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Total Unimodularity Matching Problem

Question

Under what conditions on A and b is it true that all vertices of
P = {x ∈ Rn | Ax ≤ b, x ≥ 0} happen to be integer?

Answer: If A is totally unimodular, and b integer
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Total Unimodularity Matching Problem

(Totally) Unimodular Matrices

Definition

1 An integer square matrix B ∈ Zn×n is unimodular if
det(B) = ±1

2 An integer matrix A ∈ Zm×n is totally unimodular (TU) if
each square submatrix B of A has det(B) ∈ {0,±1}.

Some easy facts:

entries of a TU matrix are {0,±1} by definition (1× 1
submatrices)

if A is TU, adding or deleting a row or column vector
(0, . . . , 1, . . . , 0), the result is again TU

if A is TU, multiplying any row/column by −1, the result is
again TU
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Total Unimodularity Matching Problem

Motivation

If all vertices of {x ∈ Rn | Ax ≤ b, x ≥ 0} are integer, for any c
the linear program

max ctx

s.t. Ax ≤ b, x ≥ 0

(if not infeasible or unbounded) has an integer optimal solution
as the set of optimal solutions of P is a face of {x | Ax ≤ b, x ≥ 0}

In that case, we can even solve integer linear programming
problems by solving an LP only (say with Simplex), because an
optimum solution (if it exists) also occurs at a vertex which
happens to be integer.
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Total Unimodularity Matching Problem

Integrality of Linear Equality Systems

Theorem

Let B be an integer square matrix that is nonsingular (that is,
det(B) 6= 0), consider system Bx = b. Then x is integer for any
integer right-hand-side b if and only if B is unimodular.

”if” x = B−1b, and by Cramer’s rule (Linear Algebra):

xj =
det(B j)

det(B)

with B j = B, but with jth column of B replaced by b
”only if” x = B−1b integer for all b, also for bt = (0, . . . , 1, . . . , 0)

such an x exactly equals a column of B−1

so all columns of B−1 are integer, and so is det(B−1)
but det(B) det(B−1) = 1, both integer, so both are ±1
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Total Unimodularity Matching Problem

TU Matrices and Integrality

Define for A ∈ Rm×n, b ∈ Rm

P(A) = {x ∈ Rn | Ax ≤ b, x ≥ 0}

Theorem

If A is TU and b integer, then P(A) has integer vertices only.
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Total Unimodularity Matching Problem

Proof

P(A) = {x ∈ Rn | Ax ≤ b, x ≥ 0}

If P(A) = ∅ nothing to prove. We write

P(A) = {x |
[

A
−E

]
x ≤

[
b
0

]
}. As A is TU, so is

[
A
−E

]
.

A vertex x of P(A) exists (see Exercise), and is defined by n
linearly independent inequalities of this system, so by Aox = bo for

non-singular subsystem Ao , bo of

[
A
−E

]
x ≤

[
b
0

]
.

As Ao non-singular and TU, det(Ao) = ±1, so x = (Ao)−1bo is
integer.
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Total Unimodularity Matching Problem

The whole story: Hoffman-Kruskal Theorem

P(A) = {x ∈ Rn | Ax ≤ b, x ≥ 0}

We proved sufficiency:

Theorem

If A is TU and b integer, then P(A) has integer vertices only.

It also holds necessity (see Literature, Theorem 6.25):

Theorem

If P(A) has integer vertices for all integer b, then A is totally
unimodular.
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Total Unimodularity Matching Problem

Sufficient Condition Total Unimodularity

Theorem

A matrix A is totally unimodular if no more than 2 nonzeros are in
each column, and if the rows can be partitioned into two sets I1
and I2 such that

1 If a column has two entries of the same sign, their rows are in
different sets of the partition

2 If a column has two entries of different sign, their rows are in
the same set of the partition

Proof: By induction on the size of the square submatrices
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Sufficient Condition Total Unimodularity!"#$%&'
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Total Unimodularity Matching Problem

Minimum Cost Flows

Theorem

The node-arc incidence matrix of any directed graph G = (V ,E ) is
totally unimodular.

Proof: Rows have one +1 and one −1, so take I1 = V , I2 = ∅

Consequence

The linear program for Min-Cost Flow always has integer optimal
solutions, as long as capacities uij and balances b(i) are integer.

The dual linear program always has integer optimal solution, as
long as the costs cij are integer.
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Total Unimodularity Matching Problem

The Matching Problem

Definition

A matching in an undirected graph G = (V ,E ) is a set M ⊆ E of
pairwise non-incident edges.

Given an undirected graph G = (V ,E ), a maximum matching is
one with maximal cardinality. Perfect matching: |M| = |V |/2
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Total Unimodularity Matching Problem

Special Case: Bipartite Matching

Special Case

Matching in bipartite graphs G = (V1,V2,E ), where E ⊆ V1 × V2.
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Total Unimodularity Matching Problem

Bipartite Graphs

Theorem

Graph G = (V ,E ) is bipartite if and only if G contains no odd
cycle.

Proof: (w.l.o.g. assume G connected)

Necessity: Trivially, a bipartite graph has no odd cycle.

Sufficiency: Given G with no odd cycle. Pick vo ∈ V . Define

V1 = {v ∈ V | dist(vo , v) even}
V2 = {v ∈ V | dist(vo , v) odd}

Then V1 ∪ V2 = V is a bipartition with no edges within V1, V2.
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Total Unimodularity Matching Problem

Matching Algorithms: Basic Ideas

matchings are an independence system but no matroid

greedy algorithm yields maximal matching, but needn’t be
maximum

for M = maximal matching, and M∗ = maximum matching,
|M| ≥ 1

2 |M
∗| (Exercise)

Idea for matching algorithm: Start with maximal matching, look
for augmenting paths
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Total Unimodularity Matching Problem

Alternating & Augmenting Paths
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Total Unimodularity Matching Problem

Alternating Path Theorem

Observation: Let M be a matching of G = (V ,E ), and let P be an
augmenting path (for M), then M ⊕ P is a matching with one
edge more.

M ⊕ P = M ∪ P \M ∩ P

Theorem (Berge 1957)

M is a maximum matching if and only if there are no augmenting
alternating paths (for M).

Proof: Necessity is clear, sufficiency: Assume matching M ′ larger
than M and consider M ⊕M ′. Show that this contains an
augmenting alternating path for M. (see page 129, reader)
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Total Unimodularity Matching Problem

Maximum Bipartite Matching and Maximum Flow
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Total Unimodularity Matching Problem

Maximum Bipartite Matching and Maximum Flow

Augmenting Path Algorithm for MaxFlow

Flow values are either 0 or 1

flow 1 on (v ,w) ⇔ edge {v ,w} ∈ M

any feasible flow yields matching (why?)

flow value v = size of the matching |M|
Computation time O( v(n + m) ) ∈ O( nm )!"#$"#%&'(%)*#+"#%&,-+./0&1"2-3+"+*&43-2./
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Question

What are the flow augmenting paths?

red arc: flow 1, backward arc in residual graph

black arc: flow 0, forward arc in residual graph

So, flow augmentation = augmenting alt. path
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Problem for Non-Bipartite Graphs

Odd cycles:

flow augm. path
no matching!
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Total Unimodularity Matching Problem

Edmonds’ Breakthrough

Theorem (Edmonds 1965)

There exists a polynomial time algorithm for finding a maximum
matching in any (also non-bipartite) graph. O( n3 ) time

Paths, Trees, and Flowers, Canad. J. Math. 17 (1965)

Main idea: ‘Shrink the blossoms (odd cycles)’

!"#$%&'()*&*+,-)('./0

!"#$%#&'()*&$+*,'-./012'!"#%#'#34,5,'6+'7(+81'54&#'69:$%45"&'
;$%'<$&=>54+:'6'&634&>&'<6%*4+6945?'&65<"4+:'4+'6+?'(69,$'
+$+@A4=6%545#1':%6="'BC(DE)1F

G*#62'7**'<?<9#,'<%#65#'=%$A9#&,H'I$'J>,5',"%4+K'5"#&J>,5',"%4+K'5"#& 5$'$+#'
+$*#'6+*'<$+54+>#L

3 >

M

N

? ?

3
>M
N

N#',K4='5"$,#'*#5649,F
Why breakthrough? (first polynomial time algorithm for a
problem where the constraint matrix isn’t TU)
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Matching: Integer Linear Programming Formulation

Recall δ(v) = edges incident with v

xe = 1 if edge e is in M

max
∑
e∈E

xe

s.t.
∑

e∈δ(v)

xe ≤ 1 v ∈ V

xe ∈ {0, 1} e ∈ E

With A = node-edge incidence matrix, this is

max 1 · x
s.t. Ax ≤ 1

x ≥ 0, integer
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Total Unimodularity Matching Problem

Matching: Linear Programming Formulation

Theorem

Node-edge incidence matrix A of an undirected graph is totally
unimodular if (and only if) G is bipartite. (Exercise)

Consequence?

The linear program (LP) for the matching problem

max 1 · x
s.t. Ax ≤ 1

x ≥ 0

always has an integer optimal solution (a matching), if G bipartite.

And as before, the same holds for the dual LP . . . what is the dual?
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Matching & Node Cover
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We know µ ≤ ν (why?)
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Matching & Node Cover in Bipartite Graphs

Theorem (Kőnig 1931)

In any bipartite graph G , the size of a maximum matching equals
the size of a minimum node cover.
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Proof of Kőnig’s Theorem

The Linear Programming relaxations of Matching and Node Cover
are the following primal dual pair:

Matching
max 1 · x
s.t. Ax ≤ 1

x ≥ 0

Node Cover
min 1 · y
s.t. Aty ≥ 1

y ≥ 0

Bipartite graph ⇒ matrix A is TU ⇒ ∃ optimal primal-dual pair
that is integer, and this is the desired matching/node-cover.
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Square Submatrix
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