Discrete Optimization 2010 Lecture 6 Total Unimodularity & Matchings

Marc Uetz University of Twente

m.uetz@utwente.nl

Lecture 6: sheet 1 / 29

Marc Uetz Discrete Optimization

Outline

2 Matching Problem

Question

Under what conditions on A and b is it true that all vertices of $P = \{x \in \mathbb{R}^n \mid Ax \le b, x \ge 0\}$ happen to be integer?

Answer: If A is totally unimodular, and b integer

(Totally) Unimodular Matrices

Definition

- An integer square matrix B ∈ Z^{n×n} is unimodular if det(B) = ±1
- ② An integer matrix $A ∈ \mathbb{Z}^{m × n}$ is totally unimodular (TU) if each square submatrix B of A has det $(B) ∈ \{0, \pm 1\}$.

Some easy facts:

- $\bullet\,$ entries of a TU matrix are $\{0,\pm1\}$ by definition (1 $\times\,1$ submatrices)
- if A is TU, adding or deleting a row or column vector (0,...,1,...,0), the result is again TU
- if A is TU, multiplying any row/column by -1, the result is again TU

Motivation

If all vertices of $\{x\in \mathbb{R}^n\mid Ax\leq b,x\geq 0\}$ are integer, for any c the linear program

 $\begin{array}{l} \max \ c^t x \\ \text{s.t.} \ Ax < b, \ x > 0 \end{array}$

(if not infeasible or unbounded) has an integer optimal solution as the set of optimal solutions of P is a face of $\{x \mid Ax \le b, x \ge 0\}$

In that case, we can even solve integer linear programming problems by solving an LP only (say with Simplex), because an optimum solution (if it exists) also occurs at a vertex which happens to be integer.

Integrality of Linear Equality Systems

Theorem

Let B be an integer square matrix that is nonsingular (that is, $det(B) \neq 0$), consider system Bx = b. Then x is integer for any integer right-hand-side b if and only if B is unimodular.

"if" $x = B^{-1}b$, and by Cramer's rule (Linear Algebra):

$$x_j = rac{\det(B^j)}{\det(B)}$$

with $B^j = B$, but with *jth* column of *B* replaced by *b* "only if" $x = B^{-1}b$ integer for all *b*, also for $b^t = (0, \dots, 1, \dots, 0)$ such an *x* exactly equals a column of B^{-1} so all columns of B^{-1} are integer, and so is det (B^{-1}) but det(B) det $(B^{-1}) = 1$, both integer, so both are ± 1

TU Matrices and Integrality

Define for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$P(A) = \{x \in \mathbb{R}^n \mid Ax \le b, x \ge 0\}$$

Theorem

If A is TU and b integer, then P(A) has integer vertices only.

Proof

$$P(A) = \{x \in \mathbb{R}^n \mid Ax \le b, x \ge 0\}$$

If
$$P(A) = \emptyset$$
 nothing to prove. We write
 $P(A) = \{x \mid \begin{bmatrix} A \\ -E \end{bmatrix} x \le \begin{bmatrix} b \\ 0 \end{bmatrix}\}$. As A is TU, so is $\begin{bmatrix} A \\ -E \end{bmatrix}$.

A vertex x of P(A) exists (see Exercise), and is defined by *n* linearly independent inequalities of this system, so by $A^o x = b^o$ for non-singular subsystem A^o , b^o of $\begin{bmatrix} A \\ -E \end{bmatrix} x \leq \begin{bmatrix} b \\ 0 \end{bmatrix}$.

As A^o non-singular and TU, $det(A^o) = \pm 1$, so $x = (A^o)^{-1}b^o$ is integer.

Lecture 6: sheet 8 / 29

The whole story: Hoffman-Kruskal Theorem

$$P(A) = \{x \in \mathbb{R}^n \mid Ax \le b, x \ge 0\}$$

We proved sufficiency:

Theorem

If A is TU and b integer, then P(A) has integer vertices only.

It also holds necessity (see Literature, Theorem 6.25):

Theorem

If P(A) has integer vertices for all integer *b*, then *A* is totally unimodular.

Sufficient Condition Total Unimodularity

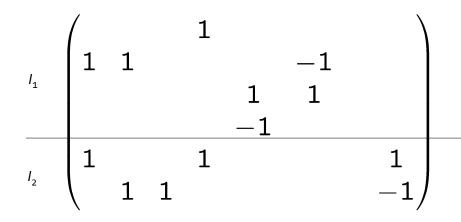
Theorem

A matrix A is totally unimodular if no more than 2 nonzeros are in each column, and if the rows can be partitioned into two sets I_1 and I_2 such that

- If a column has two entries of the same sign, their rows are in different sets of the partition
- If a column has two entries of different sign, their rows are in the same set of the partition

Proof: By induction on the size of the square submatrices

Sufficient Condition Total Unimodularity



Minimum Cost Flows

Theorem

The node-arc incidence matrix of any directed graph G = (V, E) is totally unimodular.

Proof: Rows have one +1 and one -1, so take $I_1 = V$, $I_2 = \emptyset$ \Box

Consequence

The linear program for Min-Cost Flow always has integer optimal solutions, as long as capacities u_{ij} and balances b(i) are integer.

The dual linear program always has integer optimal solution, as long as the costs c_{ii} are integer.

Outline

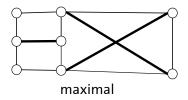
2 Matching Problem

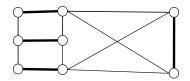
The Matching Problem

Definition

A matching in an undirected graph G = (V, E) is a set $M \subseteq E$ of pairwise non-incident edges.

Given an undirected graph G = (V, E), a maximum matching is one with maximal cardinality. Perfect matching: |M| = |V|/2



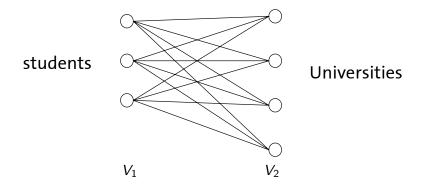


maximal & maximum

Special Case: Bipartite Matching

Special Case

Matching in bipartite graphs $G = (V_1, V_2, E)$, where $E \subseteq V_1 \times V_2$.



Bipartite Graphs

Theorem

Graph G = (V, E) is bipartite if and only if G contains no odd cycle.

Proof: (w.l.o.g. assume G connected)

Necessity: Trivially, a bipartite graph has no odd cycle.

Sufficiency: Given G with no odd cycle. Pick $v_o \in V$. Define

•
$$V_1 = \{v \in V \mid \mathsf{dist}(v_o, v) \text{ even}\}$$

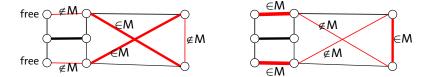
•
$$V_2 = \{v \in V \mid \mathsf{dist}(v_o, v) \mathsf{ odd}\}$$

Then $V_1 \cup V_2 = V$ is a bipartition with no edges within V_1 , V_2 .

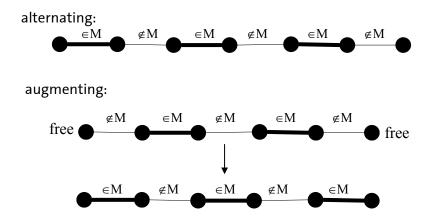
Matching Algorithms: Basic Ideas

- matchings are an independence system but no matroid
- greedy algorithm yields maximal matching, but needn't be maximum
- for M = maximal matching, and $M^* =$ maximum matching, $|M| \ge \frac{1}{2}|M^*|$ (Exercise)

Idea for matching algorithm: Start with maximal matching, look for augmenting paths



Alternating & Augmenting Paths



Lecture 6: sheet 18 / 29

Marc Uetz

Discrete Optimization

Alternating Path Theorem

Observation: Let M be a matching of G = (V, E), and let P be an augmenting path (for M), then $M \oplus P$ is a matching with one edge more.

 $M \oplus P = M \cup P \setminus M \cap P$

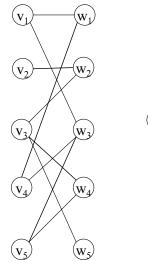
Theorem (Berge 1957)

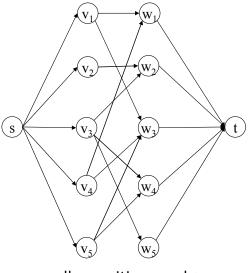
M is a maximum matching if and only if there are no augmenting alternating paths (for M).

Proof: Necessity is clear, sufficiency: Assume matching M' larger than M and consider $M \oplus M'$. Show that this contains an augmenting alternating path for M. (see page 129, reader)

Total Unimodularity Matching Problem

Maximum Bipartite Matching and Maximum Flow



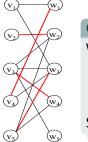


all capacities equal 1

Maximum Bipartite Matching and Maximum Flow

Augmenting Path Algorithm for MaxFlow

- Flow values are either 0 or 1
- flow 1 on $(v, w) \Leftrightarrow \mathsf{edge} \ \{v, w\} \in M$
- any feasible flow yields matching (why?)
- flow value v = size of the matching |M|
- Computation time O(v(n+m)) \in O(nm)



Question

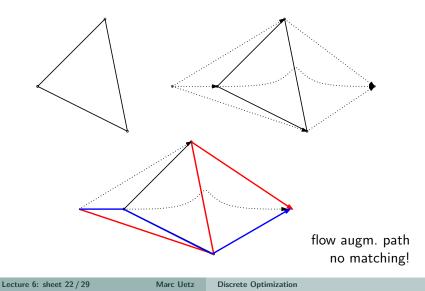
What are the flow augmenting paths?

- red arc: flow 1, backward arc in residual graph
- black arc: flow 0, forward arc in residual graph
- So, flow augmentation = augmenting alt. path

Lecture 6: sheet 21 / 29

Problem for Non-Bipartite Graphs

Odd cycles:



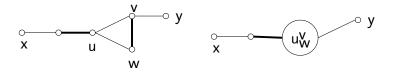
Edmonds' Breakthrough

Theorem (Edmonds 1965)

There exists a polynomial time algorithm for finding a maximum matching in any (also non-bipartite) graph. O(n^3) time

Paths, Trees, and Flowers, Canad. J. Math. 17 (1965)

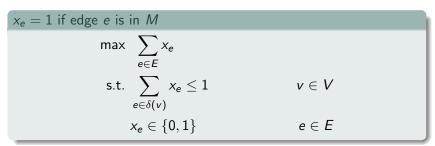
Main idea: 'Shrink the blossoms (odd cycles)'



Why breakthrough? (first polynomial time algorithm for a problem where the constraint matrix isn't TU)

Matching: Integer Linear Programming Formulation

Recall $\delta(v) =$ edges incident with v



With A = node-edge incidence matrix, this is

$$\begin{array}{ll} \max \ \mathbf{1} \cdot x \\ \text{s.t.} \ Ax \leq \mathbf{1} \\ x \geq 0, \text{integer} \end{array}$$

Lecture 6: sheet 24 / 29

Matching: Linear Programming Formulation

Theorem

Node-edge incidence matrix A of an undirected graph is totally unimodular if (and only if) G is bipartite. (Exercise)

Consequence?

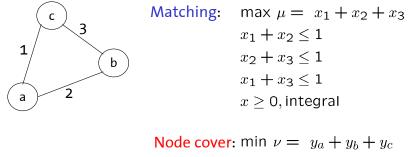
The linear program (LP) for the matching problem $\begin{array}{l} \max \ \mathbf{1} \cdot x \\ \text{s.t.} \ Ax \leq \mathbf{1} \\ x \geq 0 \end{array}$

always has an integer optimal solution (a matching), if G bipartite.

And as before, the same holds for the dual LP ... what is the dual?

Lecture 6: sheet 25 / 29

Matching & Node Cover



but cover:
$$\min \nu = -y_a + y_b + y_c$$

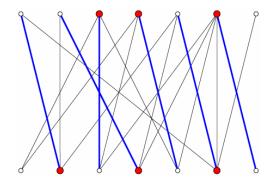
 $y_a + y_c \ge 1$
 $y_b + y_c \ge 1$
 $y \ge 0$, integral

We know $\mu \leq \nu$ (why?)

Matching & Node Cover in Bipartite Graphs

Theorem (Kőnig 1931)

In any bipartite graph G, the size of a maximum matching equals the size of a minimum node cover.



Proof of Kőnig's Theorem

The Linear Programming relaxations of Matching and Node Cover are the following primal dual pair:

Matching		
	max $1\cdot x$	
	s.t. $Ax \leq 1$	
	$x \ge 0$	

Node Cover

$$\begin{array}{l} \min \ \mathbf{1} \cdot y \\ \text{s.t.} \ A^t y \geq \mathbf{1} \\ y \geq 0 \end{array}$$

Bipartite graph \Rightarrow matrix A is TU $\Rightarrow \exists$ optimal primal-dual pair that is integer, and this is the desired matching/node-cover.

Lecture 6: sheet 28 / 29

Square Submatrix

