test regarding the control flow graph of a
program. In a program, a test case is a set of inputs. So when we pick a test case of the
program, we have to plot its path through the control flow graph.

Definition 6.2. Let p be a program and G = (N,E, n1) be its control flow graph.
If t is a test case of p then there exists a corresponding complete path π in G

According to the previous definition, a test suite which is a set of test cases, has in
the control flow graph an equivalent Π set of complete paths. As a result, all test case
for a program corresponds to all paths in the control flow graph

Example 6.3. Consider the following pseudo-code function:

1. int someFunction(int a, int b) {

2. int result = 0; (*)

3. if (a < b && a <> result) { (**)

4. System.exit(0); (*)

5. }

6. else {

7. int c = a + b; (*)

8. int i = 0; (*)

9. while (i < c) { (**)

10. result = (result + a) / b; (*)
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int

result = 0

a < b
&&a 6=
result

System.

exit(0)

int c =

a + b

int i = 0

i < c

result =

(result

+ a) / b

i++

return

result

(1)

(2)

true

(3)false

(4)

(5)

(6)
true

(7)
false

(8)

(9)

Figure 10: Control-flow graph for Example 6.3.

11. i++; (*)

12. }

13. }

14. return result; (*)

15. }

Note that the control flow graph is G = (N,E, n1) with L(n1) = {int result = 0}. Now,
each test execution of the program can be seen as a traversal of this graph. Take for
instance the test case t = (a = 1, b = 1 | 1), were the values before the bar indicate the
inputs, and the value after the bar indicates the expected result. It traverses the edges
1-2-5-6-7-8-9-10-8-9-10-11-12.

7 Statement coverage

The control flow graph is by definiion a flow graph, it’s also possible to reduce it in
a statement graph. However in this part, we want to focus on the semantic part of a
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code of a program. In fact, in practice, many syntactic paths in the control flow graph
representating a program are semantically infeasible, i.e, they may not be traversed by
any execution of the program. We need in the graph all decision nodes in order to know
if a path is feasible or not thanks its relation with the inputs. Yet, we will use the
definitions defined in the previous part in order to define the semantic coverages. These
definitions will have syn as exponent.

Statement coverage consists in a test suite that executes all statements at least once
of a program. Regarding the control flow graph, statement coverage consists in: all
nodes of the control flow graph have to be covered by a path that corresponding to a
test in the test suite.

Definition 7.1. Let G = (N,E, n1) be the control flow graph of the program p. Let T
be a test suite for p and Π be the corresponding set of complete paths in G. Let θ be the
set of all possible test cases for p and Θ be the corresponding set of possible complete
paths in G.

StatCovsem(T, p) =
StatCovsyn(G,Π)

StatCovsyn(G,Θ)

Thus, semantic statement coverage is defined only on the possible nodes/statements
that can be covers by a test or a path and not only in the whole program/graph.

Example 7.2. Consider the program introduced in example 6.3, and consider the two
test cases:

• t1 = (a = 0, b = 1 | error) • t2 = (a = 1, b = 1 | 1)

To achieve complete statement coverage, we could for instance apply the test suite
T1 = {t1, t2}, as it traverses every S-node of the control flow graph at least once. If
we apply the test suite T2 = {t2}, the second statement (line 4; the rounded rectangle
in the upper right of the control flow graph) would not be executed anymore. So, as
the traversal of test case T2 visits 6 out of the 7 statements, the statement coverage
percentage is 6

7 · 100% = 85.7%. However, this percantage can be found with or without
take into account the semantic of the program.

It is easy to write down a program for which not all statements are reachable. For
instance:

1. void someFunction(int a, int b) {

2. if (a > b && a < b) {

3. System.exit(0);

4. }

5. else {

6. System.out.println("Succeeded.");

7. }

8. }
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Clearly, any test case for this function achieves 50% statement coverage: the state-
ment on line 3 is unreachable and the statement on line 6 is always reached. So in this
case, StatCovsyn(G,Π) = 50% whatever the set of complete paths if we take into account
the semantic of the program. However, StatCovsem(G,Π) = 100%. Π can for instance
corresponds to the test T = (a = 1, b = 2).

8 Decision coverage

For a program, decision coverage or branch coverage means to execute all branches of
it so as to be sure that all possible outcomes of decision statements be executed. To
have 100 % decision coverage there must exists a test suite such that it generates as set
of paths that covers all branches/edges of the graph of the program wether for decision
graph or control flow graph. In fact, the decision graph is just a reduction of the flow
graph which preserves all possible outcome of decision statements only. However, as
for the statemen coverage, we need to take into account the semantic of the program.
The semantic decision coverage is defined regarding the possible outcomes of decision
statements and not all of them such as in the syntactic approach. Yet, we will use the
previous definition of decision coverage which will have syn as exponant, in order to
define the semantic coverage.

Definition 8.1. Let G = (N,E, n1) be the control flow graph of the program p. Let T
be a test suite for p and let Π be the corresponding set of complete paths in G. Let θ be
the set of all possible test cases for p and Θ be the corresponding set of possible complete
paths in G.

DecCovsem(T, p) =
DecCovsyn(G,Π)

DecCovsyn(G,Θ)

Example 8.2. Consider the flow graph introduced in the figure of the previous example.
As the statement in the line 3, the edge (1) is unreachable. If we apply the test T = (a =
1, b = 2) or whatever of complete paths taking into account the semantic of the program,
DecCovsyn(G,Π) = 50% but on the other hand DecCovsem(p, T ) = 100%.

9 Condition Coverages

Condition coverages group the condition coverage, the condition/decision coverage and
the multiple condition coverage which are based on the execution on all conditions in the
program. By definition, the flow graph reveals the presence of conditions, however it’s
possible that there are more than one condition in one statement. Take for example the
line 2 of the program in example 7.2. Condition graph solves this problem by creating a
new entity that represent the behavior of conditions in a decision node. In this section,
we will first define a condition graph, and then apply criteria coverage in this graph.
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9.1 Condition graph

In a control flow graph representing a program, only D-nodes are concerned by this new
graph. In fact, a D-node represents a decision in the program. This D-node contains a
certain numbers of relational expressions or Boolean variables called compound condition.

In our case, we will only consider that there are only D-node with 2 edges in a control
flow graph.

Because each edge from a D-node is fixed by the outcome of the D-node’s decision,
we called Tn the edge leaving from a D-node n corresponding to the TRUE value of the
decision and Fn the other edge corresponding to the FALSE value. As we already did it
in previous examples.

Definition 9.1. Let G = (N,E, n1) be a control flow graph. Let Π be a set of complete
paths in G.
We define ET (Π) = |{Tn ∈ E | ∃π ∈ ΠTn ∈ π}| as the number of differents true edges

in the set of paths Π. Symmetrically, we define EF (Π)) as the number of differents false
edges in Π.

A D-node can contain more than one compound condition. In order to create the
condition graph, we have to define a new entity called C-node (Condition node) that
contains only one compound condition and then group them into a condition block equiv-
alent to the D-node.

Definition 9.2. The C-node nC is a node containing only the condition C. C-node is
a D-node.

So in the control flow graph G = (N,E, n1), all D-nodes have to be replace by a
condition block. The block corresponding to a node n with (n,m), (n, p) =∈ E is a tree
of C-nodes in which:

• Each layer contains 2i−1 C-nodes of the condition Ci.

• Each edge eT and eF of each C-nodes ni of the condition Ci are linking to a C-node
ni+1 of the condition Ci+1 in the next layer, except for the last layer.

• The condition block is linking to nodes m and p according to the relation between
conditions.

Let CG be the set of all condition blocks in the graph G.

Example 9.3. Consider a simple D-node n with the conditions A,B,C such as A&&B&&C.
From n, there are the two edges (n, s1) and (n, s2). The condition block of n will have
three layers, one per conditions, in which there will have 2i−1 C-node of the corresponding
condition where i represents to possition of the condition. For instance for the condition
B, i = 2. Then the TRUE edge and the FALSE edge of each C-node is linked to a C-node
of the next layer. The last layer is linked to the node s1 and s2 only if the conditions A,
B, C are true. The following figures show how to create this condition block.
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In order to link the condition block with the whole function, we need to know which
combinations of conditions’value lead to the value TRUE or FALSE of the starting D-
node. It’s possible for this to write the truth table of the combinations’ relation. In fact
due to the truth table, we can easily know which edges of the last layer have to be links
with the next right node.

Example 9.4. If we consider the decision node introduced in the example 9.3, in order
to link this condition block to the whole control flow graph, we can create the table table
of the conditions.

The True table reveals that only
the path crossing only true edges
of C-node of the condition A, B, C,
can lead to the node s2. All others
paths lead to s1.

A B C A &&B&&C

T T T T

T T F F

T F T F

T F F F

F T T F

F T F F

F F T F

F F F F

All elements of the condition graph were defined; we obtain the condition graph
graph from the decision graph in which we replace all D-nodes by a condition block.
So the condition graph contains only nodes that necessary to build the condition block,
terminal nodes and edges necessary.
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Example 9.5. Consider the program and the flow graph introduced in example 6.3.
To obtain the condition graph, we have to change the condition statement in the line 3
in a condition block. The condition statement in the line 9 contains already only one
condition, so it’s already a condition block.

a<b

a 6=
result

a 6=
result

system.exit(0)

i<c
return

result

False True

True

False

True False

True True

Figure 11: Condition graph for the program SomeFunction

9.2 Condition coverage

Based on this new graph, we can easily define the condition coverage. In fact, condition
coverage consists in evaluate to TRUE and FALSE each condition independently of the
value of the other conditions in a program. Because the condition graph represents each
condition in one node due to the condition block, it’s possible to find paths that evaluate
the TRUE and FALSE of conditions.

Definition 9.6. Let G = (N,E) be the condition graph of the program p. Let T be a
test suite for p and Π = {π1, . . . , πk} be the corresponding set of complete paths in G
There is 100 % condition coverage in p by T if: For all D-nodes n in G, there exists
paths πi, πj in Π such that true edge of n is in pi and false edge of n is in pj

∀n ∈ DG,∃i, j ∈ {1, . . . , k} . pi, pj ∈ T ∧ Tn ∈ pi ∧ Fn ∈ pj

In this definition Tn represents the edge leaving the node n and corresponding to the
TRUE value. And Fn represents the edge leaving the node n and corresponding to the
FALSE value.

The percentage of condition coverage for a graph corresponds how much conditions
the test suite tests. For 100 % condition coverage, the test case need to contain at least
two tests: one which tests all true values and the second one which tests all false
values.
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Definition 9.7. Let G = (N,E, I) be the decision graph of a program p with C condi-
tions. Let Gc = (Nc, Ec) be the condition graph of p. Let T be a test suite for p and Π
be the corresponding set of complete paths in G.

CondCov =
ET (Π) + EF (Π)

2C
× 100%

Example 9.8. Consider the condition graph introduced in the example 9.5. This pro-
gram consists of 3 conditions, so C = 3. A test suite that wants to achieve complete
condition coverage should make sure that each of the conditions is evaluated to true at
least once and to false at least once. For this, consider the following test cases:

• t1 = (a = 1, b = 2 |
System.exit(0))

• t2 = (a = 2, b = 1 | 6)

In each test case, the values before the bar indicate the inputs, and the value after
the bar indicates the expected result.

Applying the test suite T = {t1, t2} yields complete condition coverage. Therefore, all
conditions have been evaluated at least once to true and once to false, so ET (T ) = 3,
EF (T ) = 3 and therefore the condition coverage percentage is 3+3

2·3 · 100% = 100%.
Note that the test suite T2 = {t1} does not have complete condition coverage. Al-

though all conditions at least once hold and at least once do not hold for the inputs
provided by these test cases, not all of the decision nodes containing them are indeed
reached. For T2, the condition a 6= result is not evaluate to true and the the condition
a¡b is not evaluate to false. So we have ET (T2) = 2 and EF (T2) = 2, so the condition
coverage percentage is 4+2

2·3 · 100% = 66%.

9.3 Decision-Condition Coverage

Condition-decision coverage combines the requirements for decision coverage with those
for condition coverage. That is, there must be sufficient test cases to execute the decision
outcome between true and false and to execute each condition value between true

and false. So a test suite T corresponds to a condition-decision coverage is a test that
satisfies condiction coverage and decision coverage.

Definition 9.9. Let G = (N,E) be a condition graph of a program p. Let T be a test
suite for p

T is condition-decision coverage ⇔ T is condition coverage ∧ T is decision coverage

Definition 9.10. Let G = (N,E) be a condition graph of a program p. Let T be a test
suite for p.

DecConCov(p, T ) =
CondCov(p, T ) +DecCov(p, T )

2
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Example 9.11. Consider the complete paths in example 9.8. we know that Cond-
Cov(p,T)=100 %, however, the test suite T doesn’t allow to have complete decision-
condition coverage. In fact, the true value of the D-node corresponding to the condition
block is not evaluated. So, DecCov(p,T) = 75 %. We can determine decision-condition
coverage for T and the control flow graph: 100+75

2 = 88%.

9.4 Multiple condition coverage

For multi-condition coverage, we do not only require every condition to be evaluated to
true and to false at least once; we require every combination of such valuations of
conditions within a decision to occur at least once. So, for a decision if (a && b) to be
completely covered with respect to this metric, we should make sure that the decision is
reached at least once while a is true and b is true, once while a is true and b is false,
once while a is false and b is true, and once while a is false and b is false. So if there
are n conditions is the function f, they will be 2n tests. Based on the condition graph,
Multiple condition coverage correspond to execute all possibles edges in the graph. In
fact, in the graph edges represent the outcome for each conditions of the function so all
edges in the graph represent all possible combinaisons of conditions.

Definition 9.12. Let G = (N,E) be the condition graph of a program p. Let T be a
test case of p and Π the corresponding set of complete paths in G.
There is multiple condition coverage by T in p if:

∀p ∈ Γ(G) . p ∈ Π

So we can define the percentage of multiple condition coverage in a program using
the edge coverage defined previously in the paper:

Definition 9.13. Let G = (N,E) be the condition graph of a program p. Let T be a test
case of p and Π the corresponding set of complete paths in G. Let Θ be the corresponding
set of possible complete paths in G.

MultiCov(p, T ) =
EdgeCovsyn(G,Π)

EdgeCovsyn(G,Θ)

or

MultiCov(p, T ) =
EdgeCovsyn(G,Π)

2× |DG|

Example 9.14. Consider the program and the condition graph introduced in the exam-
ple ??. The graph contains 4 D-nodes, so |DG| = 4. Each of the four decisions consists
of one condition (by definition of the condition graph). However, by definition of the pro-
gram or the control flow grapn, there are 22+2 = 8 combinations of conditions. The test
case T = {t1, t2, t3} introduced in example 9.8 had complete condition coverage, but does
not have complete multi-condition coverage. The following table provides the condition
combinations that occur: In fact, the test suite doesn’t evaluate the combinaison ’false,
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Test a < b a 6= result i < c

t1 true true -
t2 false true true, false
t3 true false true , false

false’ for the two first conditions. Moreover, if we consider Π as the corresponding set
of complete paths of T , E(Π) = 7 out of 8. So, we covered 7 out of the 8 combinations,
yielding a multi-condition coverage of 7

8 · 100% = 88%.

10 Relations of semantic coverage measures

The relations of syntactic coverage measures are still available with the semantic coverage
measure. However, Condition coverages are stronger than decision coverage or statement
coverage.

The relationship of all the code coverage metrics are represented in the figure 12

Path

Coverage

Multiple
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Coverage
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coverage

Decision

coverage
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Segment
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Statement
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Figure 12: Representation of the relations between code coverage metrics
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Conclusion

White box testing is a dynamic testing and based on knowledge of how a program
works. There are four main theoretical techniques: Statement, branch, condition, and
paths coverage. In order to define each one, we have created a flow graph adapted to
each criteria. For instance, the statement graph only contains nodes that we need for the
statement coverage. Thoses graphs represent the possible control flow in the program.
However, syntactically indicated behaviors (statements, edges, etc.) are often impossible
and that imply unreachable code, infeasible edges, paths that must be detected by white
box coverage. In this paper, we decide to define the semantic coverage based on the syn-
tactic one and the feasible paths of the program. One other solution can be to change all
graphs so as to remove all unreachable paths, so as it defined in the paper Path-Sensitive
Analysis through Infeasible-Path Detection and Syntactic Language Refinement.
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